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CALCULATION OF: SURFACE IMPEDANCE IN THE INFRARED
REGION FOR A FERROMAGNET
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Optical properties of ferromagnetic metals are consider_éd in terms of Landau’s theory of
the Fermi liquid. The results obtained are different from those known for nonferromagnetic: -
metals.

1. Introduction =

The problem was considered by Kaganov and Slezov [1] with the application of the
theory of electron gas. Then Silin [2] took into consideration the electron-electron interaction
and the problem for the common metals (u = 1), using the methods of Landau’s theory
of Fermi liquid. In this paper we consider the surface impedance of ferromagnetic metals
employing the same methods. o

Due to the small depth of the eleciromagnetic wave penetration (6 ~ 10-8 m) we can
neglect the domain structure of the examined metal.

Let us assume that the surface of the ferromagnetic metal is perpendicular to the di-
rection of the incident wave. In our coordinate system the z-axis is parallel to the direction
of magnetization, while the x-axis is perpendicular to the surface and goes into the interior
of the metal. The vector of magnetic induction B is directed along the axis, hence, no spin
waves are excited in this geometry. All characteristic functions depend only on the variable .

We consider the infrared region, because the corresponding frequencies are small
compared with those of plasma (in the latter case there is no intrinsic photoeffect),
simultaneously being much larger than the collision frequencies:

we> 0> Tl (L.1)

where wy ~ 108 sec—! is the plasma frequency,
o ~ 1012 sec1—10%% sec—! is the frequency of infrared radiation,
7 ~ 10 sec in the relaxation time of the electron at room temperature.
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The conductivity of the ferromagnetic metals (¢ ~ 10?8 sec~?) is large compared with
the frequency of infrared radiation and therefore we can neglect the displacement current
in the Maxwell equations.

The electrodynamic properties of the surface of ferromagnetic metals are fully described
by a function called the surface impedance:

E,0 o
Zi=R,—iX, = | .f(a) = iU, EEOZ ‘ 1.2)

Where E,(0) is the a-component of the electric field vector E(x) on the surface of the ferro-
magnetic metal, :

o am,
w0 = "2

o0

J, is the total current, J, = f Ja x) dx, p is the magnetic permeability of the metal, and g, is

the magnetlc permeablhty of vacum.
We use the transport equation given by Czerwonko [3]:
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where ¥** is the velocity at the Fermi surface for spin & and wave vector K,
S 15
K= 7 BBt = 87 107%m,

pg is Bohr’s magneton, N is the number atoms per unit volume, n is the mean number

of Bohr’s magnetons per atom, P :‘2i = 5% 10~ m2sec-! and o = 1. Also

_ 1 - . ..
8alk, %) = gullt, ¥)+ ovsy Z f Ak F i (B — g, %) (1.4)
B

where O(Eg,—c) denotes the variation of the occupation number of the local equilibrium
value, EY, denotes the excitation energy for the particle with momentum % and spin a,
¢ is chemical potential, F,"c‘,‘i is the effective interaction of quasiparticles.

A current of electrons is expressed as follows: '

Jul®) = (2 : Z f DV 55 ES — ) gal K, ). (1.5)
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The velocity of the electron in metals is about 4X10% m sec~l. N ~ 9x10%8, n ~ 2.2 (for
iron) and N ~ 3x10%, n ~ 7.1 (for gadolinium). The relaxation time of the electron is
approximately 4 10-14 sec at room temperature. For iron and gadolinium the magnetiza-

J .
tion term kNne,,, V3™ is of the order of 51041 sec=1. We can neglect this term at room

a
temperature (see condition (1.1)). However, at low temperatures the relaxation time is

about 10-10 to 10-11sec, so it is important in this case. Terms determining collisions and
magnetization shall be considered separately as the first and second order of approximation.
We shall consider those ferromagnetic metals for which the depth of penetration in the
infrared region is of the order of 10-8 m. The electron mean free path is

A = vt = 10-5—10~" m. (1.6)

Then we shall consider the region (A ~ &) of the anomalous skin effect.
Two terms in (1.3) contain electric field E. These terms are comparable, if the condi-
tion
®0? ~ P=5%x10-5m? sec-1 (1.7

is fulfilled. In our problem the condition (1.7) is fulfilled and this causes some differences
between our results and those of Silin.

In the next Section we shall calculate the O-th approximation. In the third section
we shall consider the complete expression for the surface impedance of ferromagnetic metals.
In the fourth section we consider several particular Fermi surfaces and in last section we
present our conclusions.

