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"An expressmn for the dynamical structure factor S(k, w) for the 51mp1e classical liquid

is obtained. It is shown that the diffusion process leads to the considerable attenuation of the

* cooperative excitations. This attenuation causes the disappearance of the zero sound-type exita-
- tions in the long-wavelength limit.

1. Introduction

The dynannc propertles of a classmal liquid may be descrlbed relatlvely simply in two
extreme cases. The first is when the cons1dered pertulbatlons are slowly variable in time
and space, and the other, opposﬂ:e case, is when the times characterizing the investigated
processes are of the order of the period of atomic thermal vibrations. In the first case ordinary
hydrodynamics is applicable, whereas in the second use is made of many different quasi-
crystal models based on the similarities between liquids and crystals [1-4]. The applicability
of hydrodynamics is limited by the condition that there be local equlhbrlum in regions
which are small compared with the wavelength. This is why classical hydrodynamics must
be replaced by relaxational hydrodynamics already in the ultrasonic region, the latter taking
account of the frequency dependence of the kinetic coefﬁc1ents [5-6]. In the very high
frequency range (o =~ 10 to 1013 Hz) the hydrodynanuc deSCI‘lpthIl cannot be apphed
It should be said here that attempts have been made recently to extend hydrodynamics
to the range of hlgh frequencies and- wavelengths comparable with atomic distances [7].
These attempts, however, are intended to prov1de a model of correlation” funetlons rather
than to glve a microscopic description of a liquid. The apphcablhty of the quasmrystal
models is also limited, but from the low frequency side.

‘ Wlth respect to perturhatlons of a frequency of the order of 1013 Hz and more a liquid
behaves like a solid. The diffusional dlsplacement within a time of 10-13 sec is. small and
may be neglected This circumstance constitutes the ba51s of most quasicrystal model%
At frequen(:les o 5 1012 Hz, ‘when the period of the investigated density oscﬂlatlons is
of the same order as the characterlstlc time of dlffusmnal displacement, the quasmrystal
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model approximation is very coarse. Thus, there is a rather broad interval of frequencies
and wavelengths, known as the transitory region, where neither the hydrodynamic, nor
the quasicrystal approaches are valid.

Note should be made of the qualitative difference between perturbations of the liquid
in the hydrodynamic region and those in the region where quasicrystal models are applicable.
Hydrodynamics treats cooperative excitations, which together represent a macrcscopic
change in density. Here, the microscopic properties cf the system only determine the kinetic
coefficients, and it is not possible to examine an atom by itself. On the other hand, within
the framework of a quasicrystal model cooperative excitations having a wavelength of the
order of interatomic spacings are examined. Cooperative excitations in this region can be
said to be the resultant of the vibrations of the individual atoms. These vibrations are
synchronized in such a way that they depict a density wave. Such perturbations are analogous
to phonons in crystals, the only difference being that in crystals there is space symmetry,
whereas in a liquid there is none. Perturbations of the phonon type in liquids are commonly
known as quasiphonons, but sometimes the term “’zero sound” is used. The latter term
is adopted from the quantum theory of liquids. We shall be dealing here with cooperative
excitations of the second kind, so the notion of quasiphonons is somewhat more appropriate in
our case. The introduction of phonons in the crystalline lattice theory is a convenient way
of describing atomic displacements. In a liquid, however, quasiphonons give only an approxi-
mate picture of the complex character of atomic displacements. This is why the definition
of quasiphonons in terms of atomic displacements in quite intricate. The natural way of
defining quasiphonons is linked with the interpretation of experimental data from inelastic
scattering of slow neutrons in liquids. Such experiments show that in the distribution of
coherently scattered neutrons there are singularities similar to phonon -peaks in the case
of crystals. Thus, it is convenient to define quasiphonons as singularities of the scattering
function S(k, w) [8]. .

