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APPROACH TO THE QUANTUM MECHANICAL FOUR-BODY BOUND-
-STATE PROBLEM. I. DISTINGUISHABLE PARTICKLES

By E. Macyar:
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The aim of the present paper is to sketch how an earlier approach to the three-body bound-
-state problem, developed by Eyges and Jasperse and Friedman, may be generalized to the N-body
case, and to develop it in detail for a system of four distinguishable particles, having in view
that this case, in contrast to the three-body one, obviously reflects the algorithm of the proposed:
generalization.

1. Introduction

In the last years much attention has been paid to the few-particle quantum systems,
due to the broad range of physical effects introduced by the presence of more than two
particles.

For the case of a bound-state system of three identical particles, Eyges has shown the
opportunity of writing the wave function as a sum of three parts, called “two-body orbitals”
or “partialwavefunctions™, [1]. Extending this approach, Jasperse and Friedman have shown
in their comprehensive paper [2] how solutions for a bound-state system of three arbitrary
particles may be constructed which are eigenstates of a complete set of commuting operators.
The method has been applied with success by these authors to the helium-like atom and
has led to a new technique for calculating bound-state energies for the three-body systems [2].

The essential starting point of the papers [1] and [2] consists in separating off the center-
-of-mass motion of the three-body system by using the so called Jacobi coordinates:

R = (m,-r,-—l-mjrj+mkrk)(mi+mj+mk)‘1
Ty =115 O = Tp—(ma+may)(m;+m)1 . (0
and in treating on an equal footing all the three sets of these (linearly dependent !) coordinates,
generated by (i, j, k) = cycl (1, 2, 3), [2] or by the restriction i <<J> [1]. In this way one
associates to each pair-potential V;(ry) a particular Jacobi frame and a “two-body orbital”

9> @4)- The main advantage of this method is that the “orbital” functions have a rapidly
convergent partial wave expansion and that the formalism is highly symmetrical.
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The purpose of the present paper is to sketch, how the method initiated by Eyges may
be generalized to the N-body case, and to develop it in detail for the bound-state system of
four distinguishable particles governed by the Hamiltonian

4
H= §1 (P?/2mi) + Z V;‘j(lri—rj)l)' 2

<]

The generalization of the Jacobi coordinates may be performed without any difficulty.
They arise from a well-known CM-motion separation procedure, applicable to any several
particle system whenever the interaction is invariant under an overall translation of all
particles [3]. In spite of the simplicity of this procedure, the extension of the formalism to
the N-body case (IV > 3) is not trivial. The reason is the following. The above quoted step
by step reduction to the center-of-mass of the assembly of distinguishable particles can
be performed in N! possible ways, and this leads to N! (linearly dependent!) sets of Jacobi
coordinates, a number which exceeds by far that of the (2% = N(N—1)/2 pair-potentials.
But, while in the three-body case we can remove the redundant Jacobi sets by the restriction
i < j, or by that rather symmetrical one (@ J, k) = cyel (1, 2, 3), in the N-body case (N > 3)
these rules are not sufficient to pick out the necessary number of C3 sets. Therefore, there
is a need to invent a rule of selecting indices, generally applicable and at the same time
easy to handle. On the other hand, the foregoing of the cyclical permutation rule led to
the loss of a familiar symmetry. This circumstance adds a further inconvenience to the
troubles caused by the higher dimensionality of the problem.

The organization of the paper is as follows: In Sec. 2 we outline the kinematics for the
N-body case and establish the Schrodinger equation and the associated Green’s functions
for the four-body problem, using an appropriate number of Jacobi frames. In Sec. 3 we
perform the “‘two-body orbital” decomposition of the wave function, and deduce the set
of coupled integral equations for the four-body bound-state problem. The final section is
devoted to some considerations about the total angular momentum operator for four and N
distinguishable particles in the framework of the outlined formalism. The generalization
of the formalism to include identical particles, in order to make it applicable to the bound-
state systems such as the hydrogen molecule, a-particles, litium-like atoms, etc., is the
subject of a forthcoming paper.

