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QUANTUM MARKOVIAN PROCESSES IN EUCLIDEAN SPACE AND
THE ELECTROMAGNETIC STRUCTURE OF THE SCHRODINGER
EQUATIONS
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Quantum Markovian processes, introduced earlier by the author, in three dimensional
Euclidean space are discussed. They correspond to the simplest possible quantum systems, i.e.
to spinless particles moving under the influence of an external electromagnetic field and other
possible forces. The most general Schrédinger equations are derived and discussed. In particular,
the dependence of the coefficients of these equations on electromagnetic potentials is investigated
without any reference to the analogy with the classical mechanics case.

1. Introduction

Physicists have witnessed various attempts to incorporate quantum mechanics into
the theory of probabilities. A formal analogy between the Schrodinger equation and the
Planck-Fokker equation in the theory of diffusion or with the heat conduction equation was
noticed early [1]. On the other hand, the fundamental differences between these theories
have also been realized [2]. In the quantum theory one deals with a complex valued proba-
bility amplitude instead of a real probability distribution as in the theory of diffusion.
Moreover, the Schrodinger equation describes processes reversible in time while the Planck-
Fokker equation concerns strictly irreversible processes. The “‘diffusion coefficient” in the
Schrodinger equation is purely imaginary, in contrast to the diffusion theory, where this co-
efficient is reall.

In spite of these fundamental obstacles there were many, however unsatisfactory, at-
tempts to relate quantum mechanics to the classical theory of Markovian stochastic pro-
cesses [3], [4].

A new trend of research was initiated by the Feynman space-time approach to quantum
mechanics, based on its heuristically defined path integral [5]. Many successful applications
of this approach [6] have given rise to a need for the development of an adequate mathemat-
ical scheme which would make it rigorous. Such a scheme was proposed recently by the
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author [7], [8], [9] and is based on the notion of quantum Markovian process of diffusional
type.

The main idea of our approach is that to any quantum system there corresponds a quan-
tum Markovian process in some set of states. The quantum Markovian process in the most
general case is given by a set of amplitudes ay(s, ¢) giving the probabilities py(s, £) = |a,(s, t)|®
of finding a system in the state % at the time ¢ if it is known that at the time s < £ the state
i out of the set & was occupied, these amplitudes are subjected to the following basic condi-
tions

s, 1) = agt, 5) (i)
(motion reversibility condition)
lim ay(s, ) = 8, (i1}
tys
(time continuity property)
Z a‘z'j(sa t) a‘ltj(s’ T) = 6{k (lll)a
jie&
(unitarity requirement) )
@i(s, T) ap(T, 1) = ag(s, 1), s<t <t (v}
je%

(quantum causality condition).

The Shrédinger equations follow from the last postulate, if some limits exist, in the
same way as the Kolmogorov equations follow in the classical Markovian processes theory [10].
The idea of quantum Markovian processes underlies the whole quantum theory, including
a theory of quantum fields and the S-matrix theory. We have arrived at it after an analysis
of some criterions for the trivial nature of the axiomatic quantum field theory and especially
the Haag theorem [11], [12]. Later, we found that some other scholars have approached this
notion from different points of departure. However, they did aot recognize its significance
for quantum physics and did not develop it further. We give a list of corresponding references
without any certainty that it is already complete [13], [14], [15], [16].

The second section of the paper is devoted to a brief account of our results concerning
the theory of quantum Markovian processes in three dimensional Euclidean space of states
of a one-particle quantum system. In the third section we derive an electromagnetic structure
of Schrodinger equations, i. e. we establish the dependence of coefficients in these equations
on the electromagnetic potentials of an external field.

2. Basic postulates and Schridinger equations

A quantum Markovian process which corresponds to a spinless particle enclosed in the
domain & < %3 is characterized by the following postulates:

(37 Y, .’L’) = (t’ €; s, y)*, (1)
lim [ dyyf dx f*(y) (s, Y3 1, @) gla) = J dax *() g(ex) i)

tis¥
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for any functions f and g from the space L%%),

[dz(s, y; 7, @) (s, ®; 7, 2)* = o(y— ), (iii)
&
fdz (5Y;7,2) (1,2 6,%) = (5, Y; ,®), s<T<t, (iv)
x
lim [ daf@) (s, y;t, 2) = [daf@) (95t 2) | )
y-y & z

for any continuous and bounded function f.