Quasiphonons, like phonons, are characterized by the dispersion relation w(k) and
lifetime 7. The function w(k) has been found experimentally [9] and theoretically [1-4],
and for a number of liquids its behaviour is known, qualitatively at least. The value of
lifetime 7 and especially its dependence on frequency is known much less accurately. At
high frequencies quasiphonons can be computed quite well from definite excitations, what
agrees excellently with neutron scattering experiments. When the frequency approaches
the transitory region the lifetime of the quasiphonons should become shortened due to the
increased role of diffusion. In the transitory region the zero sound waves should be strongly
attenuated and, finally, in the hydrodynamic region ordinary sound waves propagate
in the liquid instead of zero sound. Despite the fact that this picture seems to be quite
natural, it has not yet been corrcborated theoretically. And so, the study [2] partially takes
account of quasiphonon attenuation due to diffusion. It was found that with decreasing
frequency the lifetime 7 grows continuously right up to the applicability limits of the model
used. Taking account of quasiphonon decay due to anharmonicity also does not appear
to provide the required dependence of 7 on w, for from the theory of anharmonic crystals

1
we know that at low frequencies v = —-.
)
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In this paper we present a mechanism of quasiphonon attenuation which leads to their
disappearance in the transitory region. The model is described in detail in Sec. 3. We shall
only note here that its range of applicability is not wider than that of other quasicrystal
models, say, that of Hubbard [2]. However, in contradistinction to the results in Ref. [2],
in our approach the lifetime of quasiphonons at small & becomes shortened with decreasing w.
In Sec. 2 the general formulae for the scattering function Sk, ) are given. The derivation
of S(k, w) is given in Secs 3, 4 and 5, while Sec. 6 presents the results obtained.

2. Dynamic structure factor S(k, w)

The two-differential neutron scattering cross-section for a liquid is determined from
the mcmenta of incident and scattered neutrons, k; and k,, the cross-section for the inter-
action of neutrons with target nuclei, o, and a factor which depends only on the properties
of the liquid, namely, the dynamic structure factor. The cross-section for coherent neutron
scattering with a momentum change of % and energy change of iw can be written in the
form

2
where S(k, ) is the dynamic structure factor, otherwise known as scattering function,
introduced by Van Hove [8]. As had been mentioned in the Introduction, the properties
of cooperative excitations are determined by singularities of the function S(k, »); hence,
our first task is to derive this function. Coherent neutron scattering is conditioned by
scattering on density fluctuations. Therefore, there is a straight relationship between the
dynamic structure factors and the time-dependent correlation density function,

Sk, w) = '2—7%.77 f dte’(n(k, t)n(—k, 0)). 2

Here,

n(k, t) = Z ki@ 3)

is the Fourier component of the deﬁsity of the particles, #;() is the radius vector of particle i
at instant ¢, and N is the number of particles in the system.

When solving dynamic problems it is more convenient to calculate not the correlation
function (n(k, t)n(—k, t)), but the function of the response of the system to external
perturbation. If a weak external field,

v

ext

= Ueikr— iwt ( 4)

acts on the system, then the change in particle density due to this field can be found by means
of formulae of the linear response theory,

(Snlke, 1)) = y(k, w)Ue™* ©)
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where %(k, ®) is the: complex susceptibility. The imaginary part of the function 1, w)
is called simply susceptibility; and'is definéd by the mean value of the density operators in
the following manner: :

Im y(k, 0) = 7" (K, w) 2N fdte"‘*”([n(k, 7), n(—k, 0. (6)

The symbol ([...]) denotes the mean value of the commutator taken over the unperturbed
ensemble. The relationship between the correlation function (n,(k, t) n(—k, 0)) and the
commutator correlation function {[n(k, t) n(—k, 0)]) is established by the fluctuation-
-dissipation theorem. With the help of this theorem and formulae (2) and (6) it is possible
to link up the dynamic structure factor with susceptibility x"'(k, »). In the classical approxi-
mation this relationship -has the form

™

where n is the mean density of particles, f = k—l’_lT’ T being temperature and kg the
B

Boltzman constant.
Using formuale (5) and (7) we get

This last expression for the dynamic structure factor will prove to be convenient in the
following. Calculation of S(k, w) is brought down to calculation of the mean value of the
quantity (dn(k, t)). Subsequent calculations call for considerations based on models.

