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By applying Bogolubov’s variational method in the molecular field approximation (MFA)
to the Heisenberg ferromagnet with anisotropic exchange, the influence of an external magnetic
field perpendicular or parallel to the easy axis (or plane) on the transition from the ferro- to the
paramagnetic phase is examined. The respective magnetic states are proved to satisfy the condi-
tions for the absolute minimum of the magnetic free energy with respect to tne magnitude and
the direction of the magnetization. The transition is shown to occur in the transverse field and
to be destroyed by the parallel one. For the case of the transverse field, some of the critical in-
dices corresponding to the field-dependent critical region are also derived.

1. Introduction

It is well known, from experimental as well as theoretical investigations, that the second-
-order phase transition in a ferromagnet is destroyed upon application of an external magnetic
field (see, e.g., [1, 2]). Recent experiments on ferromagnetic EuS [3], however, strongly
indicate the possible existence of such a phase transition in the presence of an external
field®. The specific magnetic properties of rtecently obtained ferromagnetic europium
compounds (see, e.g., [6—8,2]) make them particulary suitdble a material for studying this
rather subtle effect. '

The theoretical explanation of this effect should apparently be looked for in the nature
of the interactions to be taken into account. Following [8], it seems that particular attention
should be paid to the long-range dipolar interactions, which causes the demagnetizing
effect in a finite sample of a ferromagnetic material. As an example illustrating the qualitative
considerations of [8] there has been presented the thin toroid of an isotropic ferromagnetic
material, which in the presence of an external magnetic field perpendicular to its plane is
capable of two magnetic states, the transition temperature being field-dependent. By ap-
plying the MFA method, in the case of spin one-half the transition between these two toroid’s
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1 See also the references given in [4, 5].
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states has been shown to be of second-order [4]. This result has been generalized in [9]
for the case of arbitrary spin; in this paper, however, it has also been stressed that the
toroid sample of an isotropic ferromagnetic material considered in [8, 4] represents, 4n
fact, a model of an anisotropic (uniaxial) ferromagnet, as the demagnetizing energy of the
sample has been accounted for (shape anisotropy). This hypothesis has been fully confirmed
in [10], by applying the MFA method to a uniaxial Heisenberg ferromagnet with an external
magnetic field perpendicular to the easy axis. Thus it has been shown that a uniaxial aniso-
tropy (in the case of the transverse field) can be responsible for that kind of effect. Moreover,
in view of the results given in [10] the origin of the anisotropy seems to be here immaterial.
Similar results asin [10] have been obtained in [5], however, ina rather phenomenological
way.

The purpose of the present paper is to extend the considerations of [10], which are
formulated here by using Bogolubov’s variational principle (see, e.g., [11, 12]), presenting
not only the case of the external magnetic field with the components? H L # 0, Hy=0[10],
but also, for comparison, the cases H” #0, H =0; H“ =0, H_L =0, and analogous
results for the easy plane. The results presented here are apparently correct, in a quali-
tative sense, in the whole temperature region. In particular, these results as well as their
(limited) correspondence to those obtained by well-founed low-temperature methods (i.e.,
far below the ordinary Curie point; see, e.g., [15-17]) indicate that the second-order phase
transition should also occur at low temperatures, but under influence of considerable strong
fields perpendicular to the easy axis.

2. Formulation of the problem®

We start with the Heisenberg Hamiltonian for a uniaxial magnetic crystal, having the

form*
= — % Z A st — % Z K sgst—uH; 'Z s 1)
r,r r

r,r

where s} are the components of the spin operator ascribed to the lattice site r, A™ and K"
are the isotropic and anisotropic parts of the exchange coupling, respectively, and H, the
components of the external magnetic field. If 4™ >0, K™ > 0 there is an easy axis in
the direction x, whereas for A™ >0, —A™ < K™ << 0 there is an easy plane, %,0%,.
According to Bogolubov’s variational principle (see, e.g., [11, 12]) one can obtain the ap-
proximate free energy of a system by minimizing the so-called model free energy

F(o#) = F(H o) +{H —H o, 2

2 For clarity, we shall use occasionally the notation X []» X for the components of a vector X which are
the projections of this vector on the easy axis (or plane) and the axis perpendicular to the easy directions, respecti-
vely.

