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UNITARITY OF THE COLLISION MATRIX AND INTERDEPENDENCE
OF RESONANCE PARAMETERS

By L. RosenFeLD
NORDITA, Copenhagen*
(Received March 19, 1970)

The cross-sections for the reactions between the various channels of a compound nuclear
system within a given energy interval are determined by contributions from a finite number
of intrinsic resonant states of the system, superposed upon a smooth background. The unitarity
and symmetry of the collision matrix impose a set of conditions on the parameters characterizing
the resonant states and the background. These conditions are written explicitly in general form
for the simple case of an energy interval far from the thresholds of all the open channels.

1. Introduction

Experiments on reactions between the various channels of a compound nuclear system
within a given energy interval often show that the cross-section variation with energy
is dominated by a finite number of resonant states of the compound system, but interfering
among themselves and with the smooth background upon which they are superposed. In
order to extract from such results the values of the parameters characterizing the resonances,
a rational method is provided by the representation of the collision matrix in terms of its
complex poles in the physical energy plane. However, in attempting to adjust the parameters
entering such a representation so as to fit the experimental data, one must not lose sight
of the fact that these parameters are not independent of each other, but have to satisfy a set
of conditions resulting from the unitarity and symmetry of the collision matrix. If, therefore,
a fit of the data has been obtained by independent adjustment of the parameters, it is still
necessary — especially if the effect of interferences is such as to raise doubts about the un-
ambiguity of the fit — to check whether the parameters thus found satisfy the unitarity
and symmetry conditions with sufficient accuracy. To this end, it is desirable to have at
one’s disposal an explicit specification of the unitarity and symmetry constraints imposed
upon the parameters. Although the statement of such constraints raises no difficulty of
principle, their explicit formulation under the most general conditions is quite a compli-
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cated task, owing to the occurrence of the energy-dependent penetration factors of the
reaction channels, which considerably distort the simple resonance structure of the collision
matrix in the neighbourhood of the channel thresholds.

In order to appreciate this point, let us consider a typical element %, (E) of the collision
matrix pertaining to the reaction of a compound nuclear system between two channels
¢, ¢ at a given energy E. In terms of the intrinsic resonance states of the compound sys-
tem, this matrix element has the form [1]

M} ei'Pc(E) 3 (1)

UoB) = cive® {%(E) —i Y g

it consists essentially of a series of resonance terms, corresponding to complex poles &,
of the collision matrix, and a background contribution represented by a smooth function
of the energy 4,,,(E) ; the real constants g, affecting the resonance terms are correction factors
which are very near unity for narrow resonances. The residues of the poles &, are factorized
with respect to the channels; each factor G,,(E) = G, (E) essentially represents, in absolute
value, the square root of the partial width I, of the resonant state &, in channel ¢, but it
also contains, besides a constant phase factor exp (i{,,), an energy-dependent correction
taking account of the limited penetrability of the channel and of the relative velocity of the

fragments:
Gcn(E) _ V kc(E)Pc(E) Ben = P‘?;zei;m; (2)

Re i EnPA 1)) &

in this formula, k,(E) denotes the wave number in channel ¢ and P,(E) the absolute value of
the penetration factor in this channel, defined in such a way that it tends to unity for £ — oo;
1o the penetration factor belongs also a phase factor exp {2ip (E)} which, however, as indi-
cated in Eq. (1), is of no influence on the unitarity of the %-matrix and will play no part
in our discussion.