9. Kinematics, Schrodinger equation and associated Green’s functions

By using the reduction procedure quoted in the preceeding section, we obtain for the
N-particle system the following Jacobi coordinates

N N
R = (21 m;, i) (2 mg,)

1
Fei = Y%
: -1 Pl
Dy i = m—(Zl minrin)(zl m;,) )
n= n=

E=34 .., N
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where iy, iy, ..., iy are the numbers 1,2, ..., N in an arbitrary order. For k& =N, the first
N—1indices of g are irrelevant and thus we denote the last coordinate by p,,. The relations
(3) provide V! generalized Jacobi frames. But, as it is shown in the Appendix, the simultaneous
restrictions

e [ i [ Bt e A, PO 4)

select out the necessary number of N(N—1)/2 Jacobi sets.
For our four-body system of distinguishable particles we use the mnotation

R = (my;+ M+, -+ myr)(m;+ m;—+my, -+ my)~t
T, =1
Qi = Tp— (M2 +mar;)(m;+m;) =1 5)
Pr = 1= (-t ) (- my+ ),

where i, j, k, I, are 1, 2, 3, 4 in such a way that { <Cj and k < I simultaneously. Hence, the
six Jacobi frames are defined by the following coordinates

1 (R, 75,9103, £4) 5 4. (B, 155,31, Py
2. (R, 1y, Q1320 (AR 5. (R, Ty, 941, P3)3 (6)
3. (R, 714, Q142 03)5 6. (B, 73, Q341 Po)-

These sets of coordinates, are, of course, not independent and linear relations between them
can be found. Indeed, after some simple algebra we get

r; =R+ i T, k q Ip
: ; i i : i itk M Is
m; m, m

'—’r‘.._ i — ..k__ Py l
m;+m; ) m;+m; +my k& ]\lp ’

R MM o ™
=R+ e Qe — 37 PO>
m;-+m;-+-m,
r =R+ 7]\]4—’; Pr 4

where M is the total mass of the system. Thus, every one of the six Jacobi sets may be
expressed as a function of the coordinates belonging to any one of them.

The momenta P, p, S, and 7, canonically conjugated to the coordinates R, 7y, q;;
and p;, respectively, may be obtained by one of the standard methods and they are

P = p;+p;+Pp D
p; = (mp;—mp;)(m;+m)™,
S = [(mytm)p—my(p; +p)(m; +my+my) =1, : ‘
my = [(my+m;--my)p—my(p,+P;+-p) | ML (8)
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The three kinds of reduced masses associated to the relative partlcles come out by a simple
inspection of Eqs (5) and (8). Their expressions are
my; = mimj(mi‘i“mj)"l, My, == (m;+m)my(m;+m;-+-mp) =1
ty = my(my+m-+my) M1 9)

In any one of the six Jacobi frames the Schréndinger equation is obtained by the well-
known canonical quantization rules. Thus in the case of a bound-state system of four
distinguishable particles, with the CM-motion spht oﬂ this equation reads

(“1] r”+181]quzjk +71V§_K2)T = ,UT'I/‘ (10)
Here,
Ur = Z vz](rz]) ’ ]TUI7 (].1)
i<j
v; = Mh=2Vy(r,;), K*= Mh=2E, FE=—|E|, (12)
oy = M2my,  Ba = M[2my, v,= M2u. (13)

We notice that within any Jacobi set, as a result of restrictions i < j, k < 1, the subscripts
of r;; fix the labels of the other two coordinates. For this we will always suppress the labels
of q and p and those of the related quantities whenever no confusion may arise.

Now we adjust Eyges’s approach to the dimensionality of our problem. Consider the
coordinates 7;,q, p which define the particle configuration in the CM-system. In other
words, we introduce a nine-dimensional configuration space defined by any one of the
six sets of internal Jacobi coordinates. A general point of this space will be represented by
a nine-component vector Q so that in general ¥ will be a function of Q. Each of the six equa-
tions included in (10) is equivalent to an integral equation for ¥ of the following form

Q) = —[ 6Q—Q)(Q) (@140, (14)

where the Green’s function G is the solution of the differential equation
(93V gy +BV g +yVe— K Gy(ryi—7ri q—4', p—') =
= —3(r;~r;y)8(q—q')d(p—p"); (15)

and it may be represented in integral forms

e I exp [I'k( z] U) +I;t(q q )—I—L)\(p P )]

Tt is easy to show that all the Green’s functions expressed in their proper Jacobi frames are
identical, i.e.