3 Our formulation is based on that proposed in [12].

4 We use the summation convention for repeated lower indices.
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where
Tr(...e —8%0
Hy = H—(H—Hy), <...>0:ﬁo)
F#) = — Sl Tref*, f= = 3)
H)=—3 nTre , =T

The Hamiltonian 3 describes the system, and the minimization of the model free energy
should be carried out with respect to parameters introduced in 4#. In our case (1) to obtain

MFA we choose
Hy= —M, 2 57 (4)

and thus the minimization parameters are the components M; of the vector M or its length M
and the direction cosines n;, i.e.,

M = l/-MiMa n; = M;[M, (5)
n;n; = 1. (6)

We apply the above thermodynamical approach to the case of a uniformly magnetized
crystal, it means we assume

o; = sihls =0 o

where s denotes the maximum eigenvalue of the spin operator at any of the N lattice sites
of the crystal. To simplify further calculations we introduce the quantities

_ F(P) _ 3T _ pdHi
Y=Ns0 TZs(s—I—l).Q ’ h’:—sﬁ’
2 a4} 2 ak;
m; = M; o= - w=- (8)
i SQ, Q 2 ,Q 2

where z;, 4, and K, denote respectively the number of the neighbours and the values of
the (isotropic) exchange integral and the anisotropy constant for the I-th coordination sphere,
and

Q= ZI z(A4,+K)). 9)

Taking into account (3)—(8) one can derive the model {ree energy (2) for the Hamilto-
nian (1) (see, e.g., [12]):

2s+1 ~
h —— By(0)
1 8 2 1 N 1
P =— S;; 7ln 15 - + S;; 708, (0) —hinio — 5 Pininjo® (10)
sh — B{(0)

2s
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where in

o = n,0; = B(fsM) an

the Brillouin function is defined

25+1 | 2s+1
By(x) = 5 cth %

1

—
257

1
% — o cth (12)

and B,(x) in (10) denotes the inverse function of B(%). Because of the condition (6), we
ntroduce the Lagrange factor A and minimize the function

P =p+ é Angn; (13)

with respect® to ¢ and n;. Then the necessary conditions for an extremum of @ to exist lead
to the equations

3;1 2By(0) —hini— Pyninjo = 0 14)

An;—ho—Pyn.0* = 0. (1)

As is well known, the vector of magnetization and that of the effective field (M;/u
= m;sQ[u in our case, see (4) and (8)) should be parallel if the molecular-field approach
is to be consistent. We shall show that our calculation meets this condition automatically.
Indeed, from (5), (6), (8), (11) and (14) we have

m; = S;,:l ©By(0)n; = hi+Pyo; (16)
and, upon eliminating A from (15), one obtains
. m;0; == m0; (17)

i.e., the parallelity and self-consistency condition. The equality (17), which is obtained
here as a result of the minimization of the free energy, has been assumed in [4, 9, 10], in
order to achieve the quoted results in the case of the transverse field.

Since the interactions described by the Hamiltonian (1) are isotropic in the plane
210%,, without a loss of generality we may put, e.g.,

n, =0 (18)

Thus (14) and (15) along with the condition (6) provide a system of four (nonlinear) equations
for ny, ng, 0 and A. If ®(o, n,;) (given by (13)) is to have a minimum, it is sufficient that the
form

o [SF1
d(b—(gs

TBN; (O‘) ——P,-jnz-nj) d02—2(hi —I—Pijn‘jo‘)do‘ni + (2, 5,-]-—P,~]-02)dn,-dn]- (19)