In the neighbourhood of the channel threshold, the penetration factor P (E) may be
given an expression completely independent of any channel radius and exhibiting the correct
dependence of the channel wave number [1]; for this case, J. Humblet has recently obtained
a parametrization of the complete collision matrix that is explicitly unitary [2]. This parametri-
zation is not based directly, like Eq. (1), on the resonance poles, but on the poles of an auxi-
liary ‘¢ -matrix” related to the collision matrix; the parameters of the resonance poles must
accordingly be derived from those fitting the experimental data by an additional computa-
tion. The increased labour thus implied by such an approach appears, however, to be inherent
in the particular physical situation envisaged. Unfortunately, the expression for the penetra-
tion factor adapted to the immediate neighbourhood of the threshold does not tend to unity
for large values of the wave number and is therefore not suited to represent the physical
penetration effect at higher energies. It would be possible to remedy this defect at the price
of introducing an arbitrary channel radius [1], which would have to be treated as another
adjustable parameter; but it is not clear at the moment whether Humblet’s method can be
applied to this more general case and thus provide a parametrization covering the whole
energy domain.
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On the other hand, if we renounce such a universal parametrization and restrict the
scope of the problem to a determination of the collision matrix valid over a given energy
interval, we may immediately single out a case amenable to a simpler treatment, namely that
of an energy interval sufficiently far from every channel threshold. If we only retain in the
form (1) of the collision matrix those resonance terms whose effect is prominent in the
energy interval considered, and include the others into the background contribution, we may
regard the whole energy-dependent factor in the expression (2) for the G,,(E) as constant
(and nearly unity) over the energy interval; at any rate, Eq. (2) allows us to estimate in each
concrete case the error involved in this simplification. In many cases, it will further be per-
missible to neglect the energy-dependence of the background amplitude over the energy
interval, and accordingly reduce the problem to the consideration of a unitary matrix of the

type
Ucc"‘ Bc'c_Lan gcng"c s . (3)

involving only a finite sum and constant parameters. This limiting case, in spite of its severe
limitations, is well worth investigating as a counterpart to that treated by Humblet; the com-
parison of the two opposite exiremes might suggest a way of bridging the gap between them.
The method to deal with matrices of the type (3) has been outlined by McVoy [3],
but since he only applied it to cases not involving more than two resonances, the general
form of his results is not immediately apparent. The aim of this note will be to give a more
systematic treatment of McVoy’s method, applicable to any number of resonances and
channels.

2. The K-matrix

Let us first recall that a matrix of the type (3), with constant parameters, can be further
reduced by elimination of the background parameters. This reduction, pointed out by McVoy
{3, 4], is based on the fact that the unitarity of the matrix U implies that of the matrix B:
for, if we reduce the terms of the expression (3) to the same denominator, the matrix B ap-
pears at the coefficient of the highest power of E in the numerator. The eigenvalues of B
may therefore be written in the form exp (2if;); since B must also be symmetrical, the
corresponding eigenvectors y,, may be taken to be real, and if they are normalized to unity,
they form an orthogonal matrix. The matrix b defined by

by = e"f”‘xck 4

is then unitary, and it yields for B the expression B = bb. We have now only to define the
gransforms u,, = u,, of the partial width parameters by the inverse matrix b~ or b*:

*
Upy = Upp, = 9.’3/2 Z gnc'bc’k (5)
e
in order to bring the matrix U into the form

U = bSh,
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Uknlink |

E-¢,’° ©

Skr = Opr—1

the matrix S is again a symmetrical and unitary matrix with the same resonance poles as U,
but all its constant parameters now refer to the resonances. If we restrict ourselves to N
resonances and C open channels, the number of real consiant parameters occurring in S
is 2N(C+1). Only half this number is freely adjustable, however, since the unitarity and
symmetry of S leads to N(C'+1) relations between them?.

Now, a natural approach to the unitarity relations of the matrix S is offered by the
representation of S with the help of a hermitian matrix K:

§= S+ @)
d—iK

where 0 denotes the unit matrix of the appropriate rank. Since the matrix S is symmetrical,
K has the same property and all its elements are therefore real. The unitarity and symmetry
conditions for S are thus equivalent to the reality conditions for K, and the latter are easier
to handle. The decisive point in this connection is the fact that the elements of the matrix K,
like those of S, are meromorphic functions of the energy, and that the properties of the
matrix K entail the reality of its poles and residues. Since these parameters can be expressed
in terms of the resonance parameters of the matrix S, the conditions resulting from their
reality yield the required constraints upon the resonance parameters. This is the framework
of McVoy’s argument, which clearly indicates the steps we have now to take.

