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The satellite band produced by helium on the short wavelength side of the Hg-resonance
line 42537 A was interpreted as a result of the continuous absorption (due to bound-free transi-
tions) of the HgHe Van der Waals molecules. The results of the calculations of the shape of the
HgHe-absorption band are presented. The calculations were performed assuming the eigen-
functions of the discrete vibrational-rotational levels of the HgHe molecule in the form of the
Morse-Pekeris functions. The wave functions of the continuous levels in the neighbourhood of
classical turning points were approximated by means of Airy’s integrals, It is shown that a satis-
factory agreement between the calculated silapeA of the HgHe-absorption band and the shape of
the satellite band is achieved if the rotational effects and the effects of the-decomposition of
the HgHe molecules are taken into account.

1. Introduction

Many experiments have shown that in the spectra of metallic vapours (such as mercury
and the alkali metals) mixed either with rare gases, or e.g. H, or N, diffuse bands, usually
called satellites, appear. Most observations have been made on resonance lines and showed
that satellites occur both on the short wavelength side (blue satellites) as well as on the long
wavelength side (red satellites) of these lines. The existence of such bands was first observed
in fluorescence by Oldenberg [1] and then by Kuhn [2] and Preston [3]. In absorption,
systematic experimental investigations of satellites of alkali metal lines produced by various
gases were carried out by Ch’en and his collaborators [4, [5], [6] who found satellites on
both sides of the fine structure components. Michels et al. [7]-[10], Robin and Robin [11]
and Granier and Granier [12] investigated the satellites. on the short wavelength side of the
Hg-resonance line 42537 A at very high rare gas pressures. They found that the number
of satellites, both blue and. red depends on the nature of both the radlatmg and perturbing
atoms. Thereis, however, an essential difference between these two kinds of satellites. Namely,
the blue satellites are observed for all perturbing gases provided the pressure is high enough;
their intensity increases with the increase in pressure. On the other hand, the appearance
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of red satellites is typically a low-pressure phenomenon (below half an atmosphere); they
disappear entirely at higher pressures. Moreover they are produced only by heavier rare
gases. Helium and neon used as perturbers do not produce any red satellites, whereas they
do give rise to strong blue ones.

Different approaches have been used in attempts to explain the origin of satellites, The
hypothesis put forward by Preston [3] and modified by Jefimenko [13] ascribes the formation
of satellites to transitions between potential curves of complicated shape (with additional
minima and maxima) at different distances. Recently, Breene {14] has shown that such
minima and maxima can be due to the intersection of potential curves of different electronic
states and that satellites result from the Jablonski pressure broadening theory [24] when
the Born—Oppenheimer approximation breaks down. Another concept interprets the satellites
as due to the existence of the vibrational levels of the Van der Waals molecule formed by
the radiating and perturbing atoms (Klein and Margenau [15], Michels et al. [10], Mahan
and Lapp [16]). One more possibility of explaining the satellites, which ignores altogether
the existence of vibrational levels, has recently been reported by Hindmarsh and Farr
[17], [18] and Kieffer [19]. Their interpretation concerns only the red satellites and is based
on the quasi-static theory of pressure broadening of spectral lines given by Margenau® [20].
Applying the Lennard-Jones potential to this theory, they have shown that at low foreign
gas pressures additional intensity maxima, which were interpreted by them as red satellites,
appear on the long wavelength side of the line. Experiments performed by McCartan and
Hindmarsh [25] on the potassium line 24047 A broadened by krypton yielded a satisfactory
agreement of the measured positions of the red satellites with those predicted theoretically.

The present work deals mainly with the blue satellites and its purpose is to show that
the origin of these is primarily due to the existence of quantized vibrational-rotational
states of the Van der Waals molecules. All the considerations given below concern the
Hg-resonance line 22537 A broadened by helium but there is no doubt that they are generally
applicable to other such perturbed systems (cf. [10]).