5 According to (10) aud (11) one may express ¢ by means of M or 6. Of course, the minimization of @
with respect to M or ¢ is equivalent, and leads to the same results. For mathematical simplicity we choose ¢
(along with n;) as minimization parameter.
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(where Blw) = j—x B (x)) be positive for a solution of (6), (14),(15). Because of (6), the

differentials dn; are interdependent, as n,dn; = 0. For examining the sign, d*® shoul-d
be transformed to independent differentials. Due to (18), upon introducing the transfori

mation

g = Ry n,
1 0 0
Ry =10 cos ¥ sind (20)

0 — sin ¥ cos

and choosing the angle © in such a way that
g =1, 21)

one obtains d2@ as a quadratic form of the independent differentials do, dn,

2P = (s ; !5, (o')——]~333) do2—2(hy+ Pyy0)dadiiy+ (A—02P,p) i
== Puod o+ 2Dgedodé 4 Deed £ (22)
where
hy, = Ryhy, Py = RyR,P. (23)
Hence, the sufficient conditions for a minimum of the free energy (10) to exist are
G, >0,4=0,0,.—D >0. (24)

3. Field perpendicular to the easy axis (or plane; H #0, H = 0)

In accordance with the results of [4, 5, 8-10], a second-order phase transition occurs
in the magnetic system described by the Hamiltonian (1) in the case of the transverse ex-
ternal field. Being dependent on the field strength and temperature, the direction of the
magnetization lies between that of the easy axis and the external field in the first (ferro-
magnetic) phase, and is parallel to the field in the second (paramagnetic) one (see the
interpretation of the toroid model given in [9]). Accordingly, in this case the system of
equations (6), (14), (15) has the solutions (note (18))

hy s—l—l. ~

o=t m= =V, G dlio) = e (25)
A= yo?
ng =1, m=0, 3;1 1By(0) = y'o+hy, (26)
A=o(y'c-h)),
ny=—1, n,=0, s;;l ﬂi(a) =vy'o—~h,, (27)

3= oly's—hy),
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where

=1 ,=GC=].—M 0<nu<l1
V“{«=1+I%l” ”{1 O <0,@>0) 8

(compare (1) and (8)). Let us choose the coordinate system in such a way that % 1 >0.
Then the solution (25) is real for

[tlo >y, (29)
and (27) requires
yo>h, (30)
if negative temperatures are to be avoided. The quantities (24) read
hA
Dy = y¥(0) + Telo?
2 ML
4 = Dy | |x|0* — 17 (31)
for the solution (25),
Dy = yW(0) + M
By(o)
A = 6@Pgo(hy —|x|0) (32)
for (26), and
ﬁl
By = 1'W()— L)
By(o)
A = —0Dso(hy +|x|0) (33)
for (27), where in
po) =224 19 (34)
B(o)

the temperature 7 has been eliminated (compare (22)) by utilizing the respective relations
in Egs (25)—(27). The proof of the inequality (34) is given in the Appendix. With the excep-
tion of (33), D, is positive in the whole interval 0 < ¢ <C 1, as it immediately follows from
(34) and the properties of the function B (x) (see Appendix). Accordingly, 4 is positive in the
case (31) for (29), and in the case (32) for

#lo < k). (35)

As regards (33), it is evident from the expression for 4 that @,, and 4 have opposite signs
unless they are equal to zero. Hence, only the solutions (25) for (29) and (26) for (35) satisfy
the sufficient conditions for a minimum of the free energy (10).

As is well known, the equations for the dependence ¢ on 7, in the cases (25), (26),
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describe o as single-valued® and decreasing functions of 7 in the temperature regions
which correspond to 0 << o << 1 (it means 0 < 7 <<y for (25) and 0 << 7 << oo for (26)).
This can be easy proved, since due to (31)—(34) we obtain, generally, for all the cases (25)—(27).
that

_d .
sign d—:' = —sign Py, (36)
and 50 %"_is negative for (25) and (26). If
T

hy < Il (37
the two minima of the free energy lie in temperature intervals which are separated by a field-
-dependent point 7,

3s yh

il

Il
according to (25), (26) and (29), (35). Thus, as long as the condition (37) is satisfied, the
solutions (25), (26), which describe the magnetization as decreasing function of temperature,
minimize the free energy in the regions 0 << 7 < 7, 7, << T < oo, respectively; otherwise,
the solution (26) satisfies the minimum conditions in the whole temperature region.