The first step is to establish the relations connecting the parameters which characterize
the poles of the matrices S and K. By some easy algebra, the detail of which is given in the
Appendix, one finds that the matrix K can be written in the form

Vku Vuk!
Kww = — % #o @)
“

I

exhibiting explicitly its dependence on the poles ¢, and a set of parameters v, = v, analo-
gous to the partial width parameters u,, = u,, occurring in the expression (6) for the
S-matrix;§ all the parameters &, and Vg are real quantities. Moreover, they are related
with the resonance parameters &, u;, by a complex-orthogonal transformation O = ||0,,,l|
with 00 = §; in matrix notation, these fundamental relations may be written

E+%i Y #tuk = 060 , 9)
)
uf =*0, w* = 0% (10)

! There are C relations 2/|S;z[2 = 1 between the moduli of the matrix elements of S, and C(C—1) further
real relations Xy | Sy ||Sprpl exp [i(@pp—@p2)] =0 (B’ 5% k) between the £C(C—1) non-arbitrary phases @z
and $C(C—1)—1 ratios of independent moduli, leaving after elimination only one more independent relation bet-
ween these quantities. Each of the (C 1) relations thus enumerated may be put into the form of an identity
of the V-th degree in E, with a fixed coefficient of EN: we therefore obtain altogether N(C+1) conditions for
the resonance parameters.
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in these formulae, u* (and similarly ) represents the one-row matrix legy - upplls and z*
the transposed one-column matrix with the same elements; & and & denote the diagonal
matrices || &,0,,1l, [le,0,,/-
The transformation O, as shown in the Appendix, may be put into the form

0 =9yR (11)
of the product of a real matrix R of non-vanishing determinant and a hermitian matrix
of the form

y = 0+ip, (12)
where f3 is a real and antisymmetrical matrix. The relations (9) and (10), together with the

decomposition (11), (12) of the O-transformation, are all we need to derive the constraints
on the resonance parameters.

3. The reality conditions for the K-matrix

We must now formulate, with the help of the relations (9), (10), the conditions which
express the reality of the N poles ¢, and the NC constants of the K-matrix.

In the first instance, these conditions will thus involve, besides the resonance parameters,
those entering into the expression of the transformation matrix. As a final step, the latter
parameters will themselves be expressed in terms of the resonance parameters. In practical
applications, it will be appropriate to follow these two steps in the reverse order.

Beginning with the partial width parameters u*, let us separate them into their real and
imaginary parts:

uk = cF4isk, (13
On account of Eqs (10) and (11); the reality of v* leads at once to the NC constraints
sk = —ckp, (14)

which may be regarded as limitations affecting the phases of the partial width parameters
in the various channels. In fact, inverting the relations (5) and taking account of Eqs (4)
and (2), we have, for each channel separately in virtue of the conditions (14),

(Qn'r cn) %eié‘m = ; xckckn’eiﬂk_(an’n_iﬂn'n > (15)
from Eqgs (15) one readily finds
Ocnt Z %cn’ﬂn’n
v

t —=——
g Cen Hen — 2 Gcn’ﬂn’n ’
P

(16)
where the quantities
O = % XckCrn sin ﬁk’ Hen = ; XckCrn COS ﬁk (17)

only depend on the real parts of the partial width parameters u,, and the background
parameters. ' V
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Much simpler relations are obtained if the background matrix is diagonal, B,,, = 4,
exp (if,). Eqs (15) then reduce to
(q, 1) heCon =P = 3¢ (8, —1B ) (15a)
-
whence
(an cn)l/2 sin (Ccn—ﬁ c) = Z ﬂ mz'(qwr m’)% cos (ccn'_ﬁc) (163‘)
-

for every channel. Another relation readily derived from Egs (15a) on account of the anti-
symmetry of f is the following: N

Z (qn‘rcn) %(anc:”)% sin (Ccn—ﬁc+ccn_ﬁc') = 0’ (17&)

valid for every pair of channels; this type of condition has been pointed out by Lynn (Ref. [6]
p. 87-88). In particular, for every channel,

Z ancn sin 2(Cm_'ﬁc) =0, (183,)

a relation which is also an immediate consequence of Eqs (16a).

