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REAL SPIN WAVE THEORY OF FERROMAGNETISM

By J. Szanieckr
Institute of Physics of the Polish Academy of Sciences, Ferromagnetics Laboratory, Poznan*

(Received December 12, 1969)

The fundamentals of a theory of real spin waves are proposed. As a first step, a selected
class of diagrams is caleulated and the free energy and magnetization of a cubic ferromagnet are
derived. These preliminary results are valid for temperatures between absolute zero and the
Curie point.

1. Introduction

In the present decade, many authors have successfully applied the methods of time-
-dependent and causal Green functions to the problem of the Heisenberg ferromagnet. An
interesting, critical survey of the relevant papers was given by Katsura and Horiguchi
(1968). Besides its unquestionable advantages, the Green function theory of ferromagnetism
has drawbacks. Thus, in order to be solved, the Green function equation of motion has to
be broken off and the higher order Green functions have to be decoupled, involving in-
assessable error. As to the causal Green fuction method, (see Kuehnel (1969)), it resorts to
Pauli operators and thus necessitates a modification of Wick’s (1950) theorem. For this reason,
only the lowest orders of the Green function can be derived. In short, use of the Green func-
tion formalism enables to obtain quite simply and easily results which, otherwise, would
require very tedious procedures. Nevertheless, the Green function is not the sole mathe-
matical tool for dealing with ferromagnetism. Spin wave theory is also an adequate method,
provided it allows rigorously for both dynamical and kinematical interactions of magnons.
An example of such a theory for large spin quantum numbers i.e. for weak kinematic inter-
action was given by Bloch (1962). Another approach to real spin wave theory is due to
Praveczki (1969). ‘

This investigation is based on ideas developed in recent papers by the present author
(1962a), (1962b), (1963c). Since the problem of contributions to the sum-over-states from
dynamical and kinematical interactions is highly involved, we can solve it only step by step.
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Therefore, we shall derive here a selected class of diagrams without energy denominators.
In a subsequent paper, graphs with energy denominators as well as lowest order kinematic
corrections will be established.

2. The Hamiltonian

We assume the ferromagnet to be of cubic structure and to consist of N lattice points.
To every site f, a spin operator S; is attached. Including into Hamiltonian only Zeeman and:
Heisenberg terms, we have

24 ]" = Q2
H =LY G5 ST +55), 1)
f f.g »
where J; . is the exchange integral between points f and g, and
L = gupH, 2.2

with g being Lande’s factor, uz — Bohr’s magneton and H the magnetic field strength.
" Let us relate the spin operators to new operators ay, a, by the substitutions (Maleyev

(1957)):

S V28 af (2.3a)

- 1
S — V2—S (1 ~ 55 af*af) ay, (2.3b)
Sf — —S+afay, (2.3¢c)

wherein S is the spin quantum number.
As yet, we shall not consider the question of what commutation rules-the operators
a,}k, a; have to obey. On performing the Fourier transformations

af = N-12 3 aje=*"f, (2.4a)
7

ay= N-U2 3 g0, (2.4b),
7

Jpg =N Tt 70 (25)

where 4 is the vector spanning the reciprocal lattice, and on recurring to Egs (2.3), (2.4), (2.5),
the Hamiltonian (2.1) can be recast as

H = Eg+Ho+Hp (2.6)
Ey= —LSN— %- NJ,S2, (2.7)

Hy = Z;. (L+e)aja, 2.8
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&y = S(Jo— ) (2.9)

Hr=——4 N AZ T god 11033000 (2.10)
oo

Fg,ﬂ = Jl+]ﬂ+o—g_-fz+a“‘fz—g- 2.11)

On account of the symmetry in ¢ and o, I} ;’6 can moreover be expressed as
It =25—J e iy 2.12)
On deriving (2.6), we invoked only the fact that
las,a}]1 =0, f+ g
In the approximation of nearest neighbours,
Ji =Ty (2.13)
7= ; exp ik 9, (2.14)

where & are vectors pointing to all nearest neighbours. The quantities (2.7)--(2.11) can be

readjusted as

Ey= —LSN— —% JNSyq, (2.15)
&= JS(yo—v2); (2.16)
IVZ;’U = ](yl+yl+u—g_yl+a_yl—g)7 (217)
or
Lo =Ty Vire— V1) (2.18)

where 7, is the first coordination number. The a;, a; can now be identified either as the
Yzyumov (1959) operators