3. Relaxational model of quasiphonon attenuation

The model which we shall use here is based above all on the possibility of separating
the displacement of the atoms of the liquid into vibrational and diffusional displacements
and the assumption that the correlation betweéen them is small. In accordance with the
basic assumptions of the model we shall write the radius vector ,(t) in the form R, (#)+u;(?),
where R(t) is the particle’s equilibrium position vector, which is slowly variable in time, and
u,(?) is the displacement of the particle relative to this equilibrium position. Here, contrary
to the standard quasicrystal model, the equilibrium position of atoms are assumed to be time
dependent. This kind of approximation was used in Ref. [2] when dealing -with ‘a non-
-stationary disordered system. Other assumptions concern the diffusion mechanism. We

- shall assume that a weak external field may bring about a change in density due to vibrational
motions, but does not affect the diffusional movements of the particles. Physically speaking,
this is associated with the jump mechanism of diffusion, i.e. the equilibrium position of
an atom remains stationary until a vacancy appears in its nearest neighbourhood.

We shall try to find the relationship the diffusional and vibrational displacements in
the following manner. Let us consider the distribution of particles relative to a certain
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chosen particle. If the chosen particle is at test; then the equilibrium’ distribution of the
particles surrounding it is described by ‘an even correlation function g(r). When the chosen
particle is diplaced by a vector u, then the distribution of the surrounding particles changes
by the value pg(r)u. We shall assume that diffusional displacement is what causes the relaxa-
tion of this perturbation. The above listed assumptions require somé more elaboration. It
will be convenient to do this later on. Now, we proceed to the calculation of the quantity
(5ri(k, 9).

In accordance with definition ‘(3).We"hax"re “
on(le, ) = D) (e” "Bt __g—ikRiy v D we kR ©)

In this equation we assume that the displacement of the particles, u;, due to the external
field of Eq. (4) is small. Differentiation of Eq. (9) with rescpect to time and averaging over
all configurations {R;(t)} yields

(8rille, 1) = —i 3] ()™ Rey— 0 ((Reu (e o~ 4y, (10)

1 i
Let us compare the correlation functions in the right-hand part of Eq. (10). By assumption
we have zli> Rl-. Besides this, we assumed the smallness of the correlation between the

vibrational displacements () and the -diffusional displacements of the same particle,
R, (t)4t. Hence, we get the inequality

(the™ ) S (R )4y

and may drop the second term in Eq. (10). We introduce the new variable

P etot—ikR; ‘
&) = () — 1)
and write Eq. (10) in the form
(8n(ke, 1)) = — ik 3] (&(0)) Ue, (12)

Thus, by virtue of Eqs (7), (5) and (12), the expression for the dynamic structure factor
becomes

-k
Sk, w) = Bt Im Z (&i(®))- 13)
2
Let us notice that the mean value (;) does not depend on the index of the particle
because of the homogeneity of the system. Therefore, it is sufficient to consider the behaviour
of a single chosen particle, the coordinates of which will be labelled by the subscript «“0”.
We write the equation of motion of our chosen particle in the form

. iio(t) = —n f dl’VV(’)"o——r)e(r’ t):_iUkeikilo—imr. (14)

The last term in Eq. (14) appears because the efcternal ﬁelc.l‘is‘pr‘esevnt. The function (7, )
denotes the averaged distribution of the particles surrounding the chosen one at the instant .
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The exchange of the summation over particle coordinates in the equation of motion by
integration with the distribution function is an approximation analogous to the self-consistent
field approximation.