G 4 . ? - 7 G . 4 .\ : /‘ N !
12(T12—7""12, Q1081290 02— Ps) = G3a(P'34— V34, Q241 — Y3415 P2 P2)>

and so on.
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3. “Two-body orbital” decomposition . of the wave function. The basic set of coupled
integral equations

Following Eyges we write ¥ as a sum of six “‘two-body orbitals”.
Q) = 3 v,(Q), 17)
i l<]

where on the right-hand side for each “‘orbital” the proper Jacobi coordinates are used.
Each of these “orbitals” is attached to one of the pair-potentials by the definition

p;(Q) = — [ G;(Q—Q)v;(Q) V(Q")dQ’ (18)
in such a way that ¥(Q) given in (17) satisfies the Schrodinger equation (or the equivalent
integral equation (14)). Now, substituting Eq. (17) in the right-hand side of Eq. (18) we
get

V(1 q, @) = — f Gﬁ(ﬁy“"ﬁj,q—q;jk, P_P;)”ﬁ(rz{j)x
K 2 Yoo @+ 0¥ 0501 (19)
m<n

where 7, j, k, L =1, 2, 3, 4 so that i < j and & <C ! simultaneously. Therefore, (19) represent
a general set of six coupled integral equations which, if solved analytically, would give
a complete solution of the four body problem. Every equation embodied in (19) couples
each “‘two-body orbital” to itself and to the other five, while the integrations are performed
with respect to Jacobi coordinates related to the corresponding two-body potential. Therefore,
when passing to explicitate the right-hand side of Eq. (19) the “‘orbitals” 4,,.(1,...4’, 0')
will be written as functions of 'r;]-, quk, p;. Thus, afer some tedious algebra we get

v % 0) = — [ Cylry—rq—q's o—0")os(r) Iy (rics @', ) +
+F (1 q' 0)ldridg’de, (20)

where the symbols &;; are as follows
My , May .,
12 = VP13 (—1 ria—q’, m—12 Tz — —mlfq ' @ ) +

Mg LTI Mag v &
+ o3 (—*le—q,--7'12——q, e+
my m My

231
Myg mgiy ., Myg v My Mgy,
+1/)14 T2 — M q—p,— — M
my My Myg2 My ivifiy
Mg o Magg , Mgy +
e
Ui M H3
Mg Mgy , , My . MogMighty
Tm T, Ty * s M
My “ Mogy MolVifhy
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my

m.
%3 (_E"lq P’__ —‘u—34

Mgy

ql s Molty P’)
Mlu2lu4 ‘uzM s

— m,Mam,

Uty gy, Mgy
——— 9 LN 1'13 )
my U el

’ Mptsins ﬂzM
m
TP

0, Mygp mym,
- e Comg +-
an * mgMu, m3 q Mo, “ueM P)

, T3 MoMgity _, MMMy
Ha My T

7 M‘ 374 M3M )
14 T 14 ’ ’ m , ) ’
y ’lpﬂ 1 ( T 1‘] A _’_(_l R m_14 ""11___ ..__24 q P )

241

P m14 12 , m14 )
T <—— ra—q', — "
m,

Mgy ,
my+my

e e i I
mlM,ug p ’

e Ve "l e Mgty ’)
= - +

Ha 14 MM3 L q Mlu4 e

My ., MMy, Myy My Magmg\

g (7114""“— bl 0 oy Tt ('— + )q N

e M
i MaMa M, mgmy
s P’,-—ifrﬁ_ ollitgiliy . A p, .
" - Mgt © Mty
My _.r ’ Mg, Mol mg, .,
r —I— pp, M g ‘g M g
T s ( CI e - e z:
Myg9 mgmy
- P
Ma Ho M
m
142 ’ 23 s o8 v _ Mg 0
+%2 (—q 9,—1” =9 1y
m2m3m4
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m g i
P = Pra (“ —Brptq, - Erp— P’) "
My Myeg ey

Moy e’ s
ts | —=roz+q, —= rp— g, | +
ms Mg My
Mast | M) q —
M

. M3 o Ty J T
gy ( = Yoz — M/l q'_‘P s _m 23+
2 4 2

o myMgmy , Mgy,
— —— . i ) r . I —l_
P )7 L M, Uslhy 1 /’LSM e )