2541
las, ag] = 05,4 [1 ST (af )23@?8] ) (2.19)
(@)?S+ =0, a}Stt =0, (2.20)

which represent generalized Pauli operators, or as
[a’f, a’;] = 5f,g9 (2'21)

i.e. Bose operators.
A real spin wave theory with Hamiltonian (2.6) and operators (2.19), (2.20) has been
formulated by Praveczki (1969).
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3. Interpolation theories

As mentioned in the Introduction, the past decade has witnessed the evolution of
methods enabling to determine thermodynamic quantities of a ferromagnet at all tempera-
tures. Here belongs the time-dependent Green function formalism (see Bogolyubov and Tya-
blikov (1959), Tyablikov (1959), Szaniecki (1962 d, f, g), Tahir Kheli and ter Haar (1962),
Callen (1963)). Its basic formulas are the so-called spectral relations, of the form:

By = [aEE)EES, = (1), (3.
(Binay = foodEI(E)e"E"ﬁ, : (3.2)
with h
A Tr (e-##(
Gy = M (3.3)

I(E) is the spectral intensity, A and B are spin opeators, thus A ——>S]2" , B —>Sg_ , and
fi’(t) = U P i E (3.4)

The formulas (3.1), (3.2) derived by Lehman (1954) for pure fermions and bosons were
subsequently adapted to magnons, which are neither Fermi nor Bose particles. Let us now
try to verify whether they hold for magnons. Obviously, in order to check the validity of
Eqgs (3.1) and (3.2), we have to resort to the Hamiltonian (2.1). Unfortunately, we are unable
to say anything about a complete orthonormal set of eigen-states of this Hamiltonian —
an indispensable element in proving the applicability or otherwise of the spectral formulas.
To circamvent this dilemma, we 1ecur to the Hamiltonian (2.6) with the oscillatory operators
a;, a;. As a matter of course, solving the Schroedinger equation

H|m) = E,\m) (3.5)

for the energy operator from (2.6) is incomparably easier than for 5# from (2.1). There remains
the question of how to compute (3.3) satisfying the condition that 57, Eq. (2.3c), shall have
only 28+1 projections, i.e. that the quantum numbers of aza, shall be 0,1,2, ..., 2S.
This problem is solved in Appendix 4. By Eqs (3.1), (3,4), (3.5) and (A.10), (A. 13), (A.16),
we get

AB (1)) = Q-1 Tr [eP#* 4B(1) K]
= Q‘l Z 6—ﬁEm’ei(En_Em)t/ﬁgm,an,m(f{S)m,m (36)

m, #
where

Q = Tr (e P*Ky). (3.7)

The kinematic operators K g, Eqs (A.11), (A.14) and (A.17), consist of symmetric products
of afa, and consequently contain diagonal matrix elements only.
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On the other hand,
BOAy =) e BB Enili ] B (K, (3.8)

m,n
Now,

(K-S)m,m = (I%S)n,n ?

{1 if |m) and |n) belong to the physical states,
= : (3.9
0 otherwise,
whence I(E) can be represented in the form
I(E) = Qr X e PFnB, A, 0\ E,—E,—E), (3.10)

myn
as usually done.
We thus see that the spectral formulas: (3.1), (3.2) are well suited to for a Hamiltonian
of the type (2.1).

4. Sum-over-states

For further calculations, we choose the theory recurring to Bose operators, i.e. we use
the Hamiltonian (2.6) with relations (2.15)—(2.17) and commutation rule (2.21). Such a theory
enables us to apply Wick’s (1950) and Thouless’ (1957) theorems and dispenses with spectral
formulas. Computation of the relevant contributions to the sum-over-states from dynamical
and kinematical interactions will provide correct results for the thermodynamical quantities
of a ferromagnet. In this meaning, the present theory is a real spin wave theory. However,
because of mathematical difficulties, many diagrams entering the sum-over-states will have
to be neglected ; they represent so highly intricate expressions as to be practically inaccessible
to evaluation.

