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CAPACITANCE AND CONDUCTIVITY OF SPACE CHARGE REGION
IN METAL
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The paper contains a theoretical analysis of the electric effect caused by the formation of
a space charge in the metal of a metal-insulator-metal structure. The analytic expression for the ca-
pacity of the space charge region was derived. The numerical values of this capacity for several
metals were calculated, they range from 0.05 to 0.15 Fm—2. The surface conductivity caused by the
presence of the space charge region at the surface of the metal was considered. The analytic equa-
tion for the relative conduectivity change was derived. The numerical value of this conductivity
change was determined; it amouted to about 0.2%, for high electron density metals and can be
greater for low electron density metals.

1. Iniroduction

It has been observed by Mead [1] that the capacitance of metal-insulator-metal sandwiches
deviates from the geometric capacitance. Results of measurements indicated that:

1. the capacitance of the metal-insulator-metal (M-I-M) structure is a series combina-
tion of two parallel-plane capacitances, and

2. the capacitances are practically constant and independent of applied voltage and
dielectric thickness.

Mead [1] has attributed this effect to electric-field penetration of the electrodes. As
a result of electric-field penetration there is a space-charge region just inside the surface
of each electrode and the applied voltage drops somewhat in these regions, so that not all
of the applied voltage appears across the dielectric.

Ku and Ullman [2], using degenerate Fermi statistics, studied the electric-field penetra-
tion of electrodes theoretically and derived results that are in substantial agreement with
Mead’s observations. Simmons [3] expressed the equations of Ku and Ullman in analytic
form by means of a suitable approximation, and further interpretation of the effect was
obtained. Papers [2, 3] dealt with the symmetric M-I-M structure, but also the asymmetric
structure was considered theoretically by Simmons [4].
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It is object of this paper to express in analytic form the capacitance of M-I-M structure
with space-charge region in electrodes, and to incorporate electric-field penetration of the
metal film in electric conductance calculations.

2. Voliage drop in the space charge region of the electrodes (symmetric M-I-M structure)

-If there is no electric field penetration into the metal, the potential drop across the
dielectric is equal to the applied potential and the capacitance is given simply by geometrical
capacitance per unit area (in F/m? units), equal to g,/d, where g, is the permittivity of the
dielectric (in F/m units) and d is the dielectric thickness (in meters).

However, when the electric field. penetrates the electrodes, only a part of the contact
potential appears across the insulator. The voltage absorbed in the electrodes results in
a space charge build-up just inside the surface of the electrodes.

The energy diagram of an M-I-M structure is illustrated in Fig. 1. Voltage bias across
the electrodes is. V,. Because of the field penetration of the electrodes, the surface of the
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Fig. 1. Energy band model of parallel-plane capacitor with electric-field penetration of the electrodes. AV is
the voltage drop in the electrodes (Eq. 9). @ is the barrier height if the penetration effect is neglected. V7 is
applied voltage. Wy is the Fermi level ’
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negatively biased electrode is at a potential 7/ lower than the interior of the electrode, and
that of the positively biased electrode is (V,—V3) above the interior.

Poisson’s equation was written for the problem by Ku and Ullman [1}, and they derived
the equations connecting 73 and V, with V. Because of their intractability, the equations
are inconvenient to use as they stand. It has been shown that these equations can be expressed
in an analytic form [3] not only by means of a suitable approximation but can be also derived
from Poisson’s equation written in the following form for the negatively charged electrode,

ar- 3e?n,

dx® ~ 2e,Wr )

and for the positively charged electrode in the form,

art 362n0
dx? - 28m WF

(V+—Va). @

Here, x is depth in the metal measured from the surface into the interior of the electrodes
separately for each electrode (Fig. 1). ¥~ and V*+ are electrostatic potentials at depth x in
the negatively and in the positively charged metal, respectively. ¢, is the permittivity of the
metal elecirodes (in F/m units), 7, is the free electron density when no potential is applied,
Wy is the Fermi energy, and e is the electron charge.

Solutions of Eqs (1) and (2) are exponential functions derived by Simmons [3]. We
will express the solutions in a form which will be more convenient for deriving analytic
expressions for the capacitance of the M-I-M structure and for the surface conductivity
of the thin metal film with the space charge region.