1

my 3
. m23 ’ ml m4 , , m2 3 m231 m34 nll
o\~ S T g, U T, B Ty T
mg M Mg 1 . a
TMag 1 Mog o MyMaMMy or _ Malta s
— — P, —— Taz— M, o M e *
meg Mo Halts i
m, e TS = =
o3l r s Ty 14 14 23
+91q (—q —@ —— Ta— q- b "2y
my my My ik Fs

L Mmymgmy Mgty ')

My, psM °

m i — —2q,9" ) +
Loy = ( 2 5 ro 24 ¥, 14 q’ :
o1 = V14 2 +q, u ’
my Myg9 4

m o MMM,
+ M g, — M ppy— 221 g
1/)12 < m2 24 q ml_l_mz . - Mmz;u3 q +P
Mo Mgy v 8 ')
— —= To— - N
pg 2 Mpgpty Mpy. g
N ( g MM g 71'24—% ( 241 ﬁ_l) o
- m—z M,u3 q—p my+my my M,us q

Moy, mymgmy Mgy,
B TP q— -+
e U A Mpuspy My i )

m mym Ty m el
N 24 gr o MM oy ,,_— +( 241+_34_1> '
‘/’34 ( my = My 7e My ~+-1my b my Mg .

MMMy gr 23 P’) +

M ¢ Mo v
— =, —=Ta— M M|
m, o Hatts Ha
m 1} m e ~
241 24 13 18 o 2
+p1s ( q—p B ru— —=g = e T
-~ my s my Mg
gy, Mgy :)
2
Musps * Mpy
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.m m m m,
Py = _Datpr g, — Y 1311y +
30 = Y13 —m3 q, S MgpigM 9 +e',
Mgy My MiglTly My,
Tl T Mg, U M ® )T
Mg HMolly Ha
Mgq ,.r ’ Mgy 134y g r Maq
=+ —= g+ T34 — ‘e, =Ty —
%4, - q, Myt T M e g

A

_ Mympiity ,  Mgilg p/) +-
M pops Mpyg

m,y 1y TMgay | Mgty ),
- /r —Cet oo e -
T ( M g 2"’”‘3 . e ( my - Mu, )q
Mog ., _ Mgy rhy— MyMolity _,  Mollly ,) .
g My Mgy My,
MMy m m Mgy
4. ’ /, 34 ,rr 341 2471 .
et ( My, mg+my Ha < - Mﬂz
Mo o Mgy - MyMoltty , Mgty pr>
My M3 Mo My
’ ’ 14 m ’ r 7
Ty |2 q —2 1y 2 g 2o, — My —
1 3 2 ;| 4
_ gy, Mgliy P,)
Mpsapes Mp,

As has been emphasized in the three-particle case, a convenient way to simplify the

set of integral equations, where some of the functions appear evaluated at transformed
““orbitals” and re-express the four-body

arguments, is to use the Fourier transforms of the
problem in a nine-dimensional momentum space. We define the Fourier transforms of the

“‘orbitals” by the relations

v;(1;, 9, 8) = (2m)
=5 —i(kr,
Dk, £, 2) = (27)* [ p;(r;;,q, p)e” @t Odrdgdp.
Now, in the right-hand side of Eq. (20) the Fouier transforms of the ‘“‘orbitals” and the
integral representation of G, are substituted. Then, performing the Fourier transformation

of the whole equation and using some standard tricks, the following equation emerges

' 27)~3 ’
Dy, t,2) = — a_.k2+ﬁ§52n_|)_y12+_7<2 f”ii(r"f) [Pk, &, 2)+
Y

T (&, 0] % dry; dle,
where 7 (K, T, A) is the Fourier transform of yu(ru,q @), that is

TR, 4, 2) = 2m)” 8 [ S, p)e_'('”' DGy dgdo’.