As concerns the solution (27), the expression for 4, (33) and (34), enable to discuss
this case as well. As one sees from (33), (34), (36) and the properties of B (%) given in the
Appendix, in this case the function ¢(7) need not be monotonic. By a simple graphical
analysis of the relation between ¢ and 7, (27), one can show that there can exist not more
than two solutions of this equation with respect to o. Hence, the function ¢(7) is double-
-valued if these solutions exist, and due to (33), (34), (36) one of its branches, c%"(7), is an
increasing function of temperature, and the other, /®(z), a decreasing one. If so, " (7)
satisfies the conditions for a maximum of the free energy (10), while there is no extremum
for the solution ¢‘?(z) of (27). Both the solutions 0@(7), ¢'¥(7) disappear above a threshold

T, = (38)

point 7, (the term used in [16]) which can be determined from the condition % =0, =0
o

(note (36)). Moreover, by a simple analysis of all the relations between ¢ and 7, (25)—(27),
which temporarily we denote respectively by 6®®(7), 6®®(r) and o (1), 0¥(7), one can
find that

lim 0®9(z) = 0 (39)
T
T, <7,
d® () > 06 (7) > 6 @D(7) > ¢™(z) 0<7<T,
for (40)
o®) (1) > o®)(7) 7, <t<T,

¢ Since 0 == h) [|#| and we assume k) ¥ 0, thesolution o= Vaﬁ + 0% =0 of the equation
s+1

15_, (0) = yo is excluded.
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where the equality sings in (40) hold only at the boundaries of the temperature intervals

For illustration, the dependence of ¢ on 7 for (25)—(27) is shown in Fig. 1.

In short, the (ferromagnetic) solution (25) exists in the temperature interval 0 < 7 < 7,
satisfying the conditions for the minimum in this region; the (paramagnetic) solution (26)
exists in the whole temperature region (0 << 7 <C o0) but satisfies the minimum conditions

only for 7 > 7, This is also marked in Fig. 1.

A

Fig. 1. Schematic curves o(7) corresponding to Eqs. (25)—(27). Solid, broken and dotted-broken lines represent
respectively minima, maxima and absence of extrema of the free energy. The upper solid line corresponds to

2 ) = 1.1 #, the remaining curves to s = 0.2% (¢ > 0)

For examining the transition between the magnetic states described by the solutions
(25), (26), the same procedure is used as in the case of the toroid model [4,9]. Accordingly,
by inserting (25) and (26) into (10) (see also (8) and (28)) one obtains the free energy cor-

responding, respectively, to the ferro- and paramagnetic phases

3(2s+1) vor

o 2B 2
(pf=—S;;1‘L'ln 2(8;_1);10‘: +%yaf~—%%
Shm_’t—

(for 7 << 7,)
. 3(2s+1) y'op+hy
Pp = — S;;l Tln 2(S3+1) V'Gp‘:“h_L + %7/03
Shm —‘L'
(for 7 > 7,)

where

- 3s yor . 3s yop+hy
Uf_BS(s—l—l?)’ O‘p__Bs<s—l—1 T )

(41)

(42)

(43)
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Differentiation of these free energies with respect to 7 at constant /| yields the ferro- and
paramagnetic entropies S, , and the specific heats C; , (all these quantities are given in
units of Nk = gas constant)

3(2s+1) yoy

sh —=
o 2s+1) T 3s yo?
§ =1 - 3 yaf_s—l—lT (44)
2(s+1) =

oh 3(2s+1) y'op+hy

S, —Tn 26s+1) T 35 oy(yopthy) (45)
L 3 Yo +hy s+l T
2(s+1) T
. O‘fB (Gf) %) (46)
aBl(o) — By Uf)

(7 GP—[_hJ_)B O'P) (47)

