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SYMMETRY CONDITIONS IMPOSED ON THE HAMILTONIAN OF
BILINEAR SPIN INTERACTIONS IN CRYSTALS
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A method of constructing the Hamiltonian of bilinear interactions between magnetic point
pairs in the most general form permitted by a crystallographic symmetry is proposed. Considera-
tions are presented for an arbitrary space group and arbitrary ordering of magnetic points. As
an example, interactions between nearest neighbours in the hep lattice are discussed and, in
particular, a form of anti-symmetric interactions is derived.

1. Introduction

To describe the properties of magnetic crystals in which un-paired electrons occur on
inner atomic shells, the generalized Heisenberg model [1] can be used. In this model,
the real crystal is replaced by a lattice of magnetic moments (“‘spins”) localized at its sites
and mutually interacting pairwise. The interaction is rendered analytically by a spin Hamil-
tonian constructed, in general, as a quadratic form of spin operators attached to the sites
and involving phenomenological force parameters, which have to be determined from an
appropriate theory of microscopic interactions in the crystal. Because of the high complexity
of these interactions, such parameters have not hitherto been determined @ priori, neither
has their order of magnitude been correctly predicted. In this situation data of magnetic
measurements as well as of neutron magnetic scattering experiments are usually explained
on the base of some assumed spin Hamiltonian, and the force constants are determined from
the condition of optimal adjustment of the experimental data to the theory based on this
Hamiltonian.

It is usually assumed that an essential role belongs only to interactions between rather
near neighbours. With respect to the crystal symmetry, the number of independent force
parameters is then small and it is worth while to attempt to determine all of them from the
experimental data without any further model simplifications. In the present paper, a general
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method of determining the interaction parameters permitted by a crystal symmetry is
proposed. To this aim, we shall give a receipt for constructing the most general form of the
Hamiltonian in the bilinear interaction approximation permitted by the crystal space group
symmetry assuming a prescribed ordering of magnetic points in the chemical unit cell.
The Hamiltonian can be used as a tool in analyzing experimental data with the purpose of
determining essential magnetic interactions.

In Section 2, we shall “establish a convention for labelling points and pairs of points
in a crystal permitting the full use of group theory methods. In further Sections, we shall
formulate analytically a condition for the invariance of the Hamiltonian with respect to the
space group operators and, moreover, shall introduce a general form of its invariant expan-
sion. Finally we shall consider, as an example, the hcp laitice.

2. Convention of labelling pairs of sites in a crystal

Let G be the space group of the crystal. We denote its elements as
o= RONEEN) M

where R[¥] is a rotation or a rotation-inversion with a fixed point 7;

1 is a non-integer translation related with R and -dependent upon ¥;

N = n; @, +n,0,- 1,0, is an integer translation, a,,d,, a, stand for the basic vectors,
and ny, ny, ny are arbitrary integers. The elements g € G are products of the rotations
R[r] and the translations #+m, the rotation having to be performed first. The set
{Ry,..., R,;} = F forms a point group, referred to as the crystallographic class. The set
of all points obtained from an arbitrary lattice site by way of all integer translations contained
in the space group is termed a chemical sublattice, whereas the set of all chemical sublattices
obtained with the aid of arbitrary elements g € G is termed a simple crystal [2]. A real
crystal consists of at least one simple crystal. Thus, an arbitrary crystal site is determined
by a vector r,,,,, where the index w labels the simple crystals, y =1, 2, ..., g, extending
over crystallographically equivalent chemical sublattices, whereas 1 stands for the Wigner-
Seitz unit cells. The set of all elements of a space group G which do not change the position
of the site wln i. e. elements of the form

RY = {(R[r,,,]I00, A=L2..n, @
is a point group of this site denoted as U[wln]. The group F can be treatéd as the sum of

left cosets of the group Ulwln]:
9y
F ~ U R/ Ulwln] (3)
r=1
where R;" is an element of the space group carrying over a site wln into a site wyn, i. e.