We call these properties of the transition density amplitude (s, ¥; ¢, 2 from the point y
at the time s to the point @ at the time ¢ > s, respectively, motion reversibility condition,
time-continuity condition, unitarity requirement, quantum causality condition and space-
-continuity condition.

In order to show it clear by how big is the variety of processes satisfying (i—v), we look
at the family of operators associated naturally with them:

fdw(s, Y; ¢, )f(2) for s <,
W(s, 1) fly) =¥ (1.2)
f@) for s=1t

where f is any element of Hilbert space L¥%). .

It is not difficult to deduce from the axioms (i—v) that W1{s, t) transform L %) back
into the whole L*%) again, that they are unitary operators strongly continuous at the
point ¢ = s, and that following formulae are valid:

(s, t) = W-(s, t) = W, 3)
Wis, 1) Wiz, t) = Wis, t). 2.2)

In reverse, to any such family of operators there corresponds a quantum Markovian
process given by

(s: Y5 8, ) = Zk Pe W) Ws, 1) () (3.2)

where {g,} is any complete and orthogonal set of functions in L3(%). For instance, if we take
a family of operators W(s, z) produced by a selfadjoint operator 4

Wis, t) = exp {i(s—1t) A} 4.2)
then we get, using for {g,} the complete set of eigenfunctions of A,
(s, Y52, @) = ; P (@) @) exp {i(t—s)Ag}

Apy@) = hypy(@). (5.2)

This is a well known formula for the Green function of the equation

[i . —57 —A’(ac)] (s, y; 8, 2) = 0. (6.2).
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Concluding, we have the one to one correspondence between the quantim Markovian
processes and the families of unitary operators having the mentioned properties. It is clear
from the last example that there are many processes satisfying (i—v).

The most interesting subclass of the quantum Markovian processes is formed by what
we call quantum diffusion processes. They are characterized by the existence of the following

limits:
A. H,in (t—s)™* Wis, 1) Ap(Y) = axls, y)
B. 11:31 (t—=s)~* Wis, 1) 4,4,(Y) = byils, y)
C. 1:;n (—sy [W(s, 1) - Hy)—1] = (s, Y)
D. lim (z—s)=* W1s, t) A} A53A%¢(y) =0

tis

for n;+ny+ng = 3 and for any bounded and continuous function () and 4,(2) = x,—y;,
k=1, 2, 3.

The best known example of quantum Markovian process of diffusional type is the quan-
tum Brownian motion process,

m

*la m
(S, Yyt w) = [ﬂlh_—(ttg)—] * exp {l m (y —"w)z}. (7.2)

It describes the free motion of a particle with mass m in the space #3. We shall call it also
the Feynman process. It is easy to calculate the coefficients a;, b;;and ¢ from this amplitude,
viz.,

ak(s’ y) =0
L h
bails, Y) =1 — - O

o(s, y) = 0. 8.2)

The condition D is also satisfied here.
The conditions A—D permit us to derive the following differential equations from the
causality postulate:

[O,+K(s, )] (s, Y5 ¢, @)
=0+ Tt 20k w s w | G =0 02
[_a't"i_l‘(t? m]) (59 Y w)

1
= [—-9, S E— akajbk](t, w)—-—é)kak(t, w) +C(t, .’D):I (S, y; t, w) = 0. (10.2)
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These equations coincide formally with the well known Kolmogorov equations in classical
Markovian processes theory. Just to get an idea of how these equations follow from (iv),
we notice that we have at 7 =3

(s—4ds,y;t, ) = fdz(s—As, Y;s, 2) (s, 2; &, x).
&
Expanding the amplitude (s, 2; ¢, %) according to the Taylor formula at the point 2 =y

we get

(s—Ads,yst, ) = [W(s—As, 1) - 1(y) + W(s—As, t) A, (y) 3, +
1
- 5 Wi(s—As, t) 4,4,(4)8:9;+R] (s, y; ¢, ).