2. The eleciric field

In O-th approximation we shall consider only the electric field. Then,
. 8 . x 2
—Ilwge = eV EafzePZ yhe ) E,,

and we have

— 2 F, 2 f KOV 5+ Z)P oL &2 Qi v E? 2.2)
where
0 ' ]"
e = Busdllo—K) + (s Pl O (b —0). 2.2)

Using (1.5) and the relation 7, = o, E,, we obtain the conductance tensor in the null approxi-

mation:

e? 2P Ca P **
(0)
Gap = (2 )3 {l.rab‘|“ Raxéby D52 - Z)— Faxébyw} (2.3)
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where
Iy = Ty, = Tr (8(ES—0) QL VEVED 2.4)
Ry, = Tr {8(E%—0)Qm VF*VEY (2.5)
Tr {A(e, o s B, )} = X [ d¥h d¥W .. A, (2.6)
af...

We have made use here of the relation
Tr (OB Q VeV = 2Ry =Ty

Knowledge of the conductance tensor enables us to calculate the dielectric tensor from

4ovi
the equation ¢, = ——— 6,,. We emphasize that the conductance tensor is an operator.
I

This is in-agreement with the theory of the anomalous skin effect.
Disregarding changes of charge, we have div j = 0. Hence

(0 0) 1(0 0) (0
JP) = 6QED+6QEP =0
and

ol N iP 9  iP 92
E,(,O)(x) = — (g) _E<0)( ) = Pxxl {I’xx“ ;‘ Rxx @E + E Fxx 5:;2-} Ey(x). (2.7)

From the Maxwell equations and (2.6) it follows that

2i 2p
{P axt %:g: [LxRyx— 1 xnyx]} Ey(x)

_ Bpoe® 2V (s
= amy Ll — TS} Ey(%). (2.8)

The solution of the above equation must fulfill the boundary conditions

EO®)),eo = E,0), lim EO) = 0. 2.9)

xX-00

A solution of this type is

—r((cos 2 +isin£)x
Eﬁ,o)(x) = Ey(O)e ( g e (2.10)
where
;“:“0 VI’ el yy P Lay
27z 27 4 T4 ap2 N (2.11)
]/ F§x+ ] ")ge 2 (P,,,cRy,c TyR.)?

@ = arc ig (g,u;e °P IRy ’}, Loy R 2.12)
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- P
EQx) = — I {I’xy - % r2(cos @i sin ¢) (Rxx—]"xx)} E(%). (2.13)
Now we can easily calculate the surface impedance in the null approximation:
ZJ(,O) = lopuug (cos % —isin %) . (2.14
o
If in (1.3) we neglect the Pauli term, ieP —V¥*—— E_ we have
o © ot Y
_ ¢ fom [Tulyy—T%
27 T (2.15)
=0

and the surface impedance is an imaginary function like in Silin’s paper.

3. Full calculation of the surface impedance

First we shall consider the approximation in which the collision integral and the local
derivative appear. Both are of the same order, therefore, in the transport equation (1.3)
they can be considered together. We shall call this approximation the first approximation:

wd - 1
—UW08g = —V«x ’a';gw_gag‘-

Now we can substitute g, in the right-hand side of the above equation by (2.1) and employ
the solutions (2.10) and (2.13). Furthermore we have:

{aEb Z fdak, 3" CW ’}'ﬁk Vk 'VVZ‘ﬁ_l_
+ By Z f oK d" BV’

: 3 ‘" ’
W, f WL Qe iV V!
By

P QZE ’ 1’ g 1
— % 5 Z B f 3K A" QB QYo VEP ;y_}. (3.1)
By

Inserting the last expression into (1.5) we obtain

() = e> 23
I = amyr et | ou

3E, E,
B (08 5 55| )

Ku+ElLy —
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where
Ky = K, = T’ {3(EQ—0) Q@ Qs ViV E Yy (3.3)
Ly = Lo = Tr’ {aw;’k—c) 0% Qi V:“V,,'"f’} (3.4)
S, = Tt {O(ES—c)BQE Q¥ kak“Vf’f’Vs”y} (3.5)
T, = Tr' {a(E,Sk—c)ﬂTiy e Qi Vl‘“Vi"“’}- (3.6)