R 0IP10 =Py @

wln wrn
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The sum in Eq. (3) is dealt with as a sum of sets, whereas the symbol ~ means a one-to-one
equivalence which goes over into an equality when translations are neglected (i. e. at g - R).
Obviously, the set {R;/} is not uniquely determined by (4). One such set is arbitrarily
chosen with the limitation that Ry = E where E is the unit element. For an arbitrary simple
crystal one obtains

Ny Qo = nF" (5}

For n,, =1 site positions in a simple crystal are termed general positions, whereas in the
remaining cases we speak of distinct special positions.

For our further considerations it seems useful to introduce the notion of coordination
sphere. The 1-th coordination sphere of a site wyh, to be referred to as the central site, is
the set of all sites equally distant from it:

]/rw'v'n’_ wvnl =" [=12,. (6)
with
rl+1 > rl. (7)
Obviously, if the set {w’ »" ®'} is a coordination sphere of a site wln then, by (4), the set
Yoy = {R;Vl“}rw’v’n’ (8)

is a coordination sphere of a site wyn. Sites of a coordination sphere of a site wyn will be
labelled by means of certain elements of the point group of the central site Uwyn]. Elemenis
of this group transform arbitrary sites of an arbitrary coordination sphere [ into sites of the
same coordination sphere. Let us define a simple sphere as a set of sites in which an arbitrary
site can be carried over into other arbitrary sites of this set by means of the operations
RY € Ulwln]. The notion of the simple sphere is analogous to that of the simple crystal.
Cases when one coordination sphere contains more than one simple sphere are rather rare
and can be eliminated by a slight change of the mutual position of two distinct simple
crystals without changing the numbers g, for w.# w’, or by a slight change of the Bravais
lattice parameters without a change of the space group for w = w’. Sometimes, however,
this difficulty cannot be eliminated without transgressing the crystal symmetry (e.g. the
eighth coordination sphere of the simple cubic lattice consists of two simple spheres).
Distinct simple spheres contained in one coordination sphere will be labelled by an index v.

Let us take into consideration the v-th simple sphere belonging to the 1-th coordination

wln

sphere of the central site wlm. Site positions of this sphere are determined by o}.",

%x=12,..Z7Z5. Let us furthermore introduce the group
Ulwln/ll] = Ulwln] q Ull] 9)

where the symbol M denotes an intersection of sets i.e. a common part of sets. It can be
one of the groups C,, or one of their subgroups. The group U[wln] can be written as a sum
of left cosets of the group Ulwln/lvl]:

Ulwln] = URXU[wln/lv]] (10)
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with (see: Fig. 1)

{RY |a} oy = oo (11)
R} o = of® 1=12, ... ny, (12)
nwllvzz = Ty (13)

We choose arbitrarily a set X [wln/ll] of elements RY with the limitation that R¥ = F.
As seen,

Ulwlinjlox] = R¥ Ulwln/ll](R¥)-1. (14)

lvae vl

wou wyu
glvx QIVI
wou
N
{Ryr011cH

wiv lvaxe

Qu

1
Fig. 1. Labelling pairs of sites in a crystal

The labelling of sites of the coordination sphere of the site wyn is determined by the elements
of the set A [wln/lvl] (see: Fig. 1) in accordance with the formula:

R oy = oo (15)
This is obviously an equivalent of Eq. (4).
Evidently,
Ulwyn] = R Ulwln)(R})-? (16)
and
Ulwyn/lvx] = R Ulwln|lvs](RY ). (17)

An arbitrary element R, € F can be written uniquely in the form
R,=R)RYRY, RVE 4., RY €A winjll),
RY € Ulwln/ivl). (18)
Thus, Eqs (11), (12) and (15) fully determine the action of the rotation elements of the
space group on pairs of sites. We have
(R Jajeimm — (R} (RY |0 YR o hoidn

= {R |} {R |} {RT s {ofei” = ol (19)
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The action of translations on pairs of sites is given simply by

{Eln}oin™ = eloa ™" (20)

Ty

We thus have determined the rules for the labelling of site pairs of a crystal lattice by means
certain subsets of the space group G as well as the action of an arbitrary element g € G

on these pairs.

