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EXCITONS BOUND TO IONIZED DONOR

By M. Surrczyrskr AND W. GORZKOWSKI
Institute of Physics, Polish Academy of Sciences, Warsaw*
(Received December 3, 1969)

The exciton bound to an ionized donor by Coulomb forces is investigated in the effective
mass approximation. The case of anisotropic effective masses of electron and hole, and anisotropic
dielectric constant, is considered. A variational method for computing the ground state energy
of the complex is described. Expectation values of the interparticle distances are computed.
Numerical results for CdS and CdSe are given.

Introduction

Excitons bound to imperfections in solids form complexes which give rise to observ-
able line spectra [1-4]. The simplest of such complexes is an exciton bound to an ionized
donor. This is a three-particle complex consisting of the fixed donor center plus one electron
and one hole. Within the framework of the effective-mass approximation the mass of the
conduction band minimum is ascribed to the electron, the mass of the valence band maximum
to the hole. Assuming the coulombic interaction between all three particles, and neglecting
any other interactions like the short range interactions which give rise to the central cell
corrections, we will look for the ground state of the complex.

The hamiltonian

Since exciton complexes are observed in several compounds with wurtzite structure
[3-5], the description appropriate for anisotropic, axially symmetric, effective masses and
dielectric constant is relevant.

We consider a crystal with one preferred axis, the ¢ axis, along which we take the z
direction. With the origin taken at the donor center, the electron and hole coordinates are
Xys Voo Z, and Xy, ¥y, 2, respectively. The electron and hole effective masses are m, ) (m,)
and my ) (my,|) perpendicular (parallel) to the ¢ axis. The low frequency dielectric constant
perpendicular (parallel) to the ¢ axis is ¢ 1 (&))- Furthermore &y = (¢ J_e”)y2 and 7 = ¢gfe; .
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The hamiltonian of the complex is

H=T+V 1)

where the kinetic energy is

hef 1 (92 o2 1 92 1 [ | 1 9]
T—_T[m_u(WJ"é}?)+m_¢u,9_z?+ﬁ(_9ﬁ+5?i")+m_m9_zi]
2

and the potential energy, with a singly ionized donor, is

2
= o (R ) — (ot ) (e — )+ O+ ez

3
The coordinates modified by the anisotropic dielectric constant are
r; i (x:’ y;’ Z;) o= (xe’ .‘Ve’ ’7—1/’%),
’ o 1 o
T = (% Vi 2) = (B Yo M 723). ¢

The kinetic energy (2) is

T-—_ﬁi[_l__ _?;2__]_._31 ..}_L_iz__;_ 1 _a_i+iz-_|_ 1 9_2
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In terms of modified distances, r, = [r}], r;, = |1 and r},, = |, —7}|, the potential energy (3)
is simply
2 (1 1
V=e—(—,'——,‘—}‘)- (6)
€9 Ty Te Ten

It is appropriate now to introduce the harmonic mean of the effective masses, modified by
the anisotropic dielectric constant,

m,=3/( 2 1 ) m,,=3/(i+ L ) @
Mgy nNe| Mpy N

With the anisotropy parameters for the electron and the hole
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the kinetic energy can be rewritten as [5]
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The variational method

To find the ground state energy of the complex we use a variational method. It is wel}
known that in the case of an isotropic hamiltonian, the total angular momentum of the
system commutes with the hamiltonian [6-8]. The ground state energy of such hamiltonian
has a wave function which depends only on the interparticle distances.

~ In the case of an anisotropic hamiltonian, with either ¥, #0, or p, #0, or both, the
form of the ground state wave function is unknown. We approximate the ground state wave
function by a variational function which depends only on the distances 7/, rj, and r’;. These
are precisely the distances which determine the coulombic potential energy (6). For such
wave function, v =y (1), 1}, 7.;), we have

32 i 92 - 32
‘*/’,-9731/’ i ‘/”a—ygfl) = %52? ’

92 92 92
<"/’, *37% 7/’) = <1/’, 57,2, 1#’) = <T/’, bz—;’,z ‘P) . (10)

since for any function of the distances only, f = f(r,, 1;, 1,,), integrals over all space of
dv = d3r,d3r, satisfy

and

[x2fdv = [yffdu = [2fdv, |
fx%fdv = fy%fdv . fszdv, ' (11y
[@—n)Ydv = [(r.—y)¥dv = [(z,—2)dv.