We now proceed to compute the sum-over-states. For this purpose, we introduce the
set of orthonormal states

n) = T [(ma))=%(az)"41/0), (.1)
A
where |0) is the magnon vacuum state. Thus,

Z ="Tr (e##Ks) = X, (n|e?*Kg|n)

BE, B8 Z (nle_ﬂ‘#"g(ﬁ)f{sln) A N
= e~ FE nle=f%n) L _ — ¢ BE nle=B#a
3 (nle#%ln) S ’ Z (nle?em) S(B)Ks>,  (4.2)

and

5(8) = efFreFHTHD — exp [— fﬂ dv o (7)), (4.3)

HL1) = o e, (4.4)
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Applying Matsubara’s (1955) formalism, we get by Egs (2.6)-(2.17);

7= oxp [~ B+ S 3 wote e 4 330,15 6,9), @)
with
A B, A
D, = (_7;1!) ' ] dr, / dy ... / du KT 1) H () .. H 1w (4.6)
; . ;

0 0
L A A
(-1!) f dr, J! dry ... j drn<T[9?,(rl)f,(rz)...w,(r,,)] (Ks—De. (47
0 0 0

Cu(S) = ~
The lower index ¢ in (4.6) and (4.7) denotes that only connected graphs have to be taken,
as the disconnected ones result by expanding the exponent exp [ D, + Z C(S)] in a series.

T'is Wick’s ordering symbol.

The diagrams D, arise due to the dynamic interaction, C; is the contribution to the
sum-over-states from kinematic interaction; and the diagrams C, (S), n # 0, are mixed
terms.

To derive explicitely the diagrams (4.6) and (4.7), we introduce the following con-

tractions:

g (71)°0,(15)® = 8,65, on,+6,,(n,+1)], (4.8)
a,g('rl)"a:(rz). _ 59’66-—@+eg)(n——12)[01’2(ﬁe+1)4—62’159], (4.9)
0y (11)%a5 (75)® = 0, a,(77)%a,(7)° = 0, (4.10)
a, (1)%a,(7)® = 6,7, (4.11)
a,(V)%a;(1)® = 6,4(n,+1), (4.12)

. _|Ln>,
Bi’k = 0(r,—7,) = {07 0 1 (4.13)
ﬁe = lexp B (L -}—se)—l]—l. (4.14)

Let us derive the first order diagram D;. By Eqs (2.10), (2.17), (4.6), (4.11) and applying
Wick’s (1950) and Thouless’ (1957) theorems, we oblain

7,
Dl = — / dT(T[%I(T)]>

8
1 O f
= N Y I | dv 2034000k (0000 **aD)®
NS
1 - 1 . .
— 5 BNY . Touigia = 5 BINT Y (g +Ve-o—ve—yo)ighs.  (4.15)

0o igo



For all three types of cubic lattices

Z Ve- Un/gna = Z 7@% ﬁg—g,

whence ,
1 - . 2
— 5 BIvol [N—l Y - ﬁg] :
e b
where
xg : yglya'
In the second ordé‘r, o
‘ g B

0

D, = ;f%fmﬂ%wﬁwm
b

8

_N_ Z A [ dr [ d72<T[av+u(Tl)“M— (T1) X

*uw
Ao

X (73 an(T1) a5+ (7o) g (7o) ag(Ta) Gl Ta) 1 e
Straightforward computation yields

D, = D+ D,

| o
D) — o f2N-2 Z I, I 7miia(fio 1),

Ao

1
DP = ) pN-2 Z F§,0F2+1,9—1(86+l +Eg—1—8—Eq) X

Ago

X [ngho(no i 3+1) (Re—1+1) —(me+1) (i + 1)t 4723l
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4.17)

(4.18)

(4.19)

(4.20)

(4.21)