3. Condition for invariance of the Hamiltonian with respect to the symmetry operations of
the space group

The Hamiltonian of bilinear spin interactions can be written in general as:

H= Z Z Z Q:u‘:’n;lvx S:Jvn Sz:,rm;lvu (21)

wrn lox @@

where
a=0, +1
1
Sl = —i— (S*FiS) (22)
S0 = §*%

are the spin operator components of appropriate sites, whereas the tensor coefficients Q
are force parameters. Let us consider the limitations imposed on the expansion (21) by the

lattice symmetry.
Consider the operator vector field:

S(’I") = 2 E ezszvna(’r—rwvn) (23)

wrn o
where e ;= F 1/Vé—(exj:iey , €9 = €,3 €, €,, €, are unit axial vectors in the Carthesian
system; (1) is Dirac’s delta function. Under an arbitrary g € G, this field transforms accord-
ing to the formula:

T(g)S(r) = gSlg~')

= 25 0" (g)ey 23 Samdg7I 10 (24)
a0 wn

where 6%(g) are matrix elements of the axial vector representation in the basis e, The
relation (24) defines the representation T of the group G in the space L, spanned by the
basis e, 6(r—r,,,). As seen, the space L can be treated as the tensor product of two spaces

L=4®4 (25)
where A is the space spanned by the normalized, orthogonal functions:
Ogun(®) = 8(r—T5,,) (26)

whereas A is defined by the basis e, @ = 0, +1. Respectively, the reepresentation T is
a simple product

T=PQ®ao @7)
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where P is the representation acting in the space A defined as

P (g)awvn(/r) = 6w1m 8 IT) g[wvn]( ) (28)

whereas o is the usual axial vector representation acting in the space A. It should be noted
that, in accordance with (23) and (24), the operators S

e P1ay the role of coordinates'in the

space L.
An arbitrary quadratic form in the shape of Eq. (21) transforms according to the represen-
tation T®. Tt can be said that this representation acts in the space,

L® = [ ®L (29)
where

=44 . (30)

is the space corresponding to sites of coordination spheres. The condition for the invariance
of the Hamiltonian with respect to the symmetry operations is thus equivalent to the require-
ment that the expansion (21) shall be an element of the subspace L® C L® transforming
according to the unit representation of the group G. Our problem reduces to finding all
the linear independent invariants of the space group in L i.e. to finding a basis in LY.

4. Decomposition of L® into irreducible subspaces and a classification of the invariants
Let us rewrite Eq. (29) in the following form:
=A@ 4)® (4 ® 4. : (31)

To find a basis in L{®, we first have to determine irreducible bases in the distinct spaces
occurring in the product (31). In order to render the procedure more clear, we shall carry
it out in three steps: (a) —a decomposition of the positional space (A ® A’) into subspaces
irreducible with respect to the crystal space group; (b) — a decomposition of the space of
free spin vectors (4 ® A') according to the irreducible representations conjugate to the
representations of the positional space; (c) — a classification of the invariants in L®,

(2) Decomposition of the space A ® A

It is readily noted that, an account of the condltlon for the invariance with respect to
translations, it is sufficient for determining L? to consider only a subspace ¥ C A ® A"

described by the basis
i |1] = X temtrize

where
Z,chn(r) Ll 6[1' (/rlwc wvn)] . (32)

In accordance with (28), the representation P can be defined by acting on the indices of the
basis functions instead of acting on their argument and therefore we shall henceforth not
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consider their dependence on 7. The action of the representation P® on the elements (32)
is given by

roes | ] = porieems 7] = [ ] @)

It results that the representation P®(g) in the space ¥ is determined only by the rotational
elements R. Hence, instead of a representation of the space group G in the space 4 ® A’,
we shall consider only some representation of the crystal class F'in the space defined by (33).

