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POTENTIAL CURVES FOR BENDING VIBRATIONS IN THE RENNER
EFFECT
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The decoupling conditions for the vibronic equation of the Renmer effect are analysed.
For the higher vibronic states the proposed decoupling procedure is shown to be sufficiently ac-
curate and leads to separate effective potentials for muclear movements.

. In ele(‘:tronicallyi degenerate states of linear'polyatomic molecules strong coupling of the
electronic motions with the degenerate bending vibrations occurs [1, 2]. The Born-Oppen-
heimer approximation is valid no more for such a case, and vibronic coupling which results
lead to significant changes in the optical properties of molecules. The degeneracy of
vibronic states is removed and the optical selection rules are changed. The sum of the
electronic and vibrational angular momenta is now a good quantum number although
neither electronic nor vibrational angular momentum is separately. In such a case a two-
-dimensional matrix Hamiltonian describes the nuclear motions and no separate (single
valued) potentials for the nuclear motions are determined at all.

In this note we shall study the conditions under which the vibrations strongly coupled
with the electronic motions can be connected with a given potential curve. We consider
a three atomic linear molecule in an electronic state of type IT and suppose all other electronic
states to be well separated In this case the stretching vibration does not couple with electronic
motions, and the vibronic wavefunction has, the form [2]:.

(g, Qor Qs Q) = Q) [Pilg) n(Qsr Q) +P(g) 1D, O] (1)

where (), denotes the normal coordinate for the stretching vibration, and Q,, @, denote
the bending ones. ¥, (q) and ¥_(q) are the degenerate electronic functions which depend

parametrically on the nuclear normal coordinates, and 7, %_ are vibronic functions which
are to be determined.
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Insertion of (1) into the Schrodinger equation of a molecule, integration over electronic
coordinates, and separation of the stretching mode leads to the following equation determin-
ing #n, and 7- [2]:

1 2 1 2 2 l 222i® \
1 ) 1 1 n-(e.d)) T \n-)’
\ o5 ehgPe? 5 Ao%+ I [(ePo)*-+P3] @
where
0= ((2+0D% = aretg —% (3a)
1 :

W(Qo)+ 5 A0° = f piH(Q)yp.dg = f Y2 H(Q)y-dy, (3b)

1 2 ,—2id * ® *
5 elg® e = | yi H(Q)p-dg = y_H(Q)y,dq (3¢)

and higher than quadratic terms in normal coordinates in development of electronic matrix
elements were neglected. W(Qy) is the function of the stretching mode and is not intersesting
for us, ¢ is the coupling constant in the Renner effect, A is the force constant for an unper-
turbed problem, P,and Pgare the momenta canonically conjugated with coordinates g, @,
and H(Q) is the Hamiltonian of electrons with fixed position of nuclei.

Putting

Y RI—E(@) iK1 RI—E . K (4)

- RK(g) ¢'+0® | \g&) ~ ¥
we obtain

HK}(K ol EKZK
and
1 (ePy? h2(K2+1) Kh2 1
Ko | = 7,2 e 2
HY = [2 A%+ 2 Mg? 2 Hg? 1- WM Gy + = elg Gy (5)

where K is the quantum number of the total angular momentum (sum of electronic and vi-
brational ones in an electronic & state), and o; are the Pauli matrices.

Introduce
«_ 1 [RE+RK RK
X
1z \RK--Rx R,
then
~ P: ih h2(K2+1) Kh?
K 2 - e = 2
L [ A+ onr ~ g et TN ]1+ she’sy — 315 ©)
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and the term proportional to 6, couples electronic and nuclear motions. We introduce now

the dimensionless quantities, as follows

Mo \* 2
— — — _VZ 2 _ —
g=o0 ( 5 > ,p = P(hMw) %, w i )
then
HX 1 i K241], 1 K
Fo = [5 (p2+4q? —g Pt —F—] L+ 5 eq’os — peldl ®)

We put K # 0 and transform the Hamiltonian (8) by the unitary transformation

H'X = UHKU-! (9a)
where
U=cosa 6;3+sinx- o, (9b)
ctg 20 = — iq4 (9¢)
2K
then
Hx* [1 K241l i 1 (de\®
— = (p2 2 R ==
ho [2 (pP+q%) + 24 2q‘p+ 2 (dg)]1+
l  e—— da i d?o i de
T 1/e28 2 ax . . ke *t ax 10
+2q21/8q +4'K 0'3+ dq 02 P 2 dq2°'2 2q dq 62 ( )
We note that all terms proportional to ¢, have upper limits, namely
do e\ dPo e \% 1 da (s V’
— I <l|=] . 51 < =] = <\ 11
2l < (%) RN quq K -

Assuming that derivatives of R, and R, are not excessively high we may neglect the coupling
terms in (10) if only the term proportional to 6, is larger than the largest term with e, in
the whole region of the g-space. It is easy to see that we have always

52—2 (%P +4K®)% > K (%)/ (12)
Also the condition for neglecting the nondiagonal terms in (10) reads
for e<K, K:e>1
for &> K, K>1 (13)

and practically for all vibronic states for which the quantum number K satisfies K3 > &1
we can obtain two uncoupled equations which determine the functions R; and R,. The
condition (13) can be hardly satisfied for vibronic IZ-states. The solutions of the so-obtained
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uncoupled equations give better approximation for vibronic states with larger quantum
number K. Substitute

K
SK _ K=t K Px (9))
o 0% = (o §
then we obtain
i eff
|5 74780 | #50 = B0 (13
where
+
Vi) =g ¢t S = ELEE 16)
and
N —% . c . - K
(%8;) — 11/2= [(cos a-+sin a) 1 —i(cos & —sin #)a,] ( gI}EZ;) 17)

Therefore for K = 2, 3, 4... and not too small ¢ the functions Rf, RX can be obtained from
the solution of the Schrédinger equation with an effective potential (16) which includes the
effect of the electronic-vibrational coupling. We now see that for K = 0, equation (6) is
uncoupled and gives (15) w1th Wﬂo(q) therefore also the vibromic states with K = 0 can
be obtained from (15):

We see that we can speak about the potential energy of vibrations only for vibronic
.states with a sufﬁ(:lently large projection of the total angular momentum on the long axis
of the molecule, i. e., for 4, @, I, ... states’ 1nclud1ng also X' states, providing that the
coupling parameter e is not' too small Vibronic Il-states are practically never connected
with any potential curve in a simple sense, and a one- dimensional effective Hamiltonian
for such states cannot be’ obtamed - i
" We see, further; that in-this sense large angular momentum number and a not too small
_coupling parameter ¢ in the Renner effect is.an analogue of the sirong coupling in vibronic
effects in dimers [3], :

" The difference in potentlals in the ¢ “plus™ and « minus’ modes leads to the sphttlng of
all previously degenerate vibronic levels. Equation (15) should 'be solved numerically as
analytical solutions are not available.
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