We note here some remarks regarding the behaviour of the function o(r, 7). The
equilibrium distribution 0o(*, #) in the absence of external field is described by a simple
even correlation function g(r),

2o(1, 1) = g(ro(t)—7)- (15)

The development of the distribution function with time is caused by the displacement of
the chosen particle, the action of the external field, and relaxation due to the motion of the
surrounding particles. The rate of the vibrational motion is much greater than that ‘of
diffusional motion. It is plausible, therefore, to assume that the vibrational “subsystem”
reaches equilibrium with the external field much faster than the diffusional one. We denote
the relaxation times in the vibrational and diffusional “subsystems’ by 7 and 7, respectively.
Let the distribution function of the particles surrounding our chosen one be o(r, 0)
= F[(r(0)—7), 0] at the instant when the external field, Eq. (4), is switched on. Then after
a time ¢, satisfying the condition 753> t> Tk, the distribution function looks as

o(r, 1) = FI{R(t) +uo(t) —r—uo(t) cos k(Ro(t) —1)}, 2]. (16)

Hence, there takes place a slow relaxation process with the characteristic time 7j, leading to
the function

gIR (1) +uo(t) —1r—uo(?) cos E(Ry(t)—7)]. 17

The function u,(t) in expressions (16) and (17) should be defined self-consistently with the
use of Eq. (14).

We shall now check the correctness of the assertions made above in the case of a quasi-
crystal model. In such model the equilibrium position of the oscillating atoms, R;, is assumed
to motionless and distributed according to the function g(r). This kind of assumption corresp-
onds to the neglection of the explicit time dependence of the function on the right-hand
side of Eq. (16) and the postulation of expression (17) as the distribution function o(, t).
Indeed, expanding function (17) into a series with respect to the displacements and taking
only the first two terms of the expansion,

o(r, 1) = g(Ry—1)+Pg(Ro—r)ug(t)(1—cos k(Ro—1))+..

yields with the use of Eq. (14) the expression for the frequency of longitudinal vibrations
in the quasicrystal model,

w2(k) =n f (—IZ—V)zV(r)g(r)(l—cos Jer)dr. (18)

We shall now try to improve the quasicrystal approximation by taking account of the explicit
time dependence of the function F(r, ¢) due to diffusional motion. In other words, we shall
consider the relaxation of the distribution function towards the form (17). For this purpose,
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we must have a formula for the function o(r, ). It is a very complicated task to derive the
kinetic equation for a liquid; therefore, we shall use the approximate method of Singwi and
Sjolander [10]. A brief outline of this method, without entering into details, is given in the
following section.

4. The Singwi and Sjélander method.

Let f(, p, t) be an independent particle distribution function of the atoms surrounding
our chosen particle, whereas fy(®, p, ¢) its equilibrium value. The time dependence of this
function is due to the motion of the chosen atom, as in Eqs (15) and (16) of the preceding
section. We assume that we can separate the coordinate and momentum dependences of
the equilibrium distribution function and write

Jo(@, P, 1) = fo(p)folae(t)—a] ’ (19)

where fyo(p) is the Maxwellian distribution with respect to momenta.
The simplest kinetic equation for-the function f(x, p, £) is

é)f(w, p, t)

Sol®, p, O)—fle, p, ) (20)

T

+Bpf(e, p, 1) =

and corresponds to a gas of non-interacting particles which are placed in the field of the
chosen atom. The solution to Eq. (20) is found by means of the Laplace transformation and
has the form

: ) .
[, p,t)=fy (2, p,t) + f dy’ j dx’ {j v(zdnq)s eiQ(:c—m’)—ia;q(t—;')E %

t—t’

Xe T fo(Dpfolxe(t)) —a"Tug(2). (21)

The density of particles surrounding the chosen one at instant ¢ is found by mtegratmg
expression (21) over ‘momenta, viz.,