The space ¥ decomposes in a natural way into subspaces invariant under P® according
to the formula:

=3 0w (34)

wly.

where ¥}, is a subspace with elements of the basis (32) having fixed w, [, v. Each subspace

& can be further decomposed into subspaces irreducible with respect to the group F.

The decomposition is given by:
=2 2 0%; (35)
vy P

PR = 3 mulog®) (36)
7

where v is the y-th irreducible representation-of the group Fj;

§=12,.. “”” labels the irreducible subspaces transforming according to the represen-
tation 1:(");

P@® is the representation of the group F induced by P® in the space ¥Z,

w 1
mi = Z 13 (Ra) gato(Re) 37)

2,(R,) is the character of the irreducible representation y; x,,(R,) is the character of the
representation P3”. It is easily shown that the character y,,(R,) is equal to the num-
ber of the vectors Q%’;" which, at fixed w, 1, [, v, do not change their positions under the
operator R_. The bases of the irreducible representations in the spaces P2*® can be
written in the following form:

o = DT H :[0] (38)

where Y327? are expansion coefficients, whereas y labels the basis functions. These coefficients
can be determined by means of the well-known projection procedure (see: e.g. [3]), by the

operators:

Ivu =L Z (y)*(Rn) (2)w(Rn) (39)
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where s, is the dimension of the irreducible representation T, whereas '55}2 are matrix
elements of the representation. The basis (32) is real, and therefore we can choose the irre-
ducible bases (38) in such a way that

& for complex T
P

lop
(P/)* = (40)
@%”3 for real 7

where y is the index of the representation conjugate to the representation A2

(b) Decomposition of the space 4 @ 4

Where decomposing the space 4 ® A’ into irreducible subspaces, one can first consider
the representation Di of the full orthogonal group O(3) ® I, instead of the representation o
of the point group F. The group F is a subgroup of O(3) ® I. The space 4 ® 4’ splits into
subspaces irreducible with respect to O(3) ® I according to the formula:

A@ A = A2 @ AV @ A©® (41)
where A, 4 =0, 1, 2 transforms according to the representation D} of the group O(3) ® J.
The bases /4, § = —4, ..., 4 in the spaces A can be written, in general, as follows:
Z ﬁ,az o ; (4'2)

ata'=

In our further calculations we shall assume the following forms:

1 , , p
fo= ﬁ (e—ye1—egeo+esel1) (42a)
1 1 ’ 1
— ﬁ (6611 —e—qe1) (42b)
1 1 ’ 14
Sri=7F ) (ege’t1—e1¢0) (42c)
o L :
f() = 53 (6_161+616—1+26060) (42d)
2 L ! g
fhy= V_é— (e1€0+€geit1) . (42e)

The spaces A® and A® are in general reducible with respect to the group F. The decompo-
sition into irreducible subspages can be written in this case as follows:

A =T e 4F (43)
‘yﬂ

-~

where & = 1,2, ..., m# labels the irreducible subspaces transforming according to the
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irreducible representation conjugate to 7™ (dueto the realness of the representation D one

. 4 . .
obtains m‘; = m5). Bases in these subspaces can be written as:

ne 4 ~
B~ 3 s, )
The expansion coefficients b<‘4)i‘; are obtained in the projection procedure by means of the
operators:
Bi= 1) tA(Ra)o(Rr). (45)
=1

The formula (45) differs from (39) by the non-conjugateness of 7%}, as results by projecting
on the conjugate representations. Hence, the basis functions (44) are contravariant to

QD},‘,’,’;’?. Due to the realness of the representation o, the values B(A)’;? satisfy’ relations analo-

gous to (40).