(V op+h1)Bi(o))—y'Bilay)
Since 07 == 0, = h, [lx| at 7, it is easy to notice that the entropy (and the free energy
(41), (42)), contrary to the specific heat, is continuous through the transition. It proves the
existence of a second-order phase transition at the field-dependent point 7, Thus, the
formula (38) gives the dependence of the critical temperature 7, on the external magnetic
field, or rather on the ratio of the external field to the anisotropy constant. One easily sees

that this formula leads to the ordinary Curie temperature in the case ho 0. The magnitude

of the specific heat jump at 7,, being given by

ey el
4C = Cple) — Cplr) = —————— AL “ - (48
T () - (y) o () e

depends however explicitly ( not only through -T'—JT-) on the material constants (see also (8)).
%

Its dependence on hy for two different values of [%| is illustrated in Fig. 2, while the phase
%

diagram (and the dependence of the critical temperature 7, on }|L—-L) is shown in Fig. 3.
x
" According to (37), (48) and Figs 1-3, the phase transition vanishes if the external field by

exceeds the value of |»|. The approximate magnitude of this field is of the order 106-103 Oe for
a ferromagnet for which the zero-field Curie point T(0) is about 1000°K and 1072 < |x| <<
< 104, and 10%-10%0e for T(0) ~ 10°K (see (8)).

In view of (11), (18) and (25), the components of the magnetization in the ferromagnetic
phase are

h h
Gf,lzmla o=+ 1/ of— ( %L) . (49)



864

acvi]

Ty flw)

Fig. 2. The dependence of the specific-heat jump AC on k| /|| for || = 4-10-% and s = 1/2, 3/2, 7/2, and
for |#}= 4104 s = 3/2 (broken line)

61,1

7 h/(%)
Fig. 3 Fig. 4
Fig. 3. The H— T, diagram for the ferro- and paramagnetic phases: s = 1/2 — solid line, s = 7/2 — broken line

Fig. 4. The temperature-dependence of the magnetization components o, and ¢ as given by (49) for 7 < 7,
and (26) for 7 > 7, (b = 0.2%, % > 0)
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As it is seen, only one of them, namely oy, depends on the temperature and vanishes
above 7, due to (29) and' (43). To illustrate, we present the dependence of the magnetiza-
tion components on the temperature in Fig. 4.

4. External field parallel to the easy axis (or plane; H, +#0, H =0) and the field-free
h case (Hy=0,H, =0)

Fofcomparison with the results of the previous Section, we present here also a rigorous
mathematical treatment of the longitudinal- and zero-field cases. As previously, we start
with the solutions of (6), (14) and (15) (sec also (18) and (29)).

Provided that A # 0, h; = 0 we obtain

h Y +1 5 ;
nu:—'#f’ ny= & J1=nf, 3_7 (9) = 7', (5)
A=yo?
1

=1 =0, *I=fi(o)=yath, (51)

A= o(yo+hy),
ny = —1, ny = 09 S?:l_l TB (6) =Yyo— h“’ (52)

= o(yo—hy).

Due to (19)-(24), the sufficient conditions for a minimum of the free energy (10) to exist are

, &l
@gg =7 !‘p(()')— W >O

A = Dy, ([h]%I [Mlaz) >0 (53)
for (50), |
Boo = (o) + h”B @ - o,
By(o) ‘
A = 6@l || +hy) >C (54
for (51), and
By = 7 Pl) - h“B 9 -,
. S O')
e ac.b;,.,(—lx[a—h”) =0 (55)

for (52), upon eliminating 7 from @, according to (50)~(52). Here, (o) is given by (34).
If we assume h“ > 0, the solution (50) is real for