@) =film)—al+ [ ar [ e R, 1 1) x

X Pfolao(t') — a0 Tio(t) BRS¢

where . : L
g, t) = [ra(t)] =" exp (_— E%) ” we L les)
at) = 2L @

The function g°(e, #) is the Gaussian approximation of the correlation function g, (%, ?)
which describes the probability of a particle becoming displaced from the coordinate origin
to-a position x within time #. The width. of the Gaussian curve, a(t), or the root mean square
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displacement within time ¢ the foim (24) reveals the gaseous character of the particle motion.
In the case of a liquid this function shculd fulfill the condition

a(t) = C+6Dt when ¢ —> oo,

where D is diffusion coefficient. The method of Singwi and Sjélander consists in the use
of the functicnal form (22) of the expression frem o(%, ¢) for describing the density of the
particles surrounding the chosen one in a liquid, but the ‘“gasecus” correlation function
g%(x, t) is replaced by a more ccmplex form, g(a, ¢, ®', ¢'|a6,). The latter correlation function
gives the probability that a particle which is at point & at instant ¢ will move to point &
within time ¢—¢', assuming the condition that the chosen particle is found at point a,
at the instant ¢. We shall not write out any concrete expression for this function, but use
the results of Ref. [10] in our numerical calculations.

We shall now employ the described method to our problem. In accordance with
formula (17), we write the equilibrium distribution (19) in the form

fo(®, p, ) = fo( P)&IR () +uo(8) —r—u(?) cos. k(Ro(t)—1)]- (25)

The distribution function written in the form (25) menas that its dependence on time is
already taken into account. That is, there remains to account for the time dependence of
o(r, £) due to diffusional motion. We assume that for this purpose it is possible to make use
of the function form (22) and only an appropriate correlation function g(a, t, &', t'| R (2))
has to be found. Singling out the effects caused by diffusion is facilitated by the fact that
the function g(a, t, &', ¢'|Ry(?)) is in the end expressed by the correlation function g(, ) [10].
The latter function is expressed in Gaussian approximation by the root mean square displace-
ment a(t) = (r%(t)). Therefore, if we assume the root mean square displacement of the
equilibrium position in the form

" 6D*(t—7,) t> T,
a(t) = { 0 £ < 1, (26)

characteristic of diffusional displacement, the function g(a, t, &', #'|[Ry(t)) will ensure the
development, of a distribution function in time due to diffusion. 7, in Eq. (20) denotes
the time of “delay” or “settled life” of the atom in the given equilibrium position. Let us
note here that the introduced diffusion coefficient of the equilibrium position D* is not,
generally speaking, equal to the experimentally measured self-diffusion coefficient. In the
following it is considered as a parameter.

Earlier, we assumed that an external field does not affect the mechanism of diffusion.
Indeed, this is why we use the solution of the kinetic equation (20) without external field,
disregarding the fact that the external field (4) does act on the system.

Substitution of the expression (25) into formula (22) yields the following sequence with
respect to displacements:

t—z

oir )y =g, )+ [ dr [ dwe” T glle—a', t—t)x

X pg[Ro(t") —a'1[L—cos (Rq(t)—7)]t(2)- @7
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Here, as when deriving Eq. (9), we assume that 4y >R, In aceerd with Ref. [10] we substitute
the function g? by g(, ¢, @', ¢'|xy). Defining the effective potential [10] as
Vﬁ[Ro(t)—w', i—t'] = f v VIR (1) —=]g(, t, &', ¢'|Ry(2))d (28)
and the effective even distribution function as
PEIRy(0)—¥] = pg[Ry(t) —x](1—cos k(Ry(t) —)) (29)

we get from Eqs (14), (25), (28) and (29) the final equation of motion of the chosen particle

in the form
13

d2
m Et_2 uo(t) = —n ]