¢) Classification of the invariants of spin pairs
From group representation theory, one obtains that the vectors

M(A)yw Z B(A)w? @wrﬂ inw (46)

form a basis in the space L®. All the searched spin invariants are linear combinations of
the expressions:

(o5 _ 2 o Zh 4 < *wyd 754 *(A) 5

¥ wy y

Iw"v Z Z E Z Ylvu d*,mb Z wyn lwt (4‘7)*
u=1r=1 %=1 f=—A4 a,a’=—1

All distict I’s given by (47) are linearly independent, and thus the indices 4, w, I, v, .
Ny, w, 1, v), 9(y) can be used for a complete classification of the invariants. Moreover, one:
has to keep in mind that, if ¢ =0 or 9§ =0, then I =0.

The problem of finding all invariants constructed from spin operator components of
pairs of crystal-sites is equivalent to decomposing the direct quadratic product of the axial
vector space 4 ® A’ into subspaces irreducible with respect to the crystallographic class F*
and finding the irreducible bases in subspaces of the considered spaces ¥}, transforming
according to those representations of the group F which are contained in the direct quadratic
product of the vector representation. Once we know these decompositions, we construct.
the required invariants according to the formula (47).

5. Possible forms of the spin Hamiltonian

The spin Hamiltonian has to be a Hermitian operator, constructed from the invariants.
(47) and real constants playing the role of phenomenological parameters. Since to the:
mutually conjugate basis elements (46) there correspond according to (40) mutually hermi-



80

tian-adjoint spin invariants (47), the general form of our Hamiltonian is
H = Z Q(A)w‘f‘ﬂ[(A)vﬂz?_I_
3 Zu Q(A)yq‘h? I(A)yﬂz? + I(A)-y«?z‘)) (4*8)

where summation is over the set of ir "ices: {4, y, ¥, 5, w, I, v} whereas the sum 2’ extends
over the real representations and 2’ over the complex ones. The values Q are phenomenolo-
gical parameters allowed by the symmetry which, for a specific material, have to be determined
by adjustment to the experimental data. These quantities are accessible to interpretation
within the framework of microscopic theories of magnetism for the crystal under considera-
tion. The maximum number of parameters related with a given coordination sphere amounts to

NE = (Z’mm%Z” mf) Y (19)
14 b4 A

Let us now consider some particular cases of the Hamiltonian (48). For 4 = 0, strictly

one invariant corresponds to every space ¥ :
1
Dot = (Ziog) ™" D% oLl (50)

v%

The appropriate invariant of the spin operators

JO —
wlv Z Z wrn Slzm (51)
n V%
describes the normal isotropic interaction attributed mainly to exchange forces. As seen,
the “‘exchange integral” Q%! can depend on the type of interacting sites and their distances
as well as on the crystallographic positions of chemically equivalent and equidistant pairs
of interacting sites. Such interaction is allowed by symmetry in arbitrary crystals, between
arbitrary pairs of sites.
For the case 4 = 1, we have so-called Dzyaloshinsky-Moriya antisymmetric interaction

i.e. interaction described by the. Hamiltonian

2 D, o wm>< Slzm) (52)

wrn
lox

Such interaction, for a given space ¥7},, is possible only if the decomposition of P into
irreducible representations of the group F contains representations occurring simultaneously
in the axial vector representation. Thus, the symmetry imposes limitations on the occurrence
of this interaction as well as on the direction of the vector parameter D.

The case A = 2 contains various anisotropic symmetric interactions i.e. interactions
described by traceless tensors of the second order. A particular case consists in the so-called
dipolar or pseudodipolar interaction, of the form

Hdlp == Z el'un[ wyn Slm wvn wyn P%:") (Slvx : 9;::’;4”)] R (53)

U l'un

lox
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Sometimes, in describing the properties of magnetics one assumes, following Van Vleck [4],
a model in which the energy of the symmetric anisotropic interactions is given in the bilinear
approximation entirely by (53). However, from the procedure used in obtaining the Hamil-
tonian, it is seen that the anisotropic terms can possess a structure different from that of
(53) and, moreover, that the complete description of the anisotropy requires the introduction
of a larger number of parameters. It is to be hoped that sufficiently precise neutronographic
and magnetic measurements will permit to individuate distinct forms of the anisotropy and
to determine the values of the corresponding parameters.