In order to obtain the N remaining constraints, we must now turn to the relations (9).
On account of Eqs (11), the right-hand side may be written yny, where 77 = ReR is a real
and symmetrical matrix. We must make use of this fac*, but in such a way as to eliminate
the matrix 7, which depends on the unknown poles &, of the K-matrix. A convenient pro-
cedure is to transform the matrix y 7y into a hermitian matrix, which is achieved by multi-
plying it on the right with the matrix 0 = p~1y. After performing the same operation on
the left-hand side of Eq. (9), we obtain the desired conditions by stating that the anti-
-hermitian part of the resulting expression must vanish. Now, on account of the condi-
tions (14) and the hermitian character of the matrix 9, we have

ut =y, =y

the effect of the multiplication of the expression Z u*u* with the matrix 0 is therefore to
transform it into the hermitian matrix

Bes ; R, (18)
and the left-hand side of Eq. (9) becomes &0-+3iG. Since the matrix § is hermitian, the
required conditions take the form

G = i(69—06&%), (19
or more explicitly
Gt = i, 8,— 83, (20)

These conditions depend only on the matrix 6 and on the resonance parameters; in fact, we
have, in virtue of Eqs (2) and (5)

Gnn’ = Z (qn'r m:) Vzei(Cnc— c'm’)(Qn’I' cn’) %' (21)
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Equating the two expressions for the diagonal elements G, given by Eqs (20) and (21)
yields the relation

q” Z Pm = 011"[7”;

this may be interpreted as the statement that the total width I', of a resonance is the sum
of its partial widths in the available channels?,

Fn—__z Fnc’ (22)
[

provided that we identify the correction factor g, occurring in the corresponding resonance
term of the collision matrix (3) with the quantity 6,,; in other words, the conditions g, = 0,
are equivalent to the relations (22) between the resonance parameters, and may therefore be
taken as the formulation of the IV last constraints we require. They clearly show the origin
of the factors g, — which we already know from the structural analysis of the collision
matrix [1] — in the passage from symmetrical matrices (demanded by time-reversal invar-
iance) to hermitian matrices (demanded by unitarity). The matrix 0, which effects this
passage, is readily expressed in terms of the elements of the matrix f§, by means of the
minors C,, of the matrix y and its real determinant C = det y. In fact, if C,, is defined
as the minor of the element ;7",”, we have

enn' = C_l Z Cnn"(éﬁ”n’+i13n”n’) = C—I[Cnn’—‘_i(cﬁ)nn'];
by definition, however,

Cann’ = Z; Cnn”(én"n’_ingn"n’) = Cnn’_i(Cﬁ)nn“ (23)

Hence,

onn’ = 2C_1Cnn’—' (Srm" (24’)
The conditions on the factors ¢, accordingly take the form

 2Cp—C
PR = (25)

where the determinants C, C,, can easily be written down, in each concrete case, in terms
of the matrix elements f,,.

All the constraints we have found, given by Egs (14) and (25), depend only on the
antisymmmetrical matrix f. Our last task is therefore to express this matrix in terms of the
resonance parameters. For this purpose, we need $N(IN—1) real equations; a simple set
of such equations may be derived from the equations (20) for n s n’, which we have not
yet used. Combining these with Eqs (21) and (24), we get

2 Cn i i (Ene—Len”
Canad =~ TEm G 2 Tl €=l e (26)
c

2 In contrast to the total resonance width I, the partial widths I, associated with the resonance vary
according to the number of open channels.
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Eq. (23), which may be written out, for n # n/, as

Crm’ = iCnnﬁnn’+i é Cnn" n'n'? (27)
suggests that a simpler set of equations will result from the imaginary part of Eqs (26)
than from their real part:

2Im C,py
C(gngn)?

= |&, _léa;,|2 Z (Ll ew)t [—(En—Ey) cos (Enc—Lor) + (28)

+ % (Pn +I'n') sin (Cm: “Cm’)]'

In using these equations for the determination of the f3,,, it may be advantageous to replace
the quantities g,, g,» by their expressions (25), and perhaps also to take into account the
other constraints (14) on the phases {, .. Eqs (27) provide the basis for a convenient iteration
procedure for finding the explicit expression of C,, as a rational function of the f,,; the
number of iterations is limited by the degree, N—1, of this rational function.