T [ @k, £, W)l R

2D

(22)
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Substituting here the expressions of & ,;and theé Fourier transforms of the involved “orbitals”,
after some calculations the functions 7 ; as a sum of the corresponding five “momentum
orbitals” are obtained. For example,

fm — (1513 (%l‘f‘ k' — @ t,—k'— m_m_112 t,?_\) +

KT

+O m23 - Mo g — "2 g2 ) +
» Mgy my
+ &y (m14 N

MoMaiy o
mytmy Py - maypusM

_ mgmgmy Mgy
A t— 7\)
M/‘a/@ M/‘4

Moy 3. _TMoa g g MaalltsMa o
+@24( k m1+m2 ¢ Ha 7\ k mopsM

_ Mmymgimy, A t— mglit, 75) .

Mg My,
+&,, (@ t— Ty Man gy Tha g Tl o
mg My my Ha Mgty
.om mgim
e ma g )
my My,

Now, with the aid of our index-convention-the six: coupled equations of the system (21}
result directly. They represent the basic set of integral equations for the ‘“‘mementum
orbitals” in the case of four distinguishable particles interacting with each other by two-body
forces. Concerning this system there is a remarkable aspect of the formalism to be emphasized.
As the number of particles is increased, the number of coupled equations also increases;
for N distinguishable particles this number is N(N-—1)/2. But, and this is an essential thing,
the dimensions of the involved integrals remain unchanged: they are to be performed with
respect to six ‘‘scalar” variables, just as in the three-body case.

In the cases when identical particles are present, the system (21) simplifies considerably,
due to the symmetry requirements. Such cases of an obvious interest will be treated in

a forthcoming paper.

4. The angular momentum operator

We end this work making some considerations about the total angular momentum
operator of the system of four distinguishable particles.

Having in mind that the separation of the CM-motion was performed by means of a step
by step reduction to the center-of-mass of two particles, the kinetic energy term, trans-
formed {rom the cartesian frame to any Jacobi frame, looks
g N I
2m,  2M  2m;;  2m  2u’

n=1



712

In fact, this form of the kinetic energy was used in writing the Schrédinger equation (10).
For the same reason the following relation holds for the total angular momentum of the
system

4
L= Z=:1 (T, XP,) = BRXP+r;Xp;+qXS+pXT. (23)

Thus, after the canonical quantization in the {R, #;,q, p} representation has been performed,
it will hold, for instance, that

4
h d o h. d o
BT Y < oy, " a*) B [(R ok, 1 g—R—) !
E) d o d o o
N (W P a") 4 (‘—’a“q“ T w) * (Q*a—@;"@y %)]

where R = (R,, R,, R, v = (% ¥ 25)5 ete.
Obviously, the cartesian frame expression of the operator L and its expressions in
any Jacobi frame are identical, i.e.

L= L= Ly = Ly = Ly = Ly, = Ly,

It is easy to show that when requiring ¥(r;,q, p) to be a common eigenstate of L and L,,
then similarly to the three-body case, each individual ‘‘orbital” is also a common eigenstate
of L? and L,. Indeed, according to the above-remarks,

L2 = L215(F10, Qaoss 00) + - +L3¥sa(Pas Gaars 02 (24)

and similarly for L ¥. It is seen that each “‘orbital” must be also a common eigenstate

of L? and L,.
The above considerations are true in the N-particle case, too, since similarly to (23)
in any Jacobi frame

N N
21 (1, Xp,) = BX P+ X + kzg (Diy...ix XS . i)

where P, p;; and s;; ;. are the momente conjugated to R,7;; and q;; . respectively.

APPENDIX
The proof is an elementary arithmetic argument. Indeed, by imposing successively

the restrictions stated in (4), these remove a number of Jacobi sets as follows:

N!
i, <i, remove (N—2)!C% = - sets,

. . 1(N—2)!
ig<<iy Temove -(2.‘ ) C%f;zl'ﬁ—
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. AN—2)! 2 NI .,
iy<<iy Temove ——g Cy = 3T g oot
Ly 3(N—2)! 3 N
is << ig TEMOVe ——fy—— C3 = T sets,
) . (N—3)(N—2)! ,,  N—3 N!
in—1< iy Yemove V=) C% V=91 3 sets

Thus, the number of retained Jacobi sets is

N T 1+2+3+ +N—3
o | T \ar TR T4 T (N2

Tt is easy to show by induction that the expression in the square brackets is equal to 1/(N—2)!
and, hence, the transparent rule (4) indeed retains the necessary number of N(N—1)/2
Jacobi sets.
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