2. The HgHe molecule

In an earlier paper [26], hereafter referred to as I, the pressure broadening theory of
Jablonski [21], [22] was applied to calculations of shape and shift of the Hg-resonance line
22537 A perturbed by helium under assumption of the Lennard-Jones (12—6) potential.
For helium densities less than 150 Amagat a very good agreement between the calculated
and experimental intensity distribution was obtained over the whole frequency range of the
broadened line. However at very high densities of helium (above 200 Amagat) the agreement
is violated on the short wavelength side of the line due to the appearance of a satellite band
with a maximum shifted by 225-cm~! with respect to the unperturbed frequency (39424 cm-?)
[7]. In1 the view that the origin of this band cannot be due to Van der Waals HgHe molecules

1 1t can be shown that the Margenau theory follows from the pressure broadening theory given by Jablofiski
[211-[24] in the asymptotic case when (1) the classical form of the Franck-Condon principle is applied and (2}
in the limit v— 0, v being the mean relative velocity of atoms.
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was expressed. This view was based on very rough calculations, which led to the conclusion
that the energy of even the lowest vibrational state would exceed the dissociation energy
of such molecules. This was in accordance with the qualitative considerations of Kuhn and
Oldenberg [27] who also excluded the possibility of the formation of HgHe molecules because
of the small polarizability of the He-atom. In a recent paper [28], hereafter referred to as II,
the preliminary results of a more accurate analysis were reported which showed that contrary
to the opinion given in I Hg and He atoms can form molecules and that mainly these molecules
are responsible for the drigin'of the satellite band in question.

The ground molecular state of HgHe corresponding to the atomic states Hg (61.5)) +
+He(11S,) is the, 12+ state with 2 = 0 (£2 being to quantum number of the projection of
the total electronic angular momentum on nuelear axis). During the cellision of the Hg-atom
in the 63P, state with the He-atom in the 115, state two molecular excited states 32" with
Q = 41 and 37, with 2 = 0 result. The potential curves for these states are given in II.

The values E, of the energy of vibrational levels can be approximately determined from
the Kramers condition (cf. [29])

2 f [2u(Ey — V()] % dr = (v + %) h (1)

where v is the vibrational quantum number, p the reduced mass of the pair of atoms, ¥{r)
the interaction energy as a function of the distance r between the atoms and r; and r, are
the 7’s at the classical turning points. The interaction energy was assumed in the form of the
Lennard—Jones (12—6) potential:

V(ry = Cpp-r2—Cq- 18 (2)
where the constants Cgand C;, for the ground electronic state 12% as well as for both potential
curves corresponding to 2 = 0 and £2 = +1 of the excited states 3[I; and 3Z* determined

in I are given in Table I. This table also contains the energies E, calculated numerically
from Eq. (1). It turned out that there exist two vibrational levels (v"" = 0; 1) for the ground

TABLE I
Force constants and vibrational energies of the HgHe molecule
S —— —_
Lennard-Jones potential 5 Morse potential
State ‘
E -i E -1
Cotov-Alegievan— ey | A | ogay | el
v=10 l v=1 v=20 l v=1
13+ | 132 5430 —37.0 ‘ —7.1 64.8 3.059 1.960 —36.4 ‘ —5.0
I S R | |
o | 136 8760 —22.1 — 42.6 3.296 1.818 —21.4 —
(QZO) | I
i 159 | 21900 | 182 | 3899 | 153
(Q - :tl) . ‘ . | o .
| |
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electronic state of HgHe, only one (v' = 0) for the excited state 3IT, (£ = 0) and none for
32+ (2= £1).

The E, values were also computed using the Morse potential

V() = efexp [-2B(r—r)] —2 exp [—-B(r—r,)]}, ®)

where ¢ is the depth of the potential well, r, the position of its minimum and 8 a constant.
The values of these parameters were determined by comparing the Morse potential and the
Lennard-Jones potential (Eq. (2)) and their second derivatives for the minimum of the func-
tions. This procedure leads to the following relationships:

e — C3 r=< glg):/c’

e
ﬂ=3(32c£:;)._‘ | (4)

It was stated that the Morse potential with these parameters agrees well with that of Lennard-—
Jones in the most important region, i.e. in the neighbourhood of the minimum. The discrep-
ancies between them appear only at large interatomic- distances [28] (c¢f. also [30]).