— 00

X gl —Ry(t') |ty (t) —i UkeeiteRole) o), (30)

t—t’ ~
di'e © f dx'pVIRy(t)—x', t—1'] X

5. Solution of the equation of motion

We calculate the mean value (§,) by means of Eq. (30). After integrating both parts
over time, Eq. (30), with account taken of Eq. (11), takes the form

t. t’
mé(t) — [ ds’ f i’ exp (—‘“Tt ) f A pV[R () — ', ' — 1] x

t
X pg[a’ —R(t'")]elRole )~ Ro(elgiot—t")E (1) — f At il R~ Ri)lgiot—1)  (3])
— o0

The integral equation obtained thus may be solved by iteration. Taking the average of the
iteration series for &, for all possible configurations {R;(f)} yields

2

Gy = — %< f ikinn o)) 1

— o0

t t’

o ' - ~ -
+ 7??( / dt’ / dt'" exp < Sk ) f dx'p VIR (') —x', t'— " |pg[x’—Ry('")] ¥
s % .
-

X ikIR(")— Ry(®)] g (2~ 2"") f dt’, ileetkRut) — Ry(t)] eiw(r’—t:)> + ... (32)

— 00

The mean values in this expression are time independent. The first term on the right-hand
side is by definition the Fourier presentation of the correlation function g(r, ) (or, to be
more exact, the function 6(z)g(r, ¢), where 0(t) = 1 when ¢ > 0 and 6(f) = 0 when ¢ < 0):
t
ik -, 1 e SP.
Pyt (k, w) = —n—z—< ] dt'ilee™Ro(t")~ Ro(0)] giwo(t—1 )>. (33)

— o0
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The function g,(r, ) is the probability- of the equilibrium center becoming displaced by
the vector 7 within time ¢.
We transform the second term on the right-hand side of Eq (32), going over to the

Fourier presentation of the functions V(Ro(t)—w) and g(Ro(t) —x):

t t’ t”’
n ’ T ) ’ _t_'_—t” ’ dq,
me [ae [ | e (- 55 far [ o
— 0 - —o0

(ZZP Q1‘I2V[Q1a (i ’] (qz)etw(t —tl)lk< IR () —a' ] pigsla’ — Boy("')] 3¢

5 eiRIR(E")~ Ru(®)] ik Ro(e) — Ry, (34)

To obtain a closed expression for (£) we must resolve the complex correlation function
in Eq. (34). After integrating over &’ and g this function becomes

(e URAE)= R NgihIRAE )~ RO )Ry, (35)

The accepted assumption consists in puiting the mean value of the product of exponents
(35) in the form of the product of the mean values of the exponential factors, viz.,

<eiqx[Ro(t’)—Ro(t")]> < 6ik[Ro(t”)—Ro(t)]> ( e FLR()—Ry(2")] >

=g/ (g, V"&b, 1" —0)gi (b, 1—¢"). (36)

Before we define the limits of applicability of this approximation, let us note that the
coordinate factors in Eqs (35) and (36) are displacements of the equilibrium position of the
particle within times (t'—¢"), (¢”—%) and (t;—¢"). The approximation of Eq. (36) is equiv-
alent to neglection of the correlation between these -displacements of the particle. We
now introduce the variables 7, = (¢ —t"), T, = (t—t") and 73 = (¢;—1") and consider
the range of values of these variables G in which at least one of the following inequalities
" is satisfied: |7, — 1y < g, |T—Ts| < Tp, and [1,— 75 < 7,. Here, 7, is the delay time.
We denote the displacement of the equilibrium position within time 7 by (7). Outside the
region G the displacements of the euilibrium position are weakly correlated because of the
chaotic character of the diffusional displacements. Therefore, we may write in approximation

(PP =0 (ij=1,2,3; i#)) - (37)
and the mean value of the product of exponents becomes divided into the product of mean
values. In the region G the equations (37) are not fulfilled. Therefore, in order to have the
approx imation satisfied it is necessary for the characteristic dimensions of the region G—17, to
be much smaller than the region of integration. The dimensions of the latter are determined by