]z[o‘ < hy,
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and, as a consequence of (34) and due to the properties of B,(%) (see Appendix), this solu-
tion does not satisfy the conditions for an extremum if @,, > 0 (4 < 0), or corresponds
to a maximum if @, << 0, (4 >0). On the other hand, one obtains that (51) satisfies the
conditions (54) in the whole interval 0 <<o' <<1. As regards (52) this solution is restricted to
(cp. (30)) -
Y0 > hy, (57)

and since the identity (36) is also valid for (50)—(55), we can discuss the solution (52) in the
same way as (27) in the previous Section. Thus, we can show that the implicit dependence
(%), (52), describes two functions, 6®(7) and ¢*)(7), respectively increasing and decreasing
with 7. Due to (36) and (53) if the condition

lo > b, (58)

is satisfied, 0**(7) corresponds to a minimum as well, otherwise to the absence of an ex-
tremum. In the same manner we obtain a maximum or the absence of an extremum for
0%(7), depending on the sign of [x[o— /. Similarly as in the previous Section, when de-
noting here the dependence o(7) by 659(z), 0%0(z) and ¢/™(z), 0¥(7) for (50)—(52) respec-
tively, one can prove the validity of the inequalities

o5V(7) > ¢'D(1) > o'™(7)
a1 (7) > ¢160)(z) (59)

in the temperature region where the respective solutions exist, and that

lim o(6)(z) = 0. (60)
The dependence of ¢ on 7 for the solutions (50)-(52) is illustrated in Fig. 5. If we denote
the free energies which correspond to the solutions (51), (52) by g ;,() and P(s2)(T), respecti-
vely, it can be proved that

. . dost doss
1113 _‘P(sl)(ﬂ < lim gs(2), —-%(%—) < —7(;2 <0, (61)
which implies
‘P(51)("7) < ‘P(sz)(T)' (62)

Hence, as one would expect, the solution (51) satisfies the conditions for the absolute mini-
mum of the free energy (10). The substitution of this solution in (10) gives the free energy
Peny(7) = (7, h||)

3(23 +1) ')10'+h“

s+l 2s+1) 7 L,
(p(T, }l”) = — 35 7 In . 3 yo‘—l—h” + '2— Yo, (63)
P TCES .

where

3s yo-hy
— B NG Ak | 64
< s (s +1 =z ’ (64)
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1 1 ——
L1 T
Fig. 5. Schematic curves o(z) according to (50)~(52) (denotation of lines as in Fig. 1), for by = 0.2x (% > 0)

applying to the whole temperature region. Since ¢(, h)) and its derivatives are continuous
functions of 7 and k|, the phase transition cannot occur in this case.

We have shown that the solution ¢/”(7) (magnetization vector antiparallel to the external
field and parallel to the easy direction) satisfies the conditions for a relative minimum of the
magnetic free energy (see, however, the restriction (58)). This solution is apparently rele-
vant in the case of domain structure and its existence supports the considerations of [16].
Similarly, our considerations exclude the solution ¢®(7) which had to be rejected in [16]
by a rather physical argument.

If by =0, b, = 0, the system of equations (6), (14) and (15) has the solutions (see also
(18) and (28))

6=0, 2=0 (65)
np=+1, n; =0, % tBy(0) = yo, A= yo?, c#0 (66)
np=0, nj;=41, 5;;1 By(0) = y'6, A= y'e% o 0. 67)

In the case of (65), in which the magnetization direction is obviously meaningless, the free
energy (10) does not depend on the direction cosines and (21), (22) reduces to

S+1 ~7

2o = (—3:9— B, (0)—1333) do?. (68)
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According to (20), (21), the angle of the transformation ¢ can be easily found in the remaining
two cases (66), (67). Having eliminated 7 with the help of (66), (67), respectively, from (22)
one obtains

» D = y¥Po), A= |x|c*D,, (69)
for the solution (66), and
& =y W), A= —|x|2D,, (70)

for (67), where ?P(a)‘ is defined by (34). Due to (34) (see also 28)), one has a minimum in the
case (66) (D,, >0, 4 > 0) and the absence of an exiremum in the case (67) (®,, > 0,

and according to

A < 0). As regards the solution (65), due to the fact that BI(0) = 3:1
(20), (23), (68), we have
A2 >0 for 7 > a+xcos? . (71)

Hence, the point above which o vanishes depends on the magnetization direction below
that point, 7. e., on the direction of the quantization axis (see, e. g., [12]). In other words,
if there were any factors which would force the magnetization to assume another direction
than that of the easy axis or plane, according to (65), (71) the point above which o vanishes
‘would depend on this direction. Such a result has been obtained in [17], while examining
the influence of the domain structure on the transition temperature of a ferromagnet..