The prime denotes integration for ¥, > 0, in the space k. Also, we have

[= <]

e ¢ g
Jo= f]a(x)dx R 2{EI,(O) [ K+l (0052— —isin 2) +
o

+ E,(0)r2 (cos ¢+ sin @) S;—r (cos% + isin g) Ta:l } 3.7

All of these calculations are carried out under the so-called diffusion reflection conditions
on the metal-vacuum boundary (see Appendix).
Putting (3.7) into (1.2) we get an expression for the surface impedance in the first

approximation:

7 = (2m)% 0? 2 {—Kyy—l—Lyy rt (cos ~(2E +i sin %) +

+ (Lys — K .t [ny - —Zg 2 (cos @+ sin @) (Ryx — L 'ax) ] +

. -1
+ %) [r2 (cos p-+isin @) Sy —r (cos % +1sin %) Ty]} : (3.8)

Let us consider the second approximation. Now we have to take into account the
magnetization term in the transport equation (1.3) which was neglected before. The transport
equation now has the form

. k, @ _
—‘I'wgac"‘ssabz _(;:__

o7 & =0 (3.9)

where
S=K-N-n=>5x10"¥m2 (for iron).
We use the same method as for the calculation of (3.2) and we have:

Pé)EBa}

. e?
]a(x) _— (27!)3 g {EbAab +1 a2 (3.10)
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where
- v & .
Agp = €cdz Ty’ { 5(E2k—c) V: “Q;}""Vf 4 —317 %l?'k'Vlfc ﬁ} (3-11)
By = ez T’ {ﬂ HE%—c) Va Qi Va’f'”g)% Lo V,’:"’}. (3.12)
"Moreover,

&2 _ .. @
J. = WS{Eb(O)r L A (0052——z sin —2—)+

\

. P .. ‘
tir (cos - Tisin %) Ey(O)BaI,\ (3.13)
Finally, we obtain the surface impedance in the second approximation:

. (2m)3w? | P ..
78 = (s {z;r (cosg— +1sin i) B,+

e2S 2
4t (cos % —isin %) [A'yy+Ayxr,;1 {Fyx— (3.14)

iP -1
= 2(cos ¢+ sin ¢) (Rxx—Fxx)}]} ]

Hence, the complete expression for the surface impedance of the ferromagnetic metals
will be the following:
1
Z, =IO+ ZP+ 7. (3.15)

4. Particular forms of the Fermi surface

In this paragraph we shall consider two different shapes of Fermi surface. First we take
the spherical Fermi surface. In this case the effective interaction of quasiparticles can be
expanded into Legendre polynomials,

F&, = 3 @L+1)F#P(k,fy) (4.1)
H
where
o = ka (4.2)

V22 = Vi, 4.3)

where ¥ is the modulus of the velocity at the Fermi surface.
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We must remember that the integration is given for ¥, >0 in the space k, therefore,
7 7
we have 0 <& < m, —'—2~ << ?.‘Now we can express the functions in Sections 2

and 3 in the much simpler form

4
Iy = —333 GOg (4.4)
where
1 \ 1,
=3 K (Vet s P (4.5)
aff
4
Rap = —3’—’ Ry (4.6)
where
1 B 1 S
R=3 1 Vﬁml J2Fo) . (4.7)

Note, that in all quantities in the null approximation only the nondiagonal components
appear of the tensor R,;. Because the tensor R, is diagonal for the spherical Fermi surface,
it does not occur in formulas for the surface impedance. We have

_ e [2upu, G
r= 2n]/ 3 4.8

=10 (4.9)
- e Puuo
Ey(x) = (G—R) Ey(x) (4.10)
E (%) == Ey(O)e—”‘. (4.11)
In this case the surface impedance, in the null approximation, has only the imaginary part
xo _ 270 o/ 3upg
v, B 5C " 4.12)
Further we have:
K, = % K (4.13)
where
_ 1 2 2 I
K=+ Xﬁ: K2, (v,,,—l— = KBFs ) (4.14)

L, — %n,; (4.15)
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where

o o Va 1 (1 1
=% Z K { + o K[; (F + ’—L’—‘Z}—) Ffﬁ} (416)
K,=S=T=»L,=0 4.17)
Now the surface impedance, in first approximation, is given by the real function:

3,12
RP = 5 (G = (4.18)

1
2 | Z i
7e (3 L7t ) K)

Hereafter let us examine the second approximation in the case of the spherical Fermi

surface. First we can write:

.9 v d
el i 5 = ? % 3, (4.19)

where @ denotes the azimuthal angle in X the momentum space. We obtain,

Ayp = — % A (4.20)
where
1 1
A= 7 Z K, (’U?z + 52 Kﬁ(Kuv,g+Kﬁv¢)Ffﬁ) 4.21)
af
By=—_B 4.22)
’ 4
where
1
=5 Z (owa T BKs(v.Kp —I—v,ng)Ffﬂ) (4.23)
afy .
A4, =0 (4.24)
The surface impedance in the second approximation is now an imaginary function,
4@2nPe -t
@ _ + 2
Xy = “SP &2 [B (R— G)] . (4.25)

The general expression for the surface impedance of the spherical Fermi surface now has
the form:

Z, = -R;l)—i{XJ(,°)+X§,2)}. (4.26)
We consider the following form of the Fermi surface:

F, = F(k, k) + G (e, I)op. (4.27)
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We also assume
k,=k;. (4.28)
We can easily see that in (2.4) the part which contains G(k, k')« vanishes. Now the tensor Iy
can be written as follows:
Iy =4 [ d%d%k 8(Eq—)QUle, k') VEVY. (4.29)
Similarly we have
2R, = I',. (4.30)

It is easily seen that the conductance tensor in the null approximation is the same as in the
paper by Silin [2].
In like manner we rewrite the other formulas:

Ky = 4 [ d%d3'dk" §(Ey—c) Q(ke, k") Q(K", k) V Ry ¥ pe” (4.31)
Ld={fﬁ%mwwwwﬁﬂokaWW$y%WW (4.32)
S,=T,=B,=0 (4.33)
Agy = Ae.ay f d3kd% A3k S(E—c) VEVE Q, k") 92,,0(1:" E) V¥ (4.34)

Here
Qe k') = é(le k') + B )317(1: ') S(EK —o). (4.35)

These formulas can be treated as ones for metals which have u# = 1. Now we can substitute
(4.29-34) into (2.14), (3.9) and (3.14) in order to obtain the expression for the surface
impedance.

5. Concluding remarks

In this paragraph we present some numerical estimates and conclusions. Once more
let us return to the condition (1.7). In Section 1 we found that if the condition (1.7) is ful-
filled both expressions including the electric field have the same magnitude and may be
consider together. Now, we ask what happens when we assume that the condition is not
fulfilled. The case w2 < B must be rejected, because then the frequency is much higher
than the of the infrared region and our considerations become nonphysical. On the other
hand, the condition

wd?> P (6.1)

is essential. Then the conductance tensor does not contain a local part and is the same as
in the case of ordinary metals (u = 1).

o _ e . 5.2
C’ab o (27!)3 wz l ab+- ( N )
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In this case the results of this paper are like those of Silin. In the formula (5.1) the
frequency o is restricted to the infrared region and we then are dealing with an increase
of the depth of penetration skin effect 6 in comparison with (1.7). On the other hand, we
can neglect the tensor R, bearing in mind formulas (2.10) and (2.11). The neglection of
this term is due to the small value of y. Indeed, for 4 —1 the terms containing R, in (2.11)
decrease and we can assume that @ — 0. Therefore, for g — 1 we obtain the same results
as Silin. Thus we can conclude that the depth of penetration is inversely proportional to
the magnetic permeability u. Here we consider the ferromagnetic metals, for which p ~103.
Now we compare the terms in (4.23). Due to Eq. (1.1) we have

Rg,l) > X ;0). (5.3)
Then,
X ;0) > X§,2). (5.4)

The author would like to express his gratitude to Dr J. Czerwonko for many useful
discussions during preparation of this paper.

APPENDIX

We consider the boundary conditions (see [5, 7, 8]) for the calculation of g (K, x) from
the expression

26l n) o) ®)

where f,(k, x) is an arbitrary function.
For ¥, <0, the condition that g, must not become exponentially large as x — oo gives:

gh = f folle, %)dx (B)

where g is the value of g, for all ¥ such that ¥, < 0. The distribution function of
the electrons which are moving towards the surface of the metal thus depends on the
values of the electric field at all points between infinity and x. The value g, for ¥,>0,
which will be denoted by g®, is determined by the nature of the scattering at the
surface of the metal. It will be assumed that a {raction p of the electrons arriving at
the surface is scattering specularly with reversal of the volocity component V,, while
the rest are scattered diffusely complete loss of their drift velocity. With these assumptions,
the distribution function of the electrons leaving the surface (x = 0) is given by

8PV Vi Vs % = 0) = pgi(—Vo Vi Vo 5 = 0) (€

In this way it is found that:

&0 = p [ £ st A=) [ ik, 9 (D)
0
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