The eigenvalues, E,, of vibrational levels for the Morse potential can be calculated
(in cm™Y) from the formula

Fo=ov+1) —» e 2 ®)
v=0 v+ 5| —xo \v+ 5],
where
_ (N
e ="me \2u ) T T Barep ©

¢ being the vacuum velocity of light.

The values E, calculated from Eq. (5) are given in Table I. They. differ only slightly
from those obtained for the Lennard-Jones potential from Eq. (1), the difference being
0.6 cm—! for the o' = 0 vibrational level, 2.1 cm! for v =1 and 0.7 cm™ for ' =0
(2 = 0 of the 311, state).

As was shown in II for the HgHe molecule, a continuous absorption should appear due
to the transitions from the discrete levels (v = 0 and ¢"/ = 1) of the ground electronic
state to the levels in the range of continuous energies connected with the repulsion branches
of the potential curves (2 = 0, 4-1) of the excited states 3X+ and 311, (bound — free transi-
tions). The minima of the potential curves of the excited electronic states are shifted towards
larger distances with respect to the minimum of the ground state potential curve, so that their
repulsion branches lie above the minimum of the ground state. Thus, according to the
Franck-Coadon principle, the transitions from the vibrational levels v'" of the ground state
to the continuous levels connected with repulsion branches of the potential curves of the
excited states will give absorption bands with frequencies on the short wavelength side of
.the Hg-resonance line. It is thus possible to interpret the blue satellite band of the Hg-line
as due to the continuous absorption of HgHe.
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The concentration Ny, of the HgHe molecules can be calculated from the equilibrium
constant

- N ) NHgHe Y
A Hg, He = Nty N’ 7y

where N is the Avogadro number, Ny, the concentration of all (free and bonded) Hg-atoms.
and Ny, the concentration of He-atoms. According to Stogryn and Hirschfelder [31], the
equilibrium constant can be expressed as

K HgHe = _2[Bb(T)]Hg,He’ (8)

[By(T))mg e being the part of the second virial coefficient for the gaseous mixture of Hgand
He atoms, which is directly connected with the existence of the HgHe Van der Waals mole-
cules (T is the temperature). From Eqs (7) and (8) we have -

NHgHe I 2[Bb(T)]Hg,He

3= Netg & He - )

Introducing the so-called reduced second virial coefficient

1
BY(T*) = By(T), (10)
where
_2 ~§£'1/2 « _4Co v
%= (Cs) s Ik = C, T, (11)
Eq. (9) becomes
% .
n = -—f‘—n (913> Ny[BF(T™)]. (12)
3 Cq ‘

The reduced coefficients B; (T*) were calculated by Stogryn and Hirschfelder for potentials
of the Lennard-Jones (12-6) type and tabulated for a wide range of reduced temperatures i
Substituting the values of By (T*) determined by them into Eq. (12), the values of % were
calculated for different helium densities®. For a helium density of 1 Amagat, Eq. (12) gives
the value % = 2.3 104, which explains the fact that at lower densities the satellite band is
not observed.

The concentration Nlﬁlfg of the free (unbonded) mercury atoms is given by

N{) = (1 —%) Ny, (18)
Hence the ratio of the concentration of the HgHe molecules to the concentratlon of the free
Hg-atoms 'is

NHgHe ?
' NI({fg) T 1w

(14)

? It should be noted: that the contribution from metastable states (denoted by B, (T) in [31])is also taken
into account in Eq. (12). :
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This ratio determines the relative intensity of the continuous (satellite) band to the atomic
line.

The shape of the satellite band for'a helium density of 271.2 Amagat is shown in Fig. 1
(curve S). It was determined as the difference between the measured absorption coefficient
[7] and the absorption coefficient of the broadened line calculated in I on the basis of the
Jabloriski theory (curve 2). Curve 2 differs in absolute values from that reported in I be-

Y o) 10 cm™'7

1 .. i
500 400 30 200 100 39424 =100 -200

Tig. 1. Shape of Hg-resonance line A2537 A broadened by helium for density 271.2 Amagat. Curve I — experi-
mental shape [7], curve 2 - theoretical shape [26]; S—shape of satellite band

cause it was re-calculated with account taken of the corrected value of the concentration of
the mercury atoms given by Eq. (13). For a helium density of 271.2 Amagat Eq. (14) yields
N HgHe

N,
to the formation of the Hg-resonance line and that they are responsible for the arising of the
satellite band only.