Then, using A—D, we get in the limit 4s|0
Hm (4s)=t [(s—4s, y; &, 2)— (s, Y5 ¢, )] = K(s,Y) (5,93 ¢, @)

As40

which is the first equation. A slightly more complicated method has to be applied in the deri-
vation of the second equation.

The phenomenological coefficients a,, b,; and ¢ are not quite arbitrary. Namely, we get
from the reversibility axiom (i) by differentiation over s the relation

_'K(S’ y) (S’ Yt .’13) = L*(s’ y) (S’ Yy, w) (112)

Then, the second axiom extends it to the identity

—K(s, ) /) = L*(s» y) f) (12.2)
where f is an arbitrary function. Therefore, we obtain
—K(s,y) = L*(s, y) (13.2)

and
bri(s, Y) +byi(s,y) =0
ay(s, Y)—ax(s, Y) = d;byi(s, y) (14.2)

1
(s, Y) +c*(s, Y) = pap(s, y) — D) 249,045, Y).
One sees from this that

bkj = iﬂkj

: 1

1
¢ = '2_9k§k+i77

where f,;, & and 7 are arbitrary real functions.
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It is not difficult to prove, using (13.2), that both operators K and L are antisel fadjoint
on those functions from L3*(#) which vanish together with their derivatives on the boundary

of . Therefore, we get the most general Schrodinger equations for wave functions g and ¢
defined as

y(t, @) = xf dyu(y) (s, Y; t, x)

(s, y) = J dx (s, Y3 1, @) v (@), u €LYZ), (16.2)
dp(t, ®) = L(z, 1) p(t, ) 17.2)
—3,¢(s, Y) = K(s, y) ols, ). (18.2)

Tt is easy to check by using the unitarity condition (iii) that the norms of ¥ and @ exist
and are constant in time. The function y(z, &) gives the probability amplitude of finding
a particle at the point @ in the future ¢ > s if the initial wave function is u. The second wave
function @(s, Y} gives the probabilistic description of the particle in the past. We have,
according to the first axiom,

y(t, @) = ¢*(t, ) (19.2)
@(s, Y) = p*(s, Y)-
Using these equations it is easy to prove that

8, p|2-+div J(y) = 0 (20.2)
1 1
‘Jk('l’) = [“k = ‘Z‘(ijkj)] [wi® + Ebkj(wajw*'-w*aj’/’)-

One sees that only the real part of @, enters this continuity equation. A similar equation holds
for |g|? and may be obtained from the last equation by making the substitution yp — ¢*.

3. Eleciromagnetic structure of the Schridinger equations

Our next problem is to determine the functional dependence of the phenomenological
coefficients @y, by;and ¢, describing a charged system moving in an external electromagnetic
field, on the potentials 4 and ¢

E = ———}}—A—V(p

H=rot A. (1.3)

The known prescription [18] for finding the Hamiltonian for such a problem is based on
analogy with classical mechanics and for this reason cannot be used here. However, we shall
argue that the substitution

V—->V+ild (2.3)
8, > d,—ilcy
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in the equation (9.2) and a similar substitution with reversed sign of A in the equation (10.2)
gives the most general explicite dependence of coefficients in the Schrédinger equations on
electromagnetic potentials. In order to make this clear we demand, first, the physical equi-
valence of the equations

[9,-+K(s,y; A, )] (5, Y5 8, %) =0 (3.3)

and

[95+K (s,y;A+l7/1,<p——}:—A')] (s, yst, )’ =0 4.3)

where A is any gauge function. By physical equivalence we mean that both solutions (s, Y3 £,%)
and (s, Y; ¢, &)’ are connected as follows:

(s Y3 8 x) = (s, Y; L, ) exp {iF(s, Y; A)} (5:3)

where F is some real function depending functionally on A. This dependence must be linear
because the gauge transformations form an Abelian group. Moreover, F' should be a homo-
geneous function of 4, since both equations coincide at A = 0. Therefore, we have