In usual situations, we shall not expect the transformation matrix y to differ much from
the unit matrix, and we are accordingly interested in possible solutions of ‘the Eqs (28)
for which the values of the (8,,,)2 will not be large; as pointed out at the end of the Appendix,
the inequality |C| < 1, which is a general property of the transformation yp, is satisfied in
the domain of values (8,,)? < 1,in which the dominant terms of the determinants Cand C,,,
take very simple forms:

C=1- Z (ﬁn.n, 29

m<ng

Cnn = C+ Z (ﬁnn’)29 [N =2or 3] (29)
Crm’ = ifp— Z ﬂrm”ﬁn"u’ »  (n#n');

as indicated, these formulae are exact in the cases of two or three resonances. The expression
for C,, is obtained from that of C by putting ,,, = 0 for the fixed value of n and all n'.
Accordingly, the expression (25) for g, may be written as C,/C, where C, denotes the
determinant C in which the sign of the terms containing the particular f§,, just specified
has been reversed; limited to the dominant terms, this gives

Cgy= €= 1= 3] ()™ +2 3] (B)®s [N =201 3] (30)
m<ny n
a formula exact for N =2 or 3.
Under the assumption (B,,)? < 1, we arrive at a narrower estimate of the upper bound
of the (8,,)? by starting from the Schwarz inequality which, in view of the definition (18)
of the matrix G, holds for its elements in the form

1G,pel? < G

nn

G,

n'n’
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Inserting in this inequality the expression (20) for G, and the values G,,,=g¢,T, G, =q,I",
we get

lorm'l‘2 ' I'nPn'

9w (Bn— EpP+3(La+1, WP

The maximum value of the right-hand side is unity; it is not attained in our case, since it
would correspond to both E, = E,, and I, =TI, i.e. two coinciding resonance poles,
an eventuality obviously excluded from our analysis. On account of Eqgs (24), we have
therefore, for n # n’,

lzctm’lz I, ,,F n’
< 1.
Czq::q# = (En—En')z'l‘%(P wt 1 n’)2 5

31)

On the left-hand side, the denominator may obviously be replaced by the square of the
arithmetical means %(Cg,+Cq,), for which Egs (30) readily yield the inequality

% C(Qn + qn’) <1 + (ﬂ nn’) o

Moreover, under neglect of terms of the fourth and higher degrees in the f,,, we may
write, according to the last Eqs (29),

(Ban)® = |Coel®.

We therefore obtain from the inequality (31) the following approximate one for the matrix
element B,

(2Bum)? Iy '
[+Gu?E * BB CiTE <F (32)

Denoting by (£,,)? the ratio of the smaller to the larger of the widths I,, I, we derive
from the inequality (32) the further one

(2A6nn’)2 < (251:#)2
L+l ™ L+

In conjunction with our assumption (Buw)® <1, this inequality finally yields
Ban)® 5 (Ep)®. @3)

It remains to illustrate the preceding general discussion by its application to the simplest
cases of two or three resonances.
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3. Applications

For the case of 3 resonances, we shall merely write out the equations (25) and (28),
since the phase constraints (14) do not present any special features. The matrix- § will be
written in the simpler notation

0 s —hs
B=|—Bs O Bal|-
P =B O

Eqs (29) have the exact form
C=1-f—pi—f3 Cu=1-p1,...; Cup=if—Pify .3
hence, Egs (30) become
11— /31 +ﬂ2+ﬂs
D=7 ,32—[32 ﬁz ’ e
and Eqs (28) are of the type
283 ' (I T50)t :
= —(E, —E,) cos (Lic —Cac) +
i b M A e rer P e
+3(I+T7) sin (Gye —Cac)]s -
We shall not develop the algebra of this case further, but rather turn to the case of two-
resonances, in which the calculations become quite transparent.

For N = 2, the f-matrix reduces to a single parameter, which we shall denote as f
since no confusion has to be feared: the f-matrix is just

0 By
—8 o

Now, we have
C=1-f2 Cu=0Ch=1 Cup= ip
and we derive the important consequence that the two correction factors gy, g must be equal
and larger than unity:

1+p2 \
91—92—-9—1 I32 (34)

The equation determining § may be written
(Lyel50) %

1 +/32 Z (B =B i+ TP [ —(Ey—Ey) cos (Syc —Lae) +3(I + 1) sin (G0 —Cad)]-

(35)

In this case3, the inequality (31) takes immediately the form (32), leading to the upper
bound f2 < &2, where &2 is the ratio of the smaller to the larger of the widths I, I,

3 The possible use of Schwarz’ inequality was noticed by McVoy [3]. However, this inequality does not
lead, as he asserts, to the conclusion that 82 must be < 1. Only the assumption f* <1 allows us to derive
from the inequality (32) the upper bound 6% < &< 1.
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Let us now turn to the phase constraints, under the assumption of a diagonal back-
ground matrix. With the notation Z,, = {,.—p,, Eqs (16a) become, because of Eq. (34),