In this paper, we refrain from considering diagrams with energy denominators, since
their intricacy for temperatures near the Curie point is obvious, as exemplified by the graph
D). Indeed, at low temperatures only magnons with small wave vectors are excited, whence
the summations in (4.21) and, consequently, the integrations are easily feasible, contrary
to the high temperature region where all magnon wave vectors are admissible and the sums
{and integrals resulting from them) become complicated. We shall also be neglecting the
graphs (4.7). This is not to say that they are unimportant. Simply, the problem of how they
affect the sum-over-states is extremely involved and has to be carefully investigated, as will
be done in a separate paper. Postponing the evaluation of the class with energy denominators
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and the problem of kinematic interaction to our future papers, we now proceed to figure
out diagrams in higher orders.

With the help of following scheme of mathematical symbols and their graphical equi-
valents:

‘12('51).%(72)_. e—>—2

T T
%(71).‘5:("72). ,Z?_‘—“T
2
aZ(r)'a,a('r)'
a,(7)%(7)® T

the diagrams D, can be plotted in the form represented in Fig. 1. The numbers above the
graphs are multiplicity factors. They result by topological equivalence of diagram parts.
Let us also hint that many graphs, thus D{®, D& or D®, D®, D{®, have the same
mathematical form, though they are not topologically equivalent.
Referring the reader to Appendix B for details, we quote here the final results. According
to (4.5), the free energy
F=—-fInZ (4.22)

F= Ey—f 3 In (1)~ ZD,,. (4.23)

It can be easily verified that

1 _
s § : . 1 §
F=Ey,+ d (L-+exns 5755, N E5E6MoTe—+

eo

+47 2 i I a—(1+73) In (L4739}, (4.24)
where
1 - -1
iy = {exp B I:L-]—Sz (1 - ?Y)J —1} (4.25)
and
1
— -1 AN — ~ ]
Y=N }; (L2 = g Z exfia. (4.26)
Indeed, by Eqs (4.25), (4.26) and (B.15), the free energy (4.23) can be transformed to the
form (4.24).

Differentiation of (4.24) with respect to L yields the magnetization

1 O,
WI)=1- 5= Y i (4.27)
i
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Fig. 1. Graphical representation of one class of dynamical diagrams
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Along different lines, Eqs (4.24)-(4.27) have been computed by Bloch (1962), who
assumed that the dynamical interaction of spin waves was small throughout the entire
range of temperatures and, neglecting interfering terms in Eq. (2.17) i.e. putting 1 = 0,
succeeded in obtaining Eqs (4.24) and (4.27) by variation of the free energy. She determined
the magnetization (4.27) numerically with the help of computer. As she did not consider
kinematical interaction, the magnetization for S = 1/2, 1 probably turned out to be too
large. In connection with this question, let us figure out the graph Cy, Eq. (4.7). By Eqgs (2.4),
(4.11), (4.12) and (A.11), we have for S=1/2

Co(1/2) = —N-1 Z ngna—!—2N 2; nigno(Tis+1) +
oo

1 SRR
+ — N2 Z Nilglgly1g— 2 ~6 N73 Z Ml allollg+ ... . (4.28)

Ao xAgo

The above expression corrects the average spin wave population number, i. e.
3 G am) = 3 g 1
2
= ; Al —2(ns+1)N-1 ; Tig+6 (a+1) (N1 }Q} Tig)2 —
—24(7, +1)(N- Z@] 710)3 +4ma(ma+ 1) (N ; TALES
+4(7y+1) (N Zg] Tig) (V-1 Z} 72) 4-2(m3-+ 1) N1 QZ Tgliollgro—it va].  (4.29)

Thus we see that, for small spins, omission of kinematic interaction entails some error, which
seerns to be by no means insignificant. We shall deal with this problem more closely in our
next paper. Finally, we mention that the formula (4.29) does not coincide with a similar
one derived by Praveczki (1969).