= 0.11. It was assumed that the Hg-atoms bonded with He-atoms do not contribute

3. The shape of the ;satellite band
A. Theoretical

Continuous absorption in diatomic molecules is due to transitions from the discrete
vibrational-rotational levels (v”’, J) with the energies E,. ; to the continuous levels with the
energies E}. The radial eigenfunctions ¢, ; (r) and pg;(r) of these levels are solutions of the
Sehrodinger equation

-

&y 2 R2y(J+1
T 2l p-ry -2 )]

p=0. (15)

Botlt the wave functions ¢, ; of the discrete levels and the wave functions yg; of the con-
tinuous ones are normalized to unity, Such a normalization of the wave functions yz7 means
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v’

that the continuous states are treated as discrete with a certain density of levels oz, =L,
o

The boundary condition for the wave functions yg/(R) = 0 (R being the radius of a large
sphere around the radiating atom) leads to the following formula for the density of levels [24]:

— [ 2n N

If the quantum-mechanical form of the Franck Condon principle is applied, the absorption
coefficient k(v'’, J; E;) corresponding to the transitions (v, J) — EJ is given by the for-
mula [35], {24]:

o]

Yo, 1 (NYE) () dr

2

3
8 0 s, 17)

k(?}”, J’; E}) = g—h—z

"’Nv”;]d%

0

where N, ; is the concentration of the molecules in the discrete state (v"/, J), » the absorbed
frequency and d, the electronic part of the dipole momentum which can be expressed by
means of the oscillator strength f as

3he?f

&2 =
e T 2 C
8mtmev,

(18)

Here, e and m are the charge and mass of the electron, and v, is the unperturbed frequency.
The effective potential ¥,(r) in the wave equation (15), i. e. interaction energy F(r)

together with the centrifugal potential is ;

A +1)

Vi) =V + (19)

Let r; be the classical turning point for the continuous levels E; connected with the repul-
sion branches of the potential curves. Now the definition

= - [di V;m] e (20)

is introduced, V(r) being the effective potential for the excited electronic state. Assuming
the potential curves of the excited electronic states 3X% and 81T, to be of the Lennard-Jones
type we have

o, R+

Vi) = Chg - r-12—Cy- 1 ot

, 1)

where the constants Cyp and Cy were determined in I both for. £ = 0 (311 state) and
for £ = 41 (3X* state) (see Table I). On introducing a new variable

E=ypr—r)), (22)
where

4ruc
vy = h" F;, 23)
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then the solution of the Schrédinger equation (15) valid in the neighbourhood of the classical
turning point r; can be written as a good approximation in the form (¢f. [32], [33])

% [ po \ %
wE;<r>=(%) (%) (-8, (24)

where po, = (2u E7)*%. In this equation @(x) denotes the Airy integral (¢f. [29]). For r>r;
and r < r, the wave function given by Eq. (24) becomes identical with the quasi-classical
(W. K. B.) wave function.

Substituting Eq, (24) into Eq. (17) and using Eqgs (18) nad (16) we obtain

" et o
k(v", T; Ey) = = SNy 3431, Ey (25)

where

+00
Ay = F7 " [ 90,8 Py (—E)dE, 26)

and ¥, ,(£) is the wave function of the discrete vibrational-rotational level (v"/, J) of the
ground state expressed as a function of the variable &.

For the ground electronic state of HgHe the interaction potential V(r) was approximated
by means of the Morse potential (Eq. (3)) with parameters given by Eq. (4). Pekeris [34] has
shown that the solutions ¥, ;(r) of the wave equation (15) with this potential and the rota-
tional term included (J # 0) can be presented in a good approximation in the form

1 .
Yo, 11} = Cy yexp [ EZJ(r)] [Z, (¥ DLEED (1) 27
where
Z(r) = 2d exp [—p(r—r)] (28)
and
b(J) = k;—2v-1. (29)

The coefficients d; and k; are given by

dy= Blg 2ule+ CUNI%, (30)
kJ ﬁzhgd (2861(])) (31)
where
h2
=0 (5 o). i
h
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In Eq. (27), L’} ;) are the generalized Laguerre polynomials

dv
Lg+b(r) 'Zb d P [

e zzu+b]

z=z5(r); b=by]), (34)

and C, ; is the normalizing constant.