) ; ) 2
the presence of the attenuating exponential factor of the type g*(k, t)~ exp [— %— a* (t):l,

where a*(f) is the root mean square displacement of the equilibrium center within time z.
Direct calculation shows that at.the considered values of wave number % the dimensions of
the region of integration are much larger than' the delay time.
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The other correlation functions appearing in the subsequent terms of the series (32)
are resolved in.the same way as the function (35) by seccessively singling out the- auto-
correlation functions g (k,t). As a result, from Eq. (32). we get

o) =—— kgs (e, 0) + —5 kgs (ke, w)¢(k w) Sy kgs (k, 0) Dk, ) +-..
33)

The following notation is introduced here

g;"(k, w) j die™tg ¥ (, 1);

I__ rr 2 ~
Ok, w)=n f di’ ] dr’ exp( ! )f(TaZl)—s (Eki) I/[q-,‘g‘,'—t"]x

X §(@)gs (@, t'—¢")e e gk, ¢ —). 39

The series (38), being:a geometrical progression, can be written in:the form,

)=~ g1k, o)

1+¢(k W) " R
The expression for the dynamic structure factor which takes account of the. relatlons 13)
and (40) becomes :
i S kz ’gs (k (D) } A
Sk, w) = T Re{l—}—@(h ) 41)

Further on, calculatlons are assomated with ﬁndlng the form of the function (D(k ).
We shall show that the function @(k ‘®) can be expressed by the memory function F(t)
and the harmonic frequency of a quasiphonon calculated in the quasicrystal approximation.
The memory function is determined from the integro-differential equation for the velocity
autocorrelation function K(f) = (v(£)v(0)), i.e.,

.t '
%K(t)z — [ T(t—t)K()de'. (42)
. Y o . :
In Réf.”[IO] the follo’wipg éxpresgion for I'(t) was OBtamed: = )
1w=ad—ﬁégﬂmwﬁwm%wwmmc (43)
Let us change in formula (39) the order of 1ntegrat10n over ¢’ and ¢"/, and perform the

reverse Fourier transformation of the functions 7| lq, 1], g[q] and g¥(k, £). We obtain

@mm=J@Jﬁ{”f<@( )mvag@twmﬂ

X exp (— t?,) g¥(k, i)ei&". . e (44)
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We now take advantage of the circumstance that the integrand in Eq. (44) as a function
of x has a sharp maximum at values of the argument approaching the radius of the solid
sphere 7o in the interatomic potential. Exchanging the function pg(r)(1—coskr) by
pg(r)(l—cos kry), and doing the integration over the angles, we find

Dk, w) = f(k)(:[o dt {0 j I(t)dt'} gk, t)e* (45)
where .
sin kr cos kr sin kr
) =1=3 5™ =6 T + ¢ Torge 6)

is the result of the angular integration of the function (1—cos kr).
Analogously, we transform the expression for the dispersion relation w(k) obtained
in the quasicrystal approximation:

w2(k) = 7’;— f (’2’:)2 V(@) g(r) (1—cos kr) dr = f(k) 3—’;— [ PRvgrydr.  (47)

It was shown in Ref. [2] that the latter approximation does not lead to any substantial
errors within a broad range of values of wave vector k. We define the reduced memory
function y(t), .

Iz n
Y0 = 785 T0) = 3 [ rrvorsar. )

Taking account of the equations (41), (45), (47) and (48), yields, finally, the

expression for the dynamic structure factor in the form

Al 2 k2 . g¥(k, ») }
Sl mafo? B {1+@2(k)Q(k, ) ()
where ’

0k, ) = [ e [ )i 1el e ne (50)

The denominator in formula (49), which determines the position and width of the
quasiphonon peaks of the scattering function, is in conformity as regards form with the
denominator in the expression for S(k, ») obtained in Ref. [2]. However, contrary to the
case in formula (49), the function Q(k, w) is defined as

Ok, ) = [ ditg,(k, i) (51)
0

what corresponds to substituting the memory function p(z) by unity. This exchange in