APPENDIX A

Let us derive the formulas (3.6) and (3.8). It is reasonable to start with states
In) = TT l(n:)~*(a)7110), =0, 1,2, ..., 2S. (A1)
f

For S=1/2 and N - oo, we have
Tx (™" C)eyr.ofr = (01e=#*C10) -+ 2, (Olage™ Caji0) +
+ 3 (Olasase ﬁ‘#Caf a0+ 27 Olasazare” 5‘#Ca*a;a; [0) +
fi<fa fi<fa<hs

+o.t D (Olagag...ape 5”Cafaf .ag[0)+... (A.2)

fHi<h<..<fr



Introducing the auxiliary function
fl/z(,“’ Ry Ky +ney ) fl/z(:“) H (I+px )

where ois a small parameter, We can expand it elther as

D1<ps : P1<Pz<?t

fl/z(ﬂ) - 1_|—’u Z X _J[_M Z 248 Pz Z xplxﬁaxpl+

k

Fotu PIRE AR
PrL<p<...<DPE - .

or as

N N
Fuld = expn TT (1) = oxp 3 In (1+pezy)
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(A.3)

(A4)

(A5)

(A.6)

We now exponentiate (A.5) and equate equal powers of u in (A.4) and (A.5), getting

1

DP1<De<< ... <Pg

1 1 1 11 1\
=k 3(3”") Ea 4[,“2_!("?“) -

I |
xP1’xP2"'xPlc=—k_!y1 7 2)13’1 g Ve

1
- Yal| +

4

1 s 1 1 o1 1 1 \¢
= [( 7“) (?%)T?“] (- 6>'y1 [3 ( 7“) i

s () () - o s
TSRS PR s

With regard to (A.6) and (A.7), we can transform.(A.2) as follows:

; <f2<] <f(01af1af2 o ape~ P Cafaf ... af|0)
1 2 k

1 A
= Y Ol et Cafa . ai0) -

" fosfwes i

3 (k 2), Z V (Olasay, ... ap,_jaze~P* C?(a? )Y2afaf ...

fofases f—2 g

af, ,0)+

%(‘2 )2X

(A7)
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1 ,
taaom O O Olan, - o el O . aal0)+

1S fk-3 &

1 NS = 1 A
T ( = ?) =41 Z Z Olayay, - s a2 ap.e P (ag) Xag)afaf, ... af;_|0) —

Svsfors 548182

1 ~
g L Y O an ket et a0+ (A
fufoesfe-4 g

On carrying out summations over k to infinity, we get

Tr (€% C)euteox = Tr (e7%C) — ¥ [aZe=5% C(af)?] -+

2 L
f
+ = Z Tr [afe P C(af)?] + =2 : Z Tr [afaRe P C(af)¥(af?] —
3 f 'f ) ) i VA
f Jisfa
1 v .
- ; Tr [afe P2 C(af) ]+ ... (A.9)
Changing cyclically the order of operators under the sign of trace, we finally obtain:
Tr (¢ () oyt = Tr (e 7 CKy,), (A.10)
A 1 — 1 3,3 1 1\? *\2( %\ 2
Ky =1- 7; (af)?af+ < Z (@f)?aj+ v | — 5 ; (@7)*(az,)? <

1 ' 1 1
xafah— 4 Y. (af)iaf + ( 5) (;) Y (ahxap)adal +
f

fufz

1 v 1 1\?
+ = ; (@f)af+ 57 ( 7) Y (@ (@2 (@) aafa+

15 fasts
1 [(1)\? 1 1
t ot (3) S @rad s (- 5) (- 5) @ et -
fu ke fufe
1
— Z (@)af~ ..., (A.11)
f

where the traces on the right-hand sides of Eqs (A.9), (A.10) are taken over the states (A.1),
without any restriction on ny.
Quite similarly, with the auxiliary function

N
1
Salws 2y, 205 s 2n) =] (1+Mxp+ 2—!M2x§)» (A.12)

Cp=1
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one can obtain for S=1 and N — oo,

Tr (68 C) eyror = Tr (e P# CK), (A.13)

A 1 1 1
K1=1—32(a;‘>3a?+§; (af)iap— 55 Y, (a})af+

f

(— ) PNCARCA A (A.14)

fl)f2
In the case of S=3/2, N> oo,

N
1 1

AE RNV ES | | (1+uxp+ 37 P%+ 37 u*‘x%) ; (A.15)
p=1

Tr (6% C)ouroonr = Tr (¥ CKy)), (A.16)

i 1 #\d .4 1 #\5,5 1 #16,,6
Ry=1— 57 Y @)+ 55 Y @Paf— = Y (@Vaf+..  (ALD
f f f

etc. Resorting to the fact that the operation of trace is invariant with respect to replacing one
orthonormal set of states by another, we get (3.6}, (3.7) and (3.8).