VT, sin Zy, = BT, cos Z,,,

YTy sin Zo, = —P YTy, cos Z,,. (36)

An equivalent form for this set is the following:
Iy, sin 27, + Ty, sin 2Z,, = 0, 37
2185 = —% (58)

Eq. (36) is the special form, for N = 2, of the general equation (18a); Eq. (37), however,
is peculiar to the case of 2 resonances and provides a strong restriction on the phases Z;,, Z,,
in each channel, independently of the channel widths. By means of Eqs (36) and (38), we
readily find

_B2
c0s (£e —Cpe) = sg% sin 2 Z,.,
2 142
sin ($10—Cac) = & [% = 2—[}3 cos 2 Z,, ], (39)
where we have put
g =T w0
cA ]-,20 .

By way of example, we shall consider two very different situations: the one in which the:
two resonances are well-separated, the other in which they are superposed to each other,
with a phase difference of nearly 4z. For simplicity, we assume that a single channel is
open; the index ¢ may thus be dropped from all phase angles and channel widths (the latter
being equal to the corresponding total widths). In harmony with the notation (40), we assume
that I is the smaller of the two widths. The scattering cross-section is proportional to the
real part of the matrix element 1— U/ o i€ to :

T, ]
1-Re B, +q Z E—EPrile 3 I cos 20, +(E —E,) sin 2 Lal

‘m=1,2
Assume in the first place
|Ey—Ey|> Ty > I
The equation (35) for B reduces to
28, N

I+ ~ T E-g G, “
or, by the first equation (39), and Eq. (37), to the equivalent equations
: . r
i sin 27, = isin 27,. (42)

1—p E,— L, B -,
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Assume further that little distortion of the Breit-Wigner shapes of the resonances is observed,
which means that the angles £;, {p are small, as well as the background phase. The equations
(36) have then the approximate solution

B Z,~ Bl& Zy~ —BE
which, inserted in Eq. (42), gives
| VLT,

E—E,"
This expression, which obviously satisfies the inequality |f] < &, shows how the sign of §,
which is a matter of convention, is fixed, in this case, by the relative position of the resonance
poles labelled by the values of the index n.
Let us finally examine a situation characterized by the assumptions
‘ E, = E, Zy =%n—{,
where £ is a small quantity. Eq. (38) yields

B —4

2, ~ —p%,
and Eq. (35) becomes
8 2%
g~ Tl
or very nearly, by the second equation (39),
_iﬁ; ~ __2_6__ . _);_:_ :
1+ 1+8 g’
showing that
- pE ~ B2,

in harmony with eq. (37). We have, by Eq. (34), ¢ ~ (1+£%/(1—£?), and if the background
phase is still smaller than &, i.e., if we may identify the phases {y, {p with Z), Z,, we see
that the resonance part of the cross-section (41) consists of a superposition of the two slightly
distorted Breit-Wigner curves, the narrower one appearing as an indentation of the peak
of the broader one, approximately as

1+§2,_1_1,2[ ~gt " 1 ]
T-g 2 |(E-EP +18F  (E-EP+il; 1

A similar situation (involving two channels) is discussed by Lynn (Ref. [6], p. 82).

APPENDIX
Relations between the matrices S and K

Al Transformation of the matrix K
Let us introduce the matrix d with elements

Up'nlink

dk’k = ak’k = % 1 - E—é’,, . (A.].)
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From Eq. (7), S = (8+:K)(6—iK)~%, we see that this matrix d is the inverse of 6—iK. If
we therefore denote by D, the minor of d,, in the determinant det d, we obtain for iK
the expression

. D
K =0— m N (A.2)
showing that its poles are the roots of the equation
detd = 0.- (A.3)

We shall now proceed to put the last equation into the form of a characteristic equation;
a similar transformation of the minors Dy, will then lead us to a corresponding form for
the matrix K.