The solutions of Egs (1) and (2) are

Va
V== 21K exp (—x/xg) 3
and
e — 7, [1_ 2_i—K - (—x/xo)], @)
where
K = ¢&,d[e %y ®)
and
b
wy = — (2nPE ©)
]/3 2n4e?

is the characteristic panetration length in the metal.

From Fig. 1, the boundary conditions are: ¥ =0 and dV]dx =0 at x = oo, and
—&,,(dV]dx),_q = e4(V3—V3) for the negatively charged electrode. From (3) and (4) we
have (see Fig. 1)

V,="V,[2+K) 7



888

and

n=n@—i%y ®)

Equations (7) and (8) show that the voltage drop in each electrode due to electric field
penetration is the same (this is true for electrodes of the same material only). The voltage
drop in the negatively charged electrode is

AVy=V, =V, [2+K) ]
and in the positively charged electrode

AV, =V, —V, = AV,.
From Eq. (9) we see that AV; — V_[2 when d » 0 and 4V; - 0 when d — oo,

An interesting case is the application of the above results for an M-I-M structure with
an extremely thin film of insulator. If xy=0.5A and g, = ¢, = 8.85x 10-2F/m (typical
values for metals) and &; = 10 &y, we obtain K = d/5 and from (9) we obtain AV, = AV, =
= V,/(2+d/5). Using d =50 A, the potential drop in both electrodes is 24%; = V,[6.
Therefore, for this case, the applied voltage drops by about 179, in the electrodes. The
remaining 839, of the applied voltage drop is in the insulator.

The dielectric displacement in the negatively charged electrode is

ar
dx

P
enlVa .

P a | T e ns ¢

This equation shows that D falls with increasing depth in the electrode.

3. Voltage drop in the space charge region of the electrodes (asymmetric My-I-M, structure)

In the case of an asymmetric My-I-M, structure (the electrodes are made of different
metals 1 and 2), the Poisson’s equations (1) and (2) are still valid. Assuming ny,= ng
and Wy = Wy, for the negatively charged electrode and ny= ny and Wy = Wg, for
the positively charged electrode we can write after Simmons [4], in a more convenient form
in our case, the following expressions:
voltage drop in the negatively charged electrode

AV, = M V,; (10)
voltage drop in the positively charged electrode
AVy = AV, (1)

where A = K,/(K;+K,+K;K,) and 2, = KJ(Ky+ K+ K K,), with K, = e,;d]e 00
and K, = g,,,d[e 5403
potential in the space charge region of the negatively charged electrode

V- = LV, exp (—afx), (12)
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and in the positively charged electrode
V't =V [1—2s exp (—x[%g9)], 13)

where %y, and %, are the characteristic penetration lengths in metals 1 and 2, respectively

(Eq. 6).

4. Capacitance of the space charge region in the metal

The total capacitance of the M-I-M structure is the series combination of the capacitances
of the dielectric €, and the electrodes C,. It can be shown that the distance I, between
the electrodes of the capacitor of capacitance C,, is equal xy. Indeed, the mean distance
of the space charges from the surface of the metal is

[ olr)xde
_ 0

ly = "o—
Jo(x)dxx
(1]

(14)

where o(x) is the density of the space charge. Poisson’s equation can be written in the form

4 x)
From (15) and (1) we obtain:
3e?n
ol®) = 2W: V. (16)
Substituting (3) and (7) in (16) yields
3e’noVix
f o@)dx = =570 (17
]
and
oo
3e?n Va2
P
&

Substituting (17) and (18) in (14) yields /, = %,
The reciprocal capacitance of the space charge region is 1/C,, = %[e, +%o€,» and
substituting (6) yields

3eange® ¥
Cum (2, 19)

Equation (19) shows that the elecirode capacitance is a constant independent of voltage
bias, a result observed experimentally by Mead [1]. C,, depends on the electric properties of
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the metals. Calculated values of C,, (from Eq. (19)) and #, (from Eq. (6)) for a few metals
are shown in Table I.

For normal dielectric thicknesses (microns or greater) the contribution of the electrod ss
to the total capacitance of the M-I-M structure is negligible; therefore, it is not necess: y
to consider this effect, unless measurements concern capacitors with very thin dielect ic
layers. For instance, if ¢; = 10, and d = 30 &, we obtain €, =s,/d ~ 0.03 F /m?, b at
for ;= 10z, and d = 20 & we have C; = 0.044 F/m2.

