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A GENERAL “DYNAMICAL” MODEL FOR A CLASS OF STATISTICAL
DISTRIBUTIONS (I)
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A simple differential equation is deduced in order to show that a *“dynamical” hypothesis
can be assumed at the basis of the so-called generalized gamma distribution (Lienhard, J. H.,
Meyer, P. L., Quart Appl. Math., 25, 330 (1967)).

Moreover, it is verified that, under a natural specialization, its general solution contains,
as particular cases, results from Lienhard and Meyer paper hitherto pursued by classical Boltz-

marn’s methods.
Finally, an undeniable formal analogy of foundations with Schrodinger approach of Quan-

tum Mechanics is underlined.
(Criticism and interpretation of such an analogy are delayed to a further note).

The so-called generalized gamma distribution [1] is a probability density function
containing, as particular cases, a wide class of well-known statistical distributions, all depend-
ing on a continuous variable z. '

It is assumed to represent a physical-statistical situation of a very general feature,
i.e. what physicist calls ““the model”, and it applies to a large collection of peculiar problems,
such as those leading to the Weibull distribution,to the hydrograph distribution [2], to the
gamma distribution, to the Rayleigh distribution, to the “‘first” and “second” Maxwell
distributions [3], to the exponential distribution.

Lienhard and Mejyer have deduced [1], under assumption of some reasonable require-
ments upon the model, a very interesting form depending on three parameters and giving,
for various choices of two among them, all the mentioned distributions.

These authors follow, as it is customary, a classical Boltzmann’s procedure, whose
general lines are reported within the first paragraph of the present note; there the reader
will note the generality of the assumptions made by Lienhard and Meyer.
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Nevertheless, it appears desirable to construct, as a basis for a generalized theory,
some ‘‘dynamical” hypothesis, that is to define a model by means of some law to which
it succumbs and connecting causes and effects.

This is the subject of the present paper, although it is not the only aim.

In effect, the first stage is that of carrying out the law in terms of a very simple differential
equation, whose general solution contains, as a special case, the generalized gamma distribu-
tion (what we shall abbreviate by g.g.d.).

In addition a remarkable analogy of foundation with the differential operator structure
of Quantum Mechanics will be pointed out, which in this work is suggested as a possible
starting point for a further coalescence of Statistical Mechanics.

(We shall use the symbol P = P(t) to represent the probability regarded as a function
of the unspecified variable #, while

y(t) = %Ii

t
will be the probability density function. For symbols not defined we refer to [1]).
1. We report, as announced earlier, a synthesis of the procedure followed by the
mentioned authors. [1]. ‘ '

Let S be a physical systém obeying the law of large numbers and let x be a given event
which can occur in S. -

Besides, let ¢ be a continuous variable of general meaning, on which the probability P
depends; (it could represent the time during which the system was subjected to a constant
stimulation, as well as the amount of the stimulation itself, or any other quantity directly
connected with the value of the probability. For the sake of brevity, however, one speaks
of ¢ as of time. This does not cause any loss of generalit);).

Suppose, now, that the event x occurs NN; times within the interval [¢;_;,¢;) and set:

At =t,—t;

Finally, assume what follows:
a) the total number of events is fixed:

DI N;=N;
e |

b) for any B there is a positive constant K such that:

c) the event x can occur, within the interval [¢,_;, t;), in a number g; of distinct ways that
results proportional to a fixed power of #;:

g; = AtF™t

 (Constants & and § are assumed positive).
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Under these assumptions, the g.g.d. is carried out by- means of the well-known technique
of maximizing the probability of the distribution.

After calculations and denoting by N; these values of N, which maximize the above
said probability, one has:

N . BKla) A
N A ey e (‘“’ﬂ f)

which does not depend on the constant A introduced before.
Afterwards, througha passage to a continuous variable, the probability density function
(¢) of detecting the given event x in S is deduced and it results:

J(&) = Hy* ™ exp [—(/Hy)’],

where H; and H, depend on «, f and K only.
(It is worth noting that the parameter Kis completely unessential, since it cancels after
a suitable normalization).

Concluding, for various choices of & and f, one obtains from f{(t) the following distri-
butions:

1) the Weibull distribution (x = f);

2) the hydrograph distribution [2] (f = 2);

3) the gamma distribution (f = 1);

4) the Rayleigh distribution (¢ = f = 2);

5) the ““first” Maxwell distribution (x = 3, f = 2);

6) the “‘second” Maxwell distribution (¢ =1, 8 = 2);

7) the exponential distribution (¢ = f = 1).

2. The ““dynamical” model. We now intend to suggest a differential hypothesis about
the law that one can assume to represent the mechanism of the probabilistic evolution (or
behaviour) of the system S under a specified stimulation.

As the reader can see, such a law will result by means of very simple considerations,

all arising from quite general statements about the assumed model.
Then, let ¢, be a fixed value of time ¢ and let

(dP)y = y(to)dt

be the probability of detecting the event x in S at the instant ¢,
At the instant ¢y+ At this probability becomes:

(dP)o, 4 = Pt +At)dt;

so that we can define a relative variation of probability as follows:

U(ZO, At) — ‘/’(to +;](tt)0)_ .I/)(tO) . (] )



Let us now denominate by H(z,) the sum of all stimulations to which S is subjected
at time ¢y; (in a general situation H consists of two kinds of coarse terms: one which has the
effect of enhancing that variation, the other which tends to lessen it).