u;

Us

'//
/- - u
, ~ 5
\\ |
Uz

Fig. 2. Ordering of the horizontal two-fold axes of the group Dg,

The literature often introduces phenomenologically a so-called monaxial anisotropy,
described by

H,y = 2} K SinShon (54)

wyn

lox
being a superposition of the cases 4 = 0 and 4 = 2. When one assumes that K does not
depend on v, %, this intergction corresponds to a vector (50) in the space ¥, and SZ,.S%.
has to transform according to the unit representation of the group F. This is possible for
point groups with a distinguished axis z i.e. for all crystallographical groups except the cubic

ones.

6. An example: the hep lattice

To illustrate the method we shall now obtain all possible interactions between pairs
of nearest neighbours for the hep lattice. This lattice obviously forms a simple crystal and,
thus, the index w can be omitted. In this case we have in the Schoenfliess notation:

F = Dy, = {E, Cg}, U[l, n] = U[2, n] = D,, (55)

where the indices » = 1, 2 correspond to sublattices 4 and B, respectively. The last two
equalities of (55) now have the meaning of an isomorphism. The first coordination sphere
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of any site consists of two simple spheres (we consider the hep lattice as a lattice with ideal
ratio ¢/a); the sphere v = 1 consists of sites of the same sublattice as the central site, whereas
the sphere v = 2 consists of sites of the other sublattice. Fig. 2 shows the chosen ordering of
two-fold horizontal axes of the group D, whereas Fig. 3 shows the manner of labelling the
sites of the first coordination sphere according to the convention described in Sec. 2. The

sets Ulv[lvx] and #'[v/lvx] are given by
U(1/1,1,1) = {E, o,},
U[1/17 2,1] = {E’ o5}

AL, 1, 1] = {E, C,, Cg, Uy, Us, Ug}

%[1/19 2’,1] = {Ea Cs’ Cg’ Op» Sa’ S3_1}

6
o

40 05

c)

7
o}

§o

20 03

&
NO

a)

)

Fig. 3. Labelling the sites of the first coordination sphere @) ¥=1,v=1, ) v=1, v=2,¢c) v=2, v= 1
d) v=2,v=2. In the cases @) and b) the central site is situated in the plane of sites of the sphere; whereas

in the cases ¢) and d) at half the distance between the planes 123 (z > 0) and 456 (z < 0)

The decomposition of respective representations into irreducible representations of the

group Dg, is of the following form (compare: (360) and (43)):

Df =TI
Df =If @I

Df =T{ @I @I

P, =Iftelfe2lfeol;ely @2l

Pp=Itoljelieolfol,ol; ey ®l,

67
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TABLE I

—\ __1} e — — — - —
\ [%] 1 1 1 1 1 1 2 2 2 2 2 2
v 9N 1 | 2 | 3 | 4|5 6| 12|38 | 4] 5|6
BN .
i

111 1 1 1 1 1 1 1 1 1 1 1 1

211 1 1 1 —1 —1 —1 1 1 1 —1 1 —1

6_’11 1 |~ | o] 0 0 0 | @ 1 |—o | o 0 0

e 0 0 0 |—o | 1 wzl 0 I' 0 0 o | —o 1

+1 |

6_’21 o | o] o0 |1 || e| 0| 0| 0| o 1|

6,2

1 _ 2 5 -

+1 w 1 [ 0 0 0 w w 1 0 0 0

_ ‘ TABLE II
Bases of irreducible representations in the space ¥, of the hep lattice (umnormalized)
\\(p [:] 1 v 1|2 2| 2| 2| 2|2
v #N Lz 34|56 |1 |2]|3 |45 |6
RN |

1,1 | | ' ‘

i 1 1 1 1 | 1| 1 1 1 1 1 1 1

5,1 - , .