The energy E, ; of the vibrational-rotational levels (in cm) can then be calculated

from the formula [34], [35]

2
Ev,J‘= 6(je (U o ‘;—) — WX, (U + %) + Bv.](]‘l‘]-) _Dyfz(J‘l“ 1)2, (35)

where

By = B, —a, ('v + %‘) ’
: 1
D, = D,+8, (’I) + 5) ,

h 4B3

e

2ucr?’ w?’

e =

_6(omBYS 68
T e w,

5, 2w,
Be= D, (8xe - _B: - mz) B . (36)

and w, and x, are the same as in Eq. (6).
The energy E; of the continuous level connected with the repulsion branches of the
potential curves £ =0 and 2 = 4 1 of the excited states 311, and 32+ of the HgHe mol-

ecule can be written as

Ep=V'(ry) +3 2J(J' +1), 37
r; being the classical turning point for a given J.

B. Results

In the first approximation rotations are neglected (J = 0). In this case ¢;(0) = 0 and
¢5(0) = 0 (see Eqs (32) and (33)), so the functions Yy 70 &iven by Eq. (27) are now identical
with the usual eigenfunctions of the Morse oscillator [36]. Substituting these functions into

Eq. (26) the absorption coefficients & ,_(4v) (Av being equal to hi (Eres “Ev",o)) corre-
c
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sponding to the transitions from the vibrational levels »” =0 and »”"=1 to the continuous
levels E_q were calculated using the ODRA 1003 computer. The populations N, ;_q of
the vibrational levels were determined on the basis of Eq. (12). It was assumed that the value
f.of the oscillator strength of HgHe molecule is the same as for the Hg-atom (f = 0.0255).
The shape of the absorption band (pure vibrational) of HgHe determined in this way is
given in Fig. 2 (curve I), where it is compared with the satellite band (curve 2). The position
of the maximum of the calculated band falls at a frequency A4v,, = 164 cm=1 with respect
to the unperturbed frequency (vy = 39424 cm™') of the Hg-line, that of the satellite at
Ay, = 225 cm™L. As can be seen from Fig. 2 there are also large discrepancies between the

k) [1072em™ ]
-15
- 1.0
- 0.5
V=Y [em™]
-
[ { T I | A3 1 b & L1t NG Ll a1 1 11
500 400 300 200 100 Vo -100

Fig. 2. Calculated shape of purely vibrational continuous absorption band of HgHe molecule (curve I). Curve 2 ~
satellite band

calculated shape of the absorption barid of HgHe and the expected shape of the satellite
band if the rotational effects are neglected. These discrepancies are too large to be explained
only by the change in the value of the oscillator strength. Thus, inclusion of rotation is
necessary for an improvement in the theoretically derived shape of the band.

_ On including rotation (J # 0), the absorption coefficient k() corresponding to the
transitions from all vibrational-rotational levels (v”’, J) according to Eq. (25) is given by

Jmax(®"")

2
boldi) =g f Y N sy, (38)
J=0

‘mc

where the summation is over all quantum numbers J for which the molecule exists in the
ground electronic state with a given v. The value Jo,,(v"), i. e. the largest value of J for
which the level (v, J) is a discrete one, was determined in the usual manner by considering
the curves of the effective potential ¥,(r) (Eq. (19)) (¢f. [35]). The typical shape of these
effective potential curves is such that, apart from the minimum corresponding to the equi-
librium position 7, , there is at larger r a maximum due to the existence of the centrifugal