Thus the wave function y(r;, ;, r,,) depending only on the distances gives vanishing ex-
pectation value of the anisotropic terms, i. e. proportional to 9, and y,, in the kinetic energy
(9). We stress, however, the following fact. The assumption that the ground state wave

function depends only on the distances 7., Foy r"h is not well motivated in the anisotropic
case.

The energy expectation value

To compute the expectation value of the hamiltonian H with the wave function
Y = (r,, r,, 1) we introduce dimensionless distances by a scale transformation

R,=r)la,, n=e,h,eh, (12)
with @, = h2%/e?m, = the Bohr radius corresponding to the mass of the hole. The rydberg

corresponding to the mass of the hole is Ej, = €2[2e4a; = e%m,[2h2]. The expectation value

of the hamiltonian E’ = (y, Hy)[{w, 9 can be expressed in terms of twice the rydberg
of the hole, E = E'|2E,.

The coulombic potential energy (6) is a homogeneous function of the distances r’, 7, 1’
Hence, the isotropic part of the hamiltonian H can be written

H = 2E,Hy = 2E,(Ty+V,) (13)
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with
1 1
To=— 'Z;Ac—‘ 711}"

% o2 o2 BT :
Ae = ’aTXg: & 5?1: et a—Zz:’ (Xu Yas Zt) = (xu Yes Zc)/a}n (]-4)

o2 92 952 R .
4y = %3 i 777 + oz (Xns Yis Z2) = (%hs Yo 21)[Os (15)

1 1 1

(16)

Since we shall only be using a wave function depending on the distances R,, we neglect
the anisotropic part of the kinetic energy. Thus the hamiltonian T+ ¥, depends only on
the ratio ¢ = m,[m;, of the effective masses of electron and hole. Moreover its ground state
energy E, depends on this ratio monotonically [9-10]. This is seen by considering the
derivative of the expectation value with respect to ¢. For normalized eigenfunction v,

=1, Ky, p[do =0,

9E, 9 9 9H,
o¢ D¢ Nz HO'/’) o EO 5; <, 1/)>+ ("/” 95 1/’)

e

The complex remains bound if its energy is more negative than the ground state energy

of the neutral donor Ep = —oE, [11]. Since
E'—Ep —E—of2
ED a 0‘/2 ’ (18)
the criterion for binding the exciton to an ionized donor is E < —a/2.
The matrix elements
We take now the wave function in the form [12-13]
N
v =2 X
i=1
y; = S¥(SR,)p; exp [—S(A:R, +B;R,y, + C:Ry)]- (19)

The exponents p; have to be positive integers, or, if all p; are equal, they can be also half
integral. S is a scale parameter.
The matrix elements of an operator o between the wave functions y; and y; will be
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written {0);. The relevant matrix elements are expressible in terms of the integrals [13-14]

Iiim(a, b, ¢) = 8n? f dr, f dry, f dr,hr,r,,,r,, exp [—(ar,+brp+cry)]

[re=rnl
coe (7)) (e
r m—r
=82 2-Klllm! ) Z 2 @by gt g 20
p=0g=0 r=0
We write for brevity
Lim = Lipmspirps-1(Ai+4j, Bi+B;, €+ C). 1)
The overlap integrals are
¥ 'Pj> = (1),',' = Ijy,- ; (22)
The terms in the potential energy ¥V, are x :
KR;7Y=SIye, <Ry' = Slges  (By*> = Shy,. - (23)

The kinetic energy matrix element is
1 (1 1 |
Twi=5 N vl A4+ =l 1) B;B; + (G ) Iy +
1 . 1
55 (A4iB;+A4;B:) (Lzo2 +1lo2—Toes) + 5 (BiGj+B;C;) (Iy91+1105—I501) —

1 _
— 5 (Bipj+B;pi) (I120+1T102—I300) —(Cipj+C;pi) 11y +P-'Pifuo] . (24)

The energy expectation value of the ground state is obtained as the lowest root of the charac-
teristic equation

det (CHopy—<1);E) = 0. ; (25)

The corresponding linear coefficients X satisfy

N
2 (CHoyy— () X; = 0. (26)

The exponents p; and the parameters 4;, B;, C; have to be chosen so as to make the energy
a minimum.