The solution (65), (66), correspond, of course, to the para- and ferromagnetic phases,
respectively. Upon substituting them into (10) (see also (28)) one has the free energy for the
ferromagnetic phase

3(28 4 1) ')/O'f

sl i) ¢ 1o,
9= — 3 r‘ln 3 7% 4 5 Vo (72)
2(s+1) T
where ;7 0 is determined by
: [ 3s yor\
O'f'—B_j (S+1 T)’ (73)
A respectively for the paramagnetic one
‘%:“hmp:—sglrln (25 +1). (74)

As,one can easily prove making use: of (73), the condition ¢, # 0 can only be satisfied for
7 <y and the limit temperature for o~ 0 is v =". Thus, it follows from (66) and (71)
that in the temperature 1ntervals =

6 <r<l ) %'>‘0>

X% < 7 < f’o_._r; %<0 (75)
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the sufficient conditions for a relative minimum of ¢ are satisfied by (65) as well as by (66).

However, by expanding the function ¢:(o)) into ‘a Maclaurin series with respect Lo 9, 1 it
can be found that @; < @,, and so g, satisfies the condition of the absolute minimum @
in those temperature intervals. The differentiation of the above formulae for the free energy
(72), (74) with respect to ‘L’ylelds the ferro-and paramagnetic entropies S, and specific heats
C; ,» respectively. From these formulae one can easily find ‘that S, {1 =y) = S,(v=19)
and Ci7 = 0) # C,(7 = ), with jump of the specific heat given (in units of Nk = gas-
constant) by

~ 5s(s+1)

= %Ll +1 (76)

‘5. Critical parameters

For the most part recent theories of phase transitions (see, e. g, [1; 2]) are based on
Landau’s assumption that the free energy is expandable into a power series with respect to
an order parameter [18]. Such approach enables, in particular, to deseribe the behaviour
of a system near the critical point by means of a set of critical indices. The apparent rela-
tions between these parameters can be established on the basis of the scaling hypothesis
(see, e. g., [1]). If the phase transition of a uniaxial ferromagnet is to be described by means
of these theories, one should answer the questions what is the appropriate order parameter in
this case, and whether the application of the scahng approach to this problem yields satis-
factory results.

As regards the first question, it is easy to notice that the longitudinal component of the
magnetization (parallel to the easy axis or plane — o) has all the properties which are
required of an order parameter (cp. (49) and [1,19]). It is rather obvious that this critical
parameter should be chosen in such a way as to.correspond to the case H; = 0, i. e., to
the absolute value of the magnetization in this case. One sees from (49) that oy satisfies
this demand as well. Furthermore, one can easily show, by expanding the implicit function
0‘2”, (49), into a Taylor series, that in the neighbourhood of 7, -

i ~a (1 - 1) | (7

[4

where

10 (s-+1)2

1
= s—ereeee = o lima = 5 oot 78
T (h_,_)' 1 = (hi_), SRS N s (78)
B (1) — B (L) "6
el ] AL\l

It means that the behaviour of the component .0y near the critical field- dependent point
resembles that of the total magnetization in the neighbourhood of the ordinary (field-free)
Curie temperature.

The answer to the second question was given in [12], where the relation between the
critical parameters, which determine the field-dependence of the critical temperature, the
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transversal magnetization (o;; in our notation — (49)) [4, 5, 8-10] and the temperature
dependence of the magnetization for H = 0 (see, e. g., (77), (78) and [1]), has been estab-
lished.