2
term f%_:l) in Eq. (19). Thus, there are also rotational levels above the dissociation
ur
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limit which are separated by this centrifugal potential barrier from the dissociated states:
In Fig. 3 the energies E,, of the maxima of the effective potential curves of the ground
state of HgHe are plotted as a function of J(J41). The energies E,. ; of the vibrational-
rotational levels for v/ = 0 and v"' = 1 calculated from Eq. (35) are also plotted in Fig. 3
as a function of J(J+1) where they are denoted by v" = 0 and ¢"" = 1. From the inter-
sections of the curve E,,, with the curves o' =0 and o' = 1, the values J,.,,,(v"") were
found to be equal to J,,, = 11 for v'' = 0 and J,,, = 4 for o'’ = 1. The absorption coeffi-

cient %(Av) corresponding to the transitions from the vibrational-rotational levels (v”, J)

i
[em™]

40

Emax

30

20

10

/40 80 120 160 200 J(J+1)

-10

Fig. 3. Limiting curve of dissociation for ground state of HgHe molecule (for explanation see text)

with J < Joae(@”) were calculated from Eq. (43), the populations N, ; being determined
from Eq. (12). The integrals A, z/ (Eq. (26)) were computed numerically on the ODRA. 1003
using the wave functions ,,.,(r) of the discretelevelsin the form of Eq. (27). The Airy integrals
were taken from Tables given by Smirnov [37]. The shape of the absorption band of HgHe
obtained by the above method is represented in Fig. 4 (curve I), where it is compared with
the shape of the satellite band curve 3). It is seen that the inclusion of rotation significantly
improves the results of the calculations giving the shape of the absorption band which is
now-in better agreement with the shape of the satellite band on the short wavelength side
of the Hg-line. The maximum of the calculated band-falls at a frequency 4v,, = 195 e
(with respect to the unperturbed frequency of the Hg-line) which differs by 30 cm=! from
the position 225 em= of the maximum of the satellite band.

A somewhat better agreément between the calculated shape of the HgHe-band and the
satellite band can be achieved if one more correction is made, that is, inclusion of the diffuse-
ness of the higher rotational levels due to predissociation by rotation. This effect is a result of
passage through the centrifugal potential barrier (tunnel effect) and leads to decomposi-
tion of molecules in the vibrational-rotational states E,. ; (c¢f. [35]). On the basis of semi-
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~classical considerations, the lifetime 7,(v"’, J) with respect to such a decomposition of the
molecule in the sate E. ; was found to be given by [38] (¢f. also [35])

Ts

f [2(Eo,g—V ()] #edr

}, (39)

B’ 1) = 5l D exp {2

where
2

—%

To(v", J) = 2 f [% (Ev”,J—VJ(r)):I dr. (40)
is the classical period of oscillation of the particle with mass equal to the reduced mass u of
the molecule in the potential well (between the turning points r; and r, corresponding to the
energy E,. ;), r3 being the third turning point at the potential barrier (ry <Cry <<7).

For v" = 0 in the HgHe there are three levels (J = 9; 10; 11) and for v = 1 only one
(J = 4) which can decay in this manner. The numerical calculations for Eq. (39) yield the
following values of 7,(v"’, J) in seconds:
a). v’ =0: 7, =3.1%x10"8for J = 9; 7, = 2.8x107!* for J =10 and 7,= 1.7x10-12

for J=11; :

b) v =1: 7, = 2.1x10"12 for J = 4.
For HgHe molecules one more cause of decomposition of these molecules, namely, colli-
sions should be taken into account because of the small depth of potential well. This colli-
sion decomposition leads to the diffuseness of all vibrational-rotational levels (v, J) .The

[}
w()[107% ecm]

=15
!
N\ ~1.0
PR
~05
3
V=¥, [c m"] 400 300 200 100 Vo -100
vo=39424.cm™

Fig. 4. Calculated HgHe-absorption band with inclusion of rotational effects. Curve I —without inclusion of
decomposition of HgHe molecule (due to collisions and predissociation by rotation). Curve 2 - with inclusion of
decomposition; curve 3 — satellite band

effects of tunneling and collision decomposition of Van der Waals molecules have recently
been studied by Bouchiat ez al. [39] in their interpretation of relaxation phenomena for optic-
ally polarized Rb atoms in a rare gas. The lifetime 7, of a molecule due to collisions can be
approximately calculated from the formula

et (41)
Tc
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where v is the relative velocity. For the helium density of 271.2 Amagét and temperature
T = 340°K 7, is equal to 0.73x 10712 sec.