To get an idea about the distribution of charge in the complex one can compute the
expectation value of the three distances R,, R, and R, with the wave function obtained
from minimalization of energy [15]. The necessary matrix elements are

<Re>ij = 57ys, Ry = S g, Ry = S Uy, 27

and

<R > = Z <R >1J h / Z <1>1] A5 n=e, h, eh. (28)

,j=1 i,7=1
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Numerical results

The numerical results of the described computation scheme have been partly published
[16-18]. We give here as an example the ground state of the exciton bound to an ionized
donor in CdS and CdSe. The hole from the highest, I'y, valence subbands is considered.

For CdS

the effective masses in units of the free electron mass are [5]
m,, = 0171, m, =0153, m,; =07, my =>5.0.
The dielectric constant is [19]
g, =9.35, &, = 10.33.

Hence, m, = 0.17034, m;, = 0.9874. The effective mass ratio is ¢ = 0.1725, y, = —0.0115,
v, = 1.23.

The donor ground state energy is Ej = —e*m,[2he2 = —23.994 meV. The donor
radius is aj = h2e,[e2m, = 30.5 A. '

The reduced mass of the electron and hole is u = (m *+m; Y=L, u = 0.145. The
radius of the free exciton is ag, = h2,/e2u, ag, = 35.8 A.

We used wave function (19) with IV = 4 and p; = p = 3. The best wave function was
found when the parameters had the values:

A; 0.1881693, 0.1585773, 0.05079477, 0.2515395,
B; 0.02864492, —1.015322x 10 0.1619302, 0.1428984,
C; 0.2070215, 0.1393884, 0.2241851, 0.5784894,

X; 1.2124386 10-6 3.941014910-8 1.5087599x10-¢  1.3214599x 10~

The linear parameters X; yield (R, , R;,, R,;) normalized tc unity. The ground state energy
has been found (E'—Ep)[Ep = 4.04%x10-2. Thus E'—E, = —0.97 meV.
The mean distances between the particles are, in Angstrom units,

(RY =554, (RY=1044, (R,>=93A.
The ratios of the distances are
(RD[CRy = 0.527, (R»[<R;» = 0.898,
Rlap =179, (Rydlag, =26
The distances with these ratios are shown in Fig. 1.

For CdSe

the effective masses have been assumed [20-21]
meJ_ === meH = 0.13, mh.L = 0-45, mh” = 1-0,

and the dielectric constant [19] ¢, = 9.7, g = 10.65. Hence, m, = 0.134, m; = 0.5602,
v, = 0.0919, y, = 0.735, ¢ = 0.2392.

Ep = —17.645meV, ap=40.14
p=0108, ag =49.7A.
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Fig. 1. The interparticle distances in the exciton-ionized donor complex in CdS, i.e. at the electron-to-hole
effective-mass ratio o= 0.1725, The neutral donor orbit, centered at the donor center, and the free-exciton
orbit, centered at the hole, are indicated

The wave function (19) with N = 4 and p; = p = 2.5 was found best when the parameters
bhad the values:

A;0.2525879, 0.2277946, 0.07251129, 0.2880866,
B; 0.0351769, —4.50194x10-3,  0.2146009, 0.1779778,
C; 0.2140925, *0.1379945, 0.245199, 0.6087717,

X;1.0184183x 1073, 3.8346148x 107, 1.2378762x 103, 1.1101309x 10-4.
The ground state energy has been found (E'—Ep)/Ey, = 1.98x10-2, E'—E, = 0.35 meV,

and the distances
(RY=694, (R =1674, <(R,>=157A.

The ratios of the distances are

CROKRyy = 0414,  (RppIKR,> = 0.94
Rplap =172, (R, >|ag, = 3.16.
Thus, with increasing o the hole gets further away from the donor, the electron gets nearer
to the donor, while the electron-hole distance increases.
With the wave function (19) with N =4 and p;, =p =25 the largest ratio o
for which binding still exists [22-24] has been found at ¢ = 0.3902. For this ratio of the

effective masses we found (E'—Ep)/E =1.43x10-%, and the mean distances, in units
of the Bohr radius corresponding to the mass of the hole,

<‘R¢> o 399’ <Rh> = 2374” <Reh> o 2372’
with the ratios

RICRyy = 0168, (RyY[CR,> = 0.999.

It is to be noted that for E’ = Ej, that is for vanishing binding, our variational function
(19) does not give infinite (R,>. It only yields (R, = (R,>, i. e. equal distance of the
hole from the electron and from the donor center.
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