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PRESSURE DEPENDENCE OF COMPRESSION FOR SOLIDS USING
LOW PRESSURE ULTRASONIC DATA

By S. RAJjAGOPALAN
Ultrasonic and Solid State Research Laboratory, Physics Department, Allahabad University®,
(Received February 21, 1970)

Calculations of compression at various pressures have been done in TIBr, single crystal
spinel (MgO. 2.6 Al,0,), fused quartz, alpha iron and MnSb using the polynomial equations and
the Murnaghan logarithmic equation. Comparison, whereever possible, have been made with the
experimental results. It is found that the logarithmic equation holds well for explaining the
pressure dependence of compression even at high pressures. In the evaluation of compression,
all the parameters required were calculated from low pressure ultrasonic data.

Iniroduction

Generally in order to measure the compression in solids thrée types of experimental
techniques are used: 1) measurement of lattice constants at different pressures, 2) measure-
ment of volume change, and 3) the use of shock waves. However, it was found that the
methods reliable at low pressures are not quite suitable at high pressures. Measurements
of the ultrasonic velocity, the bulk modulus and their derivatives can be done with great
precision but their pressures range is limited. However, the ultrasonic data at low pressures
have been succesfully used to evaluate compression at high pressures [1]. The agreement
between the calculated and experimental compression values was found to be quite satisfactory
for some of the compressible and incompressible solids.

In the present paper, we have calculated and compared the compression values with
the experimental ones for the solids TIBr, single crystal spinel (MgO.2.6A1,0,), fused
quartz, alpha iron and MnSb. |

Procedure

The method for calculating the comioression involves mainly the assumption that the
bulk modulus is a linear function of pressure and that the second and higher derivatives
of the bulk modulus are negligibly small. Expanding the volume ¥ in MacLaurin’s series
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in powers of P and expressing the derivatives of ¥ in terms of the derivatives of B it is
possible to arrive at the following polynomial equations [1]:
The quartic polynomial:

(V1Vo) = 1—=(PBy) +m(P|Bo)2—n(P|By)*-+q(P|By)* )
and the cubic polynomial:
(V[Ve) = 1—(P[Bg) +m(P|Bo)2—n(P[B,)? @)
where,
m == (14+B)
n= % (1+3By+2Bg?)

and
' 1
9= gz (1+6Bo+11B5*+6B¢").

The primes indicate (d/dP).
- In 1944 Murnaghan [2] proposed a formula for evaluating compression at various
pressures:

P = (Bo/By)[(Vo/ V' )%—1]- ®)

This is commonly known as the: Murnaghan logarithmic equation which can be further
written as:

In (VofV) = (1/B) In [By(P[By) +1]. )

This equation has been successful in describing the pressure variation of compression in
some solids. However, equation (4) describes the compression better than the polynomials
at high pressures, but at modest pressures the polynomials do agree very well with the
Murnaghan’s exponential equation and the experimental resulfs.

Results and conclusions

In view of the success of the equations (1) and (4) in predicting compression for some
compounds, it is proposed to check their validity in TIBr, single crystal spinel, quartz,
alpha iron and MnSb. The necessary data for the evaluation of m,  and ¢ have been taken
from the literature [3-7].

Figures 1 and 2 show the pressure variation of compression for TIBr as estimated from
equations (1), (2) and (4). The solid line in figure 1 is the result of calculations with equation
(4) using the value of By evaluated from equation (27) of reference [1]. The dashed line is
due to the value of By according to the relation given by Dugdale and MacDonald [8]:

By =2y+1.
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Fig. 1. Compression for TIBr. See text for solid and dashed lines
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Fig. 2. Compression for TIBr. Comparison of logarithmic and polynomial equations. Inset: A comparison between
the polynomials (solid line) and V]V, calculated from Eq. 17 of reference [3] in the experimental range
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Fig. 3. Compression for single crystal spinel, MgO. 2.6 A1,0;.
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Fig. 4. Compression for fused quartz; Experimental points: O — P. W. Bridgman, Collected experi-
mental papers, Vol. 1-7, Harward University Press (1964); Proc. Amer. Acad. Sci., 76,55 (1948). X — Schock
wave data: J. Wackerle, J. 4ppl. Phys., 33, 922 (1962).

Figure (2) shows a comparison between the logarithmic equation and the polynomials.
.The inset shows a comparison between the polynomials (solid line) and the values of com-
“pression calculated according to the equation:

(V|Vy) = 1—EP+FP?

where E and F are constants determined experimentally [3].
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Fig. 5. Compression for alpha iron; Experimental i)dints: O = T. Takahashi, and W. A., Basset, Science,
145, 483 (1964). [1—P. W. Bridgman, Proc. Amer. Acad. Sci. 76, 55 (1948). X — D. Bancroft,
E. L. Peterson, S. Minshall, J. 4dppl. Phys. 27, 291 (1956)
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Fig. 6. Pressure variation of compression of MnSh
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The values of compression calculated from equations (1), (2) and (4) for single crystal
spinel, fused quartz and alpha iron are shown in figures 3 to 5. Experimental points have
also been plotted for quartzand alpha iron. The pressure variation of compression in MnSh [7]
corresponds to the Murnaghan equation with By = 470 Kbars and By =4 for the best
fit. The values of m, n anél g can thus be evaluated Wthh in turn, are used to calculate
the pressure dependence of compression by quartic and cubic polynomials. The results
are shown in Figure 6. :
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Fig. 7. Variation of B, with compression for MuSb: ———calculated from Murnaghan’s equation, ——— cal-
culated from Birch’s equation of state

That the logaritmic equation gives the best result in all the solids, suggests that the
polynomials depart noticeably from the real value at somewhat higher pressures. It turns
out that the pressure P’ where the cubic is barely within 1% of the logatrihmic curve, is

calculated by

, 1l m
P = ol B,.

The value of P’ is important to the experimenters who fit an arbitrary cubic curve to raw

compression data, because otherwise the curve at low pressures will give an incorrect value’

of the compressibility. The calculated walues of P’ is shown in the figures by an arrow.

The values of m, n and ¢ used in the evaluation are shown in Table I.

We now make a comparison of the logarithmic equation with Birch’s equation of state [9]
for the special case By = 4 which is true for the case of MnSb. The values of P/By for
various values of V]V, have been tabled [1]: As the values of P can be determined from
figure 2 of reference [7], the variation of By with V]V can now be evaluated and is shown in
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TABLE I
Parameters used in the evaluation of compression
Solid m n q

TIBr 421 22.28 129.50
Single Crystal

spinel ) 2.59 8.11 27.54
Alpha iron 3.10 11.80 48.83
Fused quartz 3.58 15.90 77.40
MuSh 2.50 7.50 24.40

Figure 7. The use of logarithmic and Birch’s equation of state both give a variation of B,
with compression quite far from the used value of 470 Kbars.

In all the cases the superiorily of Murnaghan’s equation over the cubic and quartic
polynomials is well demonstrated throughout the pressure range. However, the polynomials
are quite accurate in predicting the compression at modest pressures and agree with the -
logarithmic equation up to pressure P’. They are also useful for incompressible solids
up to pressures of 300 Kbars. The main advantage of the method is that the compression
at high pressures are evaluated without using any arbitrary parameters or curve-fitting.
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