TABL! I
Calculated values of C,, and z, for some metals in M-I-M structure. Cn=T3x10718 no/ Wy,
W, ngx 1028 C, %
Metal F 0 m 0
o @V) m-3) (Fm-?) A)
Al 4.08 18.2 0.154 0.287
Cu 7.04 8.5 0.080 0.555
Ag 5.51 5.8 0.075 ) 0.59
Au 5.54 5.9 0.075 0.59
Cs | 1.53 ‘ 0.85 | 0.054 | 0.815

- For asymmetric M;-I-M, structure the capacitance of the space charge of the electrod :s
is, of course, expressed as 1/C,, = 1/C,; +1/C,,,, where C,; = Euf% and C,5 = &,4[% ,.
Table I gives the capacitances concerned with the space charge region of some meta 3.

5. Surface conductivity of the metals

This section incorporates electric-field penetration of thin metal films in the fil n
conductivity calculations. It will be shown that the metal conductivity will change if & spa e
charge region appears, and this change may be measurable in the case when a thin mef il
film is considered.
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Fig. 2. Cross-section of the metal-insulator-metal structure which can be used in conductivity chang s
measurements. The structure is similar to that of thin-film transistor ($— source, D — drain, G — gat 3)
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Let us consider a rectangular surface of length L and width b (Fig. 2). The space
charge is given by eAnLb, where edn is the space charge per unit area. The application of
voltage ¥ will shift the charge eAnLb after a time 7 over a distance L if 7v = L. The rate
of drift of the charge carriers is given by v = uE = uV]L. The current intensity is given by

eAnlb  ednubV

I= T L

The surface conductivity is given by

1 b
AG = 7 = Ze,uAn.

If b == L, AG is independent of the size of the square and
AG = eudn (20)

AG is conductivity ““per square”. Equation (20) gives the surface conductivity as a function

of the space charge.
bl
Conductivity of the metal film is given by G = T peng, where [ is the thickness of

the film. If b = L, G is independent of the size of the square and the conductivity ‘‘per
square” is given by

G = eunyl. (21)

From (20) and (21) we obtain the relative conductivity change in the following form:

ale An
T 22)
An can be found from
An = f (n—n1¢) dx:% f o(x)dx. (23)
o 0
Substituting (17) and (7) into (23) gives
_ BengxoV,
[ = e+ - @
Substituting (24) into (22) yields
AG  3BexyV,
( 7;" 22+ KYWEL )

This is relative conductivity change of the metal film of thickness I (Fig. 2). The change
in conductivity is influenced by the space charge that is induced in the metal film.
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The following question arises: can A4G/G be made so high experimentally, that would
be measurable? For bulk metals it would not be measurable, of course. But what about
thin metal films? For an assumed x, and W of gold, (25) becomes

A6 V.
~11 a
o ~26x10 T (26)

where V, is in volts and I in meters. If [ = 10-8m = 100 &, V,=1007V: AG/G =
= 0.26/2+K). If the thickness of the insulator (Fig. 2) is d = 1000 A, &, = g = 0.85%
X102 F/m, &; = 10¢, and x, = 0.6 A, K can be calculated from (5). We get about a 0.29,

change of conductivity, and this is measurable quantity.

6. Discussion

When the electric field penetrates the electrodes in M-I-M structure, a potential drop
across the space charge region appears. This effect causes both deviation of the capacitance
of the M-I-M structure from the true geometric capacitance and the appearance of surface
conductivity of the metal electrodes. An analytic expression for electrode capacitance was
derived, Eq. (19). Some calculated values of this capacitance are given in Table I. It is
shown by comparison that when measurements on capacitors with very thin dielectric films
are being made it is necessary to consider the electric field penetration effect.

It is shown that the metal conductivity will change if an electric field normal to the
surface of the metal is applied. This is due to the thin layer of space charge near the surface
of the metal. The problem is solved in analytic form and the relative change of the conducti-
vity is obtained, Eq. (25). It can be shown from Eq. (25) that for normal metal film thicknesses
(tenths of microns or greater) the contribution of the space charge to the total conductance
is negligible; it is necessary to consider this effect, however, if conductivity measurements
with very thin metalic films are being performed. For lower electron density metals, such
as Bi, the depth of penetration of the space charge is greater than for metals such as gold.
Thus it can be expected that the conductivity of lower electron density metals will undergo
larger changes than that of the higher electron density metals.
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