At present we are able to formulate the following general law:

the relative variation of probability is proportional, within an infinitesimal &(At)
of higher order than At, to the sum of all stimulations and to the interval of time At.

In quantitative terms:

v(ty, At) = kH(t,) At +&(A1). 2)
Hence, letting At — 0 and after a slight manipulation, we have at any time ¢:

ﬁg’- = kHy, 3)
where coefficient & depends, eventually, on the system S only.
" We shall call equation (3) the equation of the most general gamma distribution.
(Abbreviated m.g.g.d.).

In effect, as we are going to show, (3) gives place to the g.g.d. under a reasonable spe-
cialization of H(z). But, in addition, one can draw from (3) a wider class of distributions,
all corresponding to the general model we have assumed. .

It will be matter of further investigation to exhaust the entire field of application of.
the hypothesis expressed by (3). ‘

Furthermore, we shall then be concerned with the completion of theory, since. the
case of non-fixed event, (introduced here in paragraph 4.), will be interpreted in detail
with regard to equation (7) of this note, which is essentially the reduction to Schrédinger
formalism.

3. We want now to specialize equation (3) in order to show that it contains the resulis
of Lienhard and Meyer [1] about the g.g.d..
Therefore, suppose that kH(t) consists in the following two terms:

{klt", ‘@>0, (the “enhancing term”) "
kyt™,  (the “‘lessening term”), )
k; and k, being constant coefficients which are assumed, a priori, arbitrarily at all.

Substitution of (4) into (3) and consequent integration lead to a probability density
function expressed by:

p(t) = ct® exp (k' 717 6)
where ¢ is the arbitrary integration constant and where we have put:

r___ kl,
B a+1l"

(Furthermore, note that ¢ will be no more arbitrary after normalization).
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And since normalization requirements lead to the assumption of negative values of £,
we settle &; > 0 such that:

K = —hy,

while, for homogeneousness of notation, we shall write 4, instead of k,.
Hence equation (5) reads:

() = et exp (—hytH). | (5 bis)

This furnishes essentially a class of two-parameter distributions, since for various
choices of hy, and @ (b, being automatically involved in the normalization procedure), it
gives place to the following situations:

1) the Weibull distribution for: &y = a = a—1;

2) the hydrograph distribution for: Ay =a—1, a=1;

3) the gamma distribution for: Ay =a—1, a=0;"

4) the Rayleigh distribution for: hy = a = 1;

5) the ““first” Maxwell distribution for: h, =2, a=1;
6) the ‘“‘second” Maxwell distribution for: Ay, =0, a=1;
7) the exponential distribution for: hy = a = 0.

(It would be worthwhile to recall that distributions from 1) to 7) are not all independent
from one another).

s

4. Now, suppose that the expression:

‘it occurs in S the event x”’
means:

“the physical quantity (that is the observable) X takes in S the value x”.

Suppose, too, that the value of such an observable (generally regarded as a vector)
can vary continuously over a given domain D (generally assumed to be n-dimensional).

In order to give a mathematical sense to this assumption, it is sufficient to understand
D C B, B being a Banach space.

In such a connection, one must generalize equation (3) by the imposition that p, as well
as k and H, may depend on x; and one must write, in general:

1
gw—gg—”;= k(x)H(x, t)p(x, ). (6)

Furthermore, to suppose the action of stimulations simply expressed by a multiplicative
factor (consisting in a function) will result in a too strong restriction, which is not acceptable
in a general context.

It seems natural to regard H(x, ¢) as an operator acting in the space of the functions
y(#, t), while it is possible to preserve the nature of a constant to %(x), inserting its eventual
dependence on x into H{x, ).



Summarizing the above considerations, the reader could easily recognize a very familiar
differential equation at the basis of our generalized statistical model, i.e.:

L)
where, in order to enhance the formal analogy with Schrédinger equation, the following posi-
tion has been made: h = —ifk.

Obviously % is, so far, completely general.

One may observe that 9 involved in the very Schrodinger equation is not a probability
density function, for there one assumes:

dpP*
2 %
Iy = —. *)

the remaining variables being fixed.
However, it has to be pointed that if we repeat arguments of paragraph 2. substituting y
by [[? (that is by 92 since ¥ is a real function), we obtain:
dy? dP

4 = 2 i 2 =
ph EHy?, with o 7 8

which means:
dy 9

and (9) reduces to (3) apart from the unessential factor 2 of the first member.

Therefore the reader could follow this entire paper under the replacement of (*) for .

Nevertheless, although it is matter of the following paper, we have to notice that diffi-
culties arise when we give to H an operator meaning.

In fact at this step (3) and (9) will be no more equivalent: to extend (9) before division by y
leads to a non-linear differential equation for v itself; to do it after division leads, on the
contrary, to a linear one.

Thus the question arises: have we to assume a superposition principle for the probability
density funciion or for its square root?

Or, which is the same thing: have we to proceed along the line of quantum-mechanical

- formalism (second choice) or along an independent one (first choice)?

Moreover, in the second case one may no more restrict oneself to real functions and

a further stage ought to be performed to pass to the complex field.

REFERENCES

[11 J. H. Lienhard and P. L. Meyer, Quart. Appl. Math., 25, 330 (1967).

[2] J. H. Lienhard, J. Geophys. Res., 69, 5231 (1964).

[3] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases, Cambridge University
Press, London 1960, Section 4.

1 Remember that ¢ does not necessarily represent the variable ¢‘time”. Thus, it may be a position variable
on a line.