A. 1. 1. Transformation of the determinant det d

Let us denote by ugy, the rectangular matrix of C rows and N columns

YNy = Hegadl =10 o0 o v o s

and use a lower index (C) or (V) to indicate the rank of square matrices. We may write

dcy Ueny

detd = 5
(NC) @N)

?

where Oyc, denotes a null matrix. Multiply now each column (C+n) by %iu,,/(E— &,),
sum over n and add to column %’. With the notation

wney = || & tuaw|(E— &) ||
the result may be written
detd = | %@ Uem|
waey O
or
1 4oy ueny

detd=—— | :
I;I(E — &) | % iuwe) xan(E)

where yx, (E) denotes the characteristic diagonal matrix

X(N)(E) = |[(E—&,) 0!l

Finally, multiply, in the last expression for det d, column &’ by —u,,,, sum over %’ and add
to column C+n’. Defining the characteristic matric 4 an(E) by

Aune(B) = (E— E)Om— 31 Y ttiwer (A4)
3



616

we may write the result

1 4oy . Oem
S e S B -
I;I(E =& | ¥ tuwey Aan(E)
or more simply
1
detd = TE—2) det A(E). (A.5)

The poles of the K-matrix are accordingly the roots of the characteristic equation

det A(E) = 0. (A.6)

A. 1. 2. Transformation of the minor Dy

Let us denote by M®:®  Nf&) MC:® the matrix resulting from the matrix M by
removal of row %’ and column k, row £’ only or column % only. With this notation, we may
write

NRR R R (R
(—)** dEc’—1’> uEC-—%,N) ‘

Dkk’ =
O(Ns c-1 6(N)

and by the same operations as for the determinant det d, we obtain

5% B (%5 *)
1 | %ctn  wctum
D= (D) ¥ » :
II(E-¢.) iugc-n  2en(E)
n
We can restore the matrix } iz, in the lower left field by inserting a k-th column whose
last N elements are the % iu,; and the first (C—1) elements are zeroes, and a &'-th row whose
elements are all zeroes except the k-th one, which is unity; this transformation only alters

the value of Dy by a sign factor (—)**¥, and we may write
1 dic) uen)

DN i [ .
II(E-6)|}itwoe 1a0(E)
n

In this formula, the matrix d, is just the unit matrix if k = %" and otherwise differs from
the unit matrix by the elements & = 0, &4 = 1, 8pp = 0; the matrix ug y, differs
from the matrix u x, by its &'-th row elements all being zeroes. Performing now the same
last operation on Dy, as on the determinant det d, we get

1 e Otc,ny

Dy = ——— — - )
I1(E- 64 |} ity Aan(E)

where O(c, N denotes a null matrix in which the &'-th row is replaced by the one-row matrix
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u(1 N = Jlwgy - ukN||aﬂ'ected with a minus sign, and moreover, when k # k', the k—th
row is the matrix u.(1 ny- For k =k’ we therefore get 1mmed1ately the simpler result

= 1 U,
kk_H(E &) |} iitn,1y An(E)

For k # k' let us replace the k-th row by the sum of the k-th and %’-th rows: this transforms

the matrix O(C nyinto a null matrix with the only exception of the &'-th row —u.(1 Ny and

the matrix d/, into the unit matrix with the only exception of the elements o, = 1,
© o P (1

Sy = 0. This gives

1 0 —uyy
H(E—é’n) % ity 1) Ao(E)

Dkk' =

The two last formulae can be condensed into the following one:

1 S —uiN)
I1(E-6) | }idtny An(E)

A. 1. 3. Expression for the K-matrix

Dy =

(A7)

Combining the preceding results (A.5) and (A.7) we readily put the expression (A.2)
for the matrix K into the form

k
= 1 O ugw A8
R = 5 | 5 .
2 det A(E) | 1y Aauf(E)
If V denotes the inverse of the matrix 4, we can write this expression as
K = — % Z UknV et (A'g)

nn’
A.2. Properties of the K-matrix

The symmetrical matrices 4 and V' can be diagonalized by a complex- -orthogonal
transformation O = 10,,l, with 00 = ¢, calling the roots of Eq. (A.6) &, we get