Eq. (42) for the function k() leads to a solution of the form cos (w, t), i.e. to the autocorrela-

tion function of a harmonic oscillator without attenuation. We may say that whereas
- in Ref. [2] the atoms of the liquid are considered as diffunding non-attenuated oscillators,
~ in this work account is also taken of the attenuation of these oscillators.
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Formula (49) allows us to calculate the dynamic structure factor and evaluate the lifetime
of cooperative excitations. Numerical calculations were made for argon at a temperature
of 85.9°K.- The function g (k,t) was taken in the Gaussian approximation,

2
o %- a(t)

gk, t)=e (52)

The function of the root mean square displacement of the equilibrium position a(t) was
chosen in the form (26). The function w(k) obtained in Ref. [4] was used as the dispersion
relation.

The results of calculations of S(k, w) for values of the parameter D* = 1D are shown
in Fig. 1. When the parameter D* is decreased, the quasiphonon peaks become clear-cut,
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Fig. 1.

going over at the limit D* — 0 into d-like singularities of the ordinary quasicrystals model.
And in reverse — when D* is increased, the peaks become diffused at all values of wave
number k.

5. Discussion

The derived dynamic structure factor S(k, w) features the following peculiarities. At
values of number % of the order of 1 A-1 the function S(k, w) has a clear-cut maximum which
is proof that cooperative excitations of the phonon or zero sound type appear in the system.
When k grows, these excitations become attenuated. This conclusion is in agreement with
the results of the studies by Hubbard and Beeby [2]. When % decreases, the zero sound is
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also attenuated, while the width of the phonon peak, defined in Ref. [2], becomes smaller
when % — 0. The attenuation of the zero sound, what represents the :cooperation. of the
independent particle excitations, was assigned to the disturbance of the vibration colierency
of the atoms of the liquid at low frequencies because of diffusional motion. In the low
frequency range there may be hydrodynamic excitations, with which we are not dealing with
in this paper. ‘ A
In their work, Hybbard and Beeby [2] state that the theory they developed underrates

quasiphonon attenuation caused by the chaotic motion of the atoms of the liquid. In the
approach presented here, this attenuation is apparently overrated, for a fitted parameter D*
has to be introduced. The diffusion coefficient of the éqgili_briuni position should, achrding
to physical intuition, be close to the diffusion coefficient D, since within long times the
difference between the motion of the equilibrium position of a particle and it itself is insignifi-
cant. The necessity of introducing the parameter D* < D is connected with the fact that
quasiphonon attenuation arises not so much because of the behaviour of the time correlation
over long times as over times comparable with the period of atomic vibrations relative to
the equilibrium position. Namely, in this time interval the microscopic behaviour of the
particle must be described very accurately, whereas here the suggested approach is found
to be only a rough approximation. Is it plausible to give a model of the function a(z), for
example, by assuming the following relations: ‘

: 6D*‘(t—r&) Pz N

“a(t) =-{ 6D(t—1p) > Tt (53)

L | ¥ O T T,

Here, yet another parameter, 7%, is introduced, but the correct behaviour of the correlation
function g’(k, t) at ¢t — oo is ensured. The qualitative behaviour of the function S(k, w)
remains like that presented earlier. It is necessary to note also that S(k, w), being a function
of w, is proportional to 1/w? at small w. Thus, the known sum rule,

.fS(kfé)d 0 = S(k) (54)

where S(k) is the structure factor, is not satisfied. This is associated with the approximation
(12), which is not true when o < 3% 1013sec~1, when the period of atomic vibrations relative
to the equilibrium position is of the order of the delay time. For the sum rule (54) to be
fulfilled, a theory-is needed which would take in the entire frequency range of cooperative
excitations in a ‘l_jiqilid,' The difficulties which are encountered in attempts to develop such
a theory are primarily associated with the complex character of the cooperative motions in
the transitory region.

In conclusion, the author takes the pleasure of thanking N. M. Plakida for helpful
discussions.
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