The influence of these effects on the shape of the absorption band was approximately
estimated by assuming Lorentzian distributions for the contours of the diffuse levels with

1 . . .
—— 4 —. The resulting absorption coefficient k. ;. z7(4
TP(OH,J) + 7, €T g P € ‘U ,],E{( ‘V)A
corresponding to the transitions from the diffuse levels (v"/, J) was then calculated as the
convolution of the absorption coefficient distributions (for sharp levels) given by Eq. (25)

~with these Lorentzian distributions according to the formula

half-width y(v"’, J) equal to

400 5

2 o Ay 55, (Av') ,

By () = 7% N f D), L CONR
-R T (dv=dv)r 4 (Lz—“)

After summation over all J < J_,, as in Eq. (38), the resultant absorption coefficient distri-
bution k(Av) was determined. The shape of the absorption band of HgHe including the above
corrections is represented in Fig. 4 by curve 2. As can be seen, the calculated shape of the
HgHe-band is in satisfactory agreement with that of the satellite band. The origin of the
discrepancy between the position of the maximum of the continuous band of HgHe (dy,, =
= 195 cm™1) and the maximum of the satellite band (4v, = 225 cm=1) can be ascribed to
a pressure shift of the maximum of the HgHe-band.

Finally the contribution of the HgHe-spectrum of the transitions from the discrete
levels o' = 0 and "’ = 1 of the ground electronic stae to the discrete level v = 0 of the
excited state 311, (€2 = 0) was calculated. One of these transitions (v"" =1 — " == 0) corre-
sponds to frequencies on the long wavelength side of the Hg-line; namely the frequencies of
the purely vibrational transitions are given.by Av = 15 em™! for "' =0 - ¢’ = 0 and
Ay = —17 em for v/ == 1 — ¢’ == 0. The intensities of the vibrational lines correspond-
ing to them were determined using the Morse oscillator eigenfunctions both for the v/ = 0; 1
and o' = 0 levels (Eq. (27) with J = 0), computing the overlap integrals 4, ,, = [ 9,(r) X
X WPy(r) dr. It turned out that for a density of helium of 271.2 Amagat, the intensity
of these vibrational lines relative to the total intensity of the continuous band on the short
wavelength side of the Hg-line is equal to 2x10~2 for v" = 0 — v’ = 0 and 5x 10~3 for
v =1 — v = 0. Although the existence of bands on the long wavelength side of the Hg-
line would be useful in explaining some of the discrepancies between the measured and cal-
culated intensity distributions in this region (see Fig. 1), the above magnitudes are toe small
for this. This is the result of a small overlap of the wave functions of the discrete levels due
to the fact that the potential curves of the excited states are shifted to larger distances with
respect to the potential curve of the ground state. Thus for the Hg-He system no red satellites
are expected what is in accord with observations.

It should also be noted in conclusion that caleulations based on the concept proposed by
Hindmarsh and Farr [17] do not predict any red satellites for Hg-He.
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4. Summary

On the basis of the results of the calculations given above for Hg-He system, one can
conclude that the origin of the blue satellites is mainly due to continuous absorption (or
emission) connected with the bound —- free transitions between the discrete and continuous
levels of the Van der Waals molecules. It is necessary, in general, to take into account the
role of the bound — bound transitions (between different discrete vibrational levels) of
these molecules. In many cases they may contribute strongly to the intensity of these bands.
Apart from them, however, it seems that the contribution from bound — free transitions is
always the most important. On the other hand the bound — bound transitions may be
responsible to some extent for the origin of the red satellites, but it is clear that they cannot
be treated as the only cause for the appearance of the red satellites. An explanation of the
appearance of the red satellites should probably be sought along lines based on concepts such
as those proposed by Hindmarsh and Farr [17], [18] and Kieffer [19] or Breene [14].

I would like to express my sincere gratitude to Professor A. Jabloriski for having drawn
my attention to this problem and for his advice and valuable discussions.
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