F(s,y; A) = [dr [dz Fs, ys; 1, 2) Al 2). (6.3)

The substitution of (s, §; ¢, %) evaluated from (5.3) into the equation (3.3) and a comparison
of coefficients gives us the following functional equations

. 1 '
by [AJr va, o— ?A] = bylA, ¢] (7.3)
P L B 3

¢ [A-l—V/l, @— %A] = c[A, ¢] —iF —ia[A, ¢]F}—

1

— 5 bylA, GIFE — - bylA, g1 9.3)

We shall solve them in two steps. First we shall determine what is called *’the minimal
electromagnetic coupling” solution, assuming that the functionals @, by; and ¢ do not
depend on E and H. In fact, the above equations give us only an explicite dependence
of functionals on the potentials A and . Later, we shall generalize this minimal solution
to one which accounis for a possible dependence on E and H.

It is clear from the first equation that b,; does not depend explicitely on the potentials,
The second equation shows then that a, does not depend on ¢ because its increment does
not depend on A. Furthermore, in order to make the increment of @, which is —ib,;[0] F;-,
dependent on A instead of A itself, we must impose the locality requirement

F(s,y; 1, 2) = As) 0(s—r) 6(y—=2) (10.3)
Fis,y; A) = A+ A(s, y)
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where 4 is a real function of s. In this case we obtain from (8.3) the equation
alA+VA] = a,[A]—ilb,,;[0] 4., (11.3)
Putting A = 0 and redenoting again VA as A, we get
ar[A] = a3[0]—idb,,[0] 4. (12.3)

In order to solve the equation (9.3) we notice first that the increment of ¢ does not
depend on the products A, what means that c[4, @] has the structure

cl4, ] = nlo] +L[A4] (13.3)

where the functionals % and { satisfy the equations

7 [w—%/l'] = nlg] —idd —ird (14.3)
L[A+VA) = E[A] —iA(ag[0] —iAby{0].4) A} —
. .
— 2 b1 — - o144 (15.3)

From these equations we conclude that
A = const

nlel = 7[0] +iclp (16.3)
and

C[A] = C[0] —iAae[0]4x — g bkf[O]A‘kA‘]-—,—i;— bii[018%4;.

Collecting the results we hgy‘e' the following minimal solution:
byl ¢] = by {0]
4l4, g] = a,[0]—idb,,[0]4;
c[A, ¢] = c[0]+icAp —idas[0] 4 — g bii[0]ArA; — % bii[0]9wA;. (17.3)

In order to get the most general solution of the equations (7.3), (8.3) and (9.3) one
should admit that a,[0], b,;[0] and ¢[0] are arbitrary functionals or E and H. There is only
one general constraint following from the formulae (15.2). Namely, because of the relations

9, Re a,[A, ¢] = 2 Re C[A, ¢]
Im a4, ¢l = — < 9444, 9] | (18.3)

we get from (17.3) the condition
?,Re a,[0] = 2 Re £[0]. (19.3)
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In order to distinguish the minimal and the general solutions we shall use the following
notation in the latter case

a[0] = | E, H] (20.3)
and likewise for b,;[0] and ¢[0].
In this way we arrived at the Schrédinger equations for a particle moving in an
external electromagnetic field,

+a B, H| (9,—ild,) +c[E, H]} (s, y) =0 (21.3)
{—8,+icdp+3% (9, +ildy) (3;+i4A4)) by [E, H]—
— (8, +1Ad,) a [, H+c[E, H[}y(, &) = 0. (22.3)

The standard dependence of A on a charge g of a particle is
q = —Ahc. (23.3)

From the corresponding equations for the amplitude we conclude that

(5. Y3 £, ®), = (s, Y3 1, ®)g oxp iA [ pedr—Adz (24.3)
v

where (s, Y; &, &) solves the equation
{9,+3b,,[E, H) 9,9, +a,[E, H] 9,+c[E, H]} (s,y; t, ) = 0 (25.3)

and the integration in the exponent is carried over some path y connecting (s, ) and (¢, x).
There is no path dependence of the amplitude only if the external electromagnetic field is
absent.
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