To show the explicit derivation of the formula for the field-dependence of the critical
temperature in the neighbourhood of the ordinary Curie point (H 1 = 0) [10], we expand
the right-hand side of (38) into a power series of 4, /[x|.From the expansion of the Brillouin
function, which due to (12) reads

= (—1)+122IB
Bs(x) = Z ( 220_'__1 A21x2l~2, (79)
I=1

we obtain for its inverse function

B (%) = bym-+-by® bt 4-O(x7), (80)
where in (79) B; denotes the Bernoulli numbers and
2511\ 1\ %
e (5 3
while the coefficients in (80) have the form »
by = 3431, by= % A4 Ay,
81 1 2

When applying (80) to (38), we obtain

B (S]] w

It is worth-while to note that a similar dependence of the critical temperature on the external
field (with field in second power) has been found experimentally [3] (in the power 1.6 +0.4)
as well as theoretically [4, 5, 8-10].

h
Since according to (43) ¢, =0, = —L at 7, the a plication of (80) to (46) and (47
g f 4 l%, ¢ p

yields
A 2 ho\4
C(Te) = cy—cy (—;) +0{<-%;L) } (84)
BRI, hy\*
6t = 2 - (2 ol (22), )
where in (84)
. _ 5s(s+1) _ 3 32s*+64s°+84s%+525+13 (86)
07 (s+1)+17 2T TaGL)) [2s(s+1) 1] T

When comparing with (76), from the above formulae one sees that the jump of the specific
heat (48) corresponds to that for by =0, A, =0.
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6. Concluding remarks

In the cases being here under consideration, the conditions for a minimum of the
magnetic free energy (10) gave the possible magnetization directions llustrated in Fig. 6.
Such directions, qualitatively, are also an immediate consequence of symmetry conditions,
i. e., of the fact that the anisotropy and the external field distinguish certain directions in
the crystal [19]. These results are usually obtained when considering a uniaxial ferromagnet
in the presence of an external magnetic field. With the exception of the dependence o(),

a by

Fig. 6. The magnetization directions obtained from the necessary conditions for extrema of the model free energy
in the cases: a) h“= 0, h_L= 0; by) hll = 0, h_Lsré 0,7 < 7,3 by) hll =0,h#40,7T>17,0) hll #0, hJ_: 0.
The solid lines mark the easy axis (plane); the arrows denote: =p» the external magnetic field, — the directions
obtained from the necessary conditions, —p» the directions satisfying the sufficient conditions for the absolute
minimum, —> the direction satisfying the sufficient conditions for a relative minimum

the direction cosines of the magnetization in the case &, # 0, k) = 0 (formulae (25)-(27))
are much the same as those obtained by the Green function method [14, 15] and the approx-
imate second quantization [13]. Moreover, our results in that case correspond precisly to
those given in [4, 9] when replacing the reduced «demagnetization factor d with » >0
(see also [10]).

The obtained results raise the question whether a second-order phase transition occurs
in the case of an arbitrarily directed external magnetic field. As shown in [19] basing on the
results of [9, 10, 5], the answer to this question is negative. It is impossible to confirm it
in a rigorous way as presented here, for the necessary conditions (14), (15) for the minimum
are in this case analytically unsolvable. However, there is a further argument supporting the
results of [19] if we assume that — according to [19] and the previous Section — oy is to
be the order parameter. Namely, an infinitesimal external magnetic field along the easy axis
should create g} # 0 for arbitrary temperature, which suffices to destroy the phase transition.
Moreover, this would explain why it is experimentally difficult to detect the phase transition
in a transversal magnetic field.

APPENDIX

In order to prove the inequality (34) we take advantage of the following properties of
the function B (x):
(i) B/(x) is defined, continuous and differentiable in the interval —1 <x <1,
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(@) B,(0) =0, (iii) Bj(x) > 0, and in the interval 0-< 5< 1, (i) Bx) >0, (v) B'() >0,
resulting from (12). Due to (i), (iz), it follows from the mean value theorem that for any x
from the interval (0,1) there exisis an %y in the interval (0, x) such that

xB(x) = B(%). (A1)

Since B/(%) is an increasing function (), we have

5B() > By (A2)
By combining (A1) with (A2) and taking into account (i), one immediatly proves (34).

The author is grateful to Dr J. Klamut and Dr W. J. Zietek for many helpful discussions
and suggestions concerning this work.
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