040 = 1(E—e,) 0,1l ovo = H(E—sﬂ)"lﬁw‘,ll. (A.10)
\Introducing also the transforms of the partial width parameters
VUt = 03 WO Vg = 3 Opotinps (A.11)
n n
we obtain a new representation of the matrix K,
el VoVt
Kwe = — % Z e (A.12)

as a sum of contributions from each of its poles.
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The last expression is convenient for ascertaining the reality properties of the poles
and residues of the K-matrix. Since the elements K, are real for real values of E, the
poles and residues are either real or pairs of complex conjugate quantities. It readily follows
from this that the elements Kj,, are R-functions [5], and:consequently that all the poles ¢,
are real, as well as the products v,v,. We have still to decide whether the v, and v,,
themselves are real or purely imaginary (since the sign of the matrix K had been chosen
arbitrarily). The decision results from the condition that the imaginary parts of the resonance
poles: &, = E,—%il’, must be negative, i.e. I',>0. Indeed, let us consider the sum of
the roots D¢, of Eq. (A.6), i.e. on account of Eq. (A.4),

[+ 4i D] unettin (A.13)

n

By inverting Eqs (A.11), we see that
Z UpplUpry, = Z v[lk””k’[l’
nk’ R

which shows us that the left-hand side is a real quantity. The vanishing of the imaginary
part of the expression (A.13) thus yields the relation

2 U Upry = Z I n
) nk’ n
from which we conclude that
2 Ve k> 05

ok

and that, therefore, the v, and v, must be real.
A3. The transformation O

The preceding analysis exhibits the role of the complex-orthogonal transformation O
in establishing a reciprocal relation between the resonance parameters &,, i, of the S-matrix
and the analogous parameters &, vy, of the K-matrix. This relation may be concisely expressed
in matrix notation. Let us denote, as above, by #* the one-row matrix ||ug ... Uyyll and
accordingly by #* the one-column matrix with the same elements; moreover, let us call &
and ¢ the diagonal matrices || &,0,,l, |l¢,0,,/- From the first Eq. (A.10) and the expression
(A.4) for the matrix 4 we derive

E+1i S ikuk = 0e0, (A.14)
k
and we have in addition the inverted Egs (A.11)
uk =*0, u* = O (A.15)
With the help of the last equations, we could-also write Eq. (A.14) in the reciprocal form
e +%i§5kvk = 060,

which shows that the resonance poles &, could be found in terms of the poles and residues
of the K-matrix as roots of the characteristic equation

det {(E —&u) O+ 31 Z vuk'vky'} =0,
k



619

quite similar in form to the reciprocal characteristic equation (A.6)—(A.4). For the present
purpose, however, this reciprocal aspect is not of interest: the Eqs (A.14), (A.15) are those
directly adapted to the formulation of the unitarity conditions.

It is important to nte that a complex- or thogonal transformation like O can always be
expressed as the product of a real transformation R of non-vanishing determinant and
a hermitian transformation of the form y = i, where f is a real antisymmetrical matrix.
Indeed, let us separate the real and imaginary parts of the matrix O:

0 = R+iQ.
The orthogonality relations OO = & become
RR—QQ=46, RQ+QR=0. (A.16)

From the first set of relations (A.16) one concludes that det R % 0 and that the matrix R
therefore has an inverse; for (det R)% = det (6+(Q) = 14X, where X is the sum of all
principal minors of various ranks of the determinant det ()Q, all of which are non-negative.
Let us accordingly introduce the matrix f = QR- and write

O=yR, y=08+ip. (A.17)

The second set of orthogonality relations (A.16) immediately shows that the matrix 8 is
antisymmetrical, f+8 = 0, implying that the matrix 9 is hermitian, y =y~

The orthogonality relations 8 = 00 = yRRy = (6-+if) RR(6—if) show that the
matrix f3, and therefore also y, commute with RR, and that the latter is accordingly the in-
verse of yy. Consequently (det )% = (det R)~2, and since we have just seen that(det R)2 > 1,
we find that the real determinant C = det 9 = det 7 is less than unity in absolute value.
Now, the general form of C as a function of the elements of the matrix f§ can be specified,
according to well-known properties of skew determinants, as

o
C=1= 3 (,.)+3 (-YPOp), (A19)
n<ng j=2
where P®)(f) denotes a function of the elements B, of degree 2j, which has the form of
a sum of squares of rational functions; the highest degree 2" is either IV or N—1 according
as N is even or odd. Eq. (A.18) shows that there is a domain of values of the (f,,)% <1
in which 0 < € <1: it is this domain of possible determinations of the f8,, that is of
interest in the usual conditions of our analysis.
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