1 1 0w | —w | -1 |- 4o | +w II —1 | —w? | —o —1 w?

5,1 f A : ' |

1 1 — w? | —1 o | —o| —e?| -1 | o w? 1 —w

| |

6,1 ‘

_’1 1 w? | —o 1 w? ! —o ] —w | 1 | o | —o 1 w?

6,1 | '

1 1 | —ow w? 1 —w : w? w? | 1 |—-o o? 1 —

where the notations of irreducible representations are those of the Tables of Koster et al. [5].
The bases (45) of irreducible representations in the spaces A can be chosen in the form:

B(0)1+ :foo
B — 7 B — L,

BOT £ BOM — 2 BOS = f1, -

whereas the bases in the spaces ¥;; and ¥, contravariant with respect to the bases (58),
are determined by the coefficients Y (38) shown respectively in Tables I and IL.* Resorting

* The bases determined in this way are not real; this leads to a constant complex factor in (47) which can
be omitted.
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to these Tables as well as to Eqs (57), (58) and (42), the particular invariants (47) can be
easily obtained. We shall not adduce here the specific forms of all these invariants as this
would require too much printing space.

As an example, we shall consider in more detail the invariant relating to the space
i ® Af,,lf, ie. A=1,9v=5+, 1= 1 0v=2 It can be written concisely as:

1~ 3 SISt SIS0~ 850 S1 - 1555 800> 5004
‘/g e Qf z 2 Q% 1 'z 2 QY
15 (S§Sg° —S§35") + 5~ (S455° =519 | —
—[S5% = 537 — [SF— S§, 3™ — S5 + [SF - 5%, S5 — g™ +
I 3 ! i 1 4 7
+ [_ V?— (staz _sta*x) + 9 (stsz - stsy)] -

LS > Sy [S > S8, 5% > S{] — [S7 > 5§, S > s;“]} (59)

where, for abbreviation, we have put S%, = S% 9% > SzS'%. This invariant describes the
Dzyaloshinsky-Moriya antisymmetric interaction between nearest neighbours belonging to
the two sublattices. On comparing (59) with (52), we conclude that

Di,s,. = DE(v, %) (1—e.e) - 015, (60)

where, D is an arbitrary real constant; &(», ) = F1isa phase factor defined by (59). A similar
discussion for V3 @ AF) leads to the following result:

Dy, =D&, x)e, (61)

As seen, the Dzyaloshinsky-Moriya vector for interaction between nearest neighbours of
the same sublattice is parallel, but in the case of distinct sublattices, perpendicular to the
hexagonal axis.

The invariants related with P4t ® A® and with P35 ® A describe isotropic inter-
action of the form (51). It should be noted that the right *“‘exchange integrals” Jy; and J;; can
differ even in the case when the distances between the respective sites are equal. Finally,
the invariant related to ¥3,'® Agﬂ, Pt Agﬂ, i ® A(ﬁl, SRR
P ® 48, P ® AP describe symmetric anisotropy couplings.

In the example considered here, the number of linearly independent invariants, according
to (49), amounts to:

Nj; =5, Ny =5, Ny = Ny +Nyy = 10. (62)

Thus, in order to obtain the complete description of the interactions, one has to determine
ten independent force constants. In general, interactions between pairs of sites in the hep
lattice are treated in the bilinear approximation with the aid of three parameters: the iso-
tropic exchange integrals J;; and Jy,, as well as a single monaxial anisotropy constant. Such
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a treatment amounts to neglecting the antisymmetric interactions as well as to an arbitrary
simplification of the form of the symmetric anisotropy interactions. Thus, in heavy rare
earth metals which crystallize in the hep structure and exhibit strong, and moreover highly
complicated magnetic anisotropies (see: e.g. [0]), none of these parameters seems a priori
negligible.

The autor is much indebted to Docent Dr L. Kowalewski for suggesting the theme of
this paper and for critically reading the manuscript.
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