APPENDIX B

To exemplify the procedure of obtaining the graphs D, let us compute D§?. By Eqs
(2.10), (2.17), (4.8)—(4.14) and according to the graphical shape of D{?®, we have

12) 12_ —6 § : a Ay A
D((; ) = 5‘ 2 212 N FQl;"lFQz:Uz PQG:"& X
410101
430,05
24200

i B i .
X f drlof dy . [ drglag, 1 1,(w0) %, (7)) lay, 1, (11) %, (7)*] %

X @], 1 1.(72) % (1) *1 @y, —1,(72)%a, (75)®1 [y, . 2,(%5) %0, (75)®] X
X [a;_z (75)°,,(74) 1[0, 11,(T0) °a6 (7)) [y, . (70)°a, (T5)] X
X [a, Gyt (75)%, 05(15>° [%5—4 (75)%a 96(76)9][ Gyt (%)%, 05(16) 1%

[%,(71)@ 95—15(76) i

1 Z 2:
. 6 0 (1] 0 0 0 0
_ 6 N F ;erQ;szQ;GsFQ:GarQ:GsFQ:UG><
@ 010,05
0,050

X g,y 5 g 1. 10, 16(0)) (B.1)
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BB 8 . ~
I(o) = of dr, of dry ... of d [0y, 971,405 1(7,+1)] %

X [0y, 37,05 o(ry+1)] [03 47, + 0y 5(7,+1)] (04,57, 05 4(m,+1)] X
X [es,eﬁq + 66,5(;;9 +1)] [06,1—ﬁé +0y,6( ﬁg +1)I. (B.2)
The sixfold integral (B.2) is

1 oo
Io) = 5 B° Y nbembrrep. (B.3)
n=1
Introducing the quantities
m; = N1 Z Z nl(1—x,) e Prlten j—1,2 3, . (B.4)
n=1

and taking into consideration that, owing to the symmetry properties of the three cubic
lattices,

T30~ vol(l=2)(1—1,); (B.5)
we finally get

D = — (13]70) Nrmimg. (B.6)

Along similar lines one can derive the remaining diagrams. Putting

/3.]'}"0 == X, (B.7)
we can represent them as
1
D, = - N, (B.8)
D) = % Nx2mim,, (B.9)
1 1
D DE = Nad ( =3 mim3+ 3 m§m3) , (B.10)
1 1
D{M 4D+ D) = Nt ( mimg+ —- mimgms + 41' m‘%m4) , (B.11)
° 1 1 1
Z. D@) = Naxb (7 mimi+mim3m, + T mim34- 3 mimgym, + =+ BT m1m5) , (B.12)
=1
12 5 5
ZD(P) Nxb (— mim3+ — 3 mim3m, -+ ~= = mim3m, -

5 1 1 1
+3 mimym3 -+ e mimymg + 5 mimamy, + am‘{m(;) . (B.13)
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Recurring to the quantity (4.26) and figuring it out by an iteration procedure in the form

1
Y = my +amym,+x2 (mlmg—!— o7 m1m3> +a8 <m1m% +
3 o ! 4 4 29
- 5 mimym, + 37 mimy | +xt | mym$+3mimdm, +

2 4
+ - mimgmyy+ —

1 1
3 mimi+ — X mlms) + o, (B.14})

2

we easily show that the sum of diagrams is

ZD N[xm1Y+ (2%my x)Yz—l- ! x3m3Y3+ "x4m4Y4+

51' 2mg Yo+ —61— x8mg Y8+ ]

== Y 4m)+ Y o @) - % N1 Y (1w (L2, (B15)
i i

[y
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