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The problem of existence of a rotation invariant representation of SU(L,1) generating
energy spectrum of a spinless particle subject to the action of central forces is investigated. Some
assumptions based upon the 0(4,2) model of the nonrelativistic H-atom are made. Under these
assumptions the construction of SU(1,1) representation is possible only for a very restricted
class of potentials. Some of the obtained representations are used to find the energy spectrum of
a relativistic, spinless particle in the attractive Coulomb potential.

Introduction

The considerations presented here are related to the Barut and Kleinert 0(4,2)
model of the nonrelativistic H-atom [1,2]. We focus our attention upon the role of
the rotation invariant representation of the 0(2,1) subgroup of this group. This representa-
tion contains three generators [(k = 1, 2, 3) all of them commuting with the orbital momen-
tum operators. Two of them, say I; and I, are noncompact, the third I, is compact. One of
the important features of the Barut—Kleinert model consists of the way in which the energy
eigenfunctions are related to the eigenfunctions of the 0(2,1) generators. Namely, given
the energy eigenfunction yg corresponding to discrete or continuous part. of the energy
spectrum, one gets the eigenfunctions 9, of Iy or I respectively by applying the “mixing”
operator i.e. {p—k(E) = exp [—ig(E)]y/h]yg, where &(E) is the mixing parameter depending
on energy eigenvalues E. The other important feature of the model is that the generator I,
of the mixing operation is proportional to the dilatation generator I, — c(rp+pr)[2. Tn Sec. 1
we attempt to answer the question of what potentials admit the existence of the rotation
invariant representation of the SU(L1) group (SU(1,1) is the covering group of the 0(2,1)
group) if we conserve the two mentioned features of the Barut-Kleinert model. In Sec. 2
we demonstrate that some of the SU(1,1) representations found in Sec. 1 can be used to
obtain the energy spectrum of the H-atom in the case of the nonrelativistic and relativistic
Schrédinger equations. The last part of the work contains some concluding remarks.
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Section 1

We make the following assumptions:
1. The considered quantum mechanical system has its classical analogue. Stationary
states g of the system are defined by the equation

) 24 70| vs = B 0

m

in the nonrelativistic case, or

b) (P2 +mA)yp = [E—g()Pyg 2)

in the relativistic case (we put the velocity of light ¢ = 1).
2. The generators I, of the SU(1,1) representation are functions of the scalars 2, 7p, p?
only. They fulfill the commutation relations

U, L] = —ihly; [, L] = —ihly; [Lys Ig] = ihly 3

and generate a representation equivalent to the unitary representation.

3. One of the noncompact generators, say Iy, is proportional to the dilatation generator
I, = c(rp+pr)[2, where ¢ is a real constant.

4. The stationary states are related to the eigenfunctions of I; or I; in the following
way: if gy = exp [—ie(E)lo/hlyg where k(E) and &(F) are certain real functions of energy,
then

a) I¥um) = I(EYpyg) if pp corresponds to a bound state,

b) Lipym = ME)Yug if pp corresponds 1o a scattering state.

With these assumptions we shall prove that the only possible forms of potential are
22 2 -
%§+%mmp=“i% @

r r

a) Vi) = +

in the nonrelativistic case (&, w2 >0 and A are some arbitrary real constants),
—0
b) PO) = —) —o < o< too (5)

in the relativistic case.

To avoid the very complicated problem of calculating commutators of unknown func-
tions of 72, p? and 7p we may take the advantage of a well defined classical limit of our problem.
Solving this classical problem we obtain the necessary condition for the existence of the
corresponding quantum mechanical solutions. First of all we must explain the meaning
of the assumptions 14 in the classical limit # — 0. The meaning of the assumptions 1-3is
obvious. Instead of 1-3 we have correspondingly:

1. The energy conservation formula- takes the form

2 ivy=E ©

2m
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in the nonrelativistic case, or
pi+m? = [E—g()]? ()

in the relativistic case.
2. The clasical functions £,(k = 1, 2; 3) of the scalars 2, p2 and 7p fullfil the Poisson
bracket relations

{JpIad = —F3; {F, I3} = —Fas {fssz} = =4 G

S T
The meaning of the assumption 4 in the classical limit can be found as follows. Let us consider
bound states. Then according to the assumption 4 we have

Is’/_)k(E) = k(E)@k(E) and @k(E) = exp [—ie(E) /Ay,
where 9 is an energy eigenfunction. Thus we see that 5 fulfills the equation

exp [ie(E) /]I, exp [—ie(E)/hlyg = k(E)yg. O

Taking into account the commutation relations of I, we can write this equation in the
form

[cosh e(E)[;— sinh e(E) ]y = k(E)yg. (10)

Since this equation must be equivalent to the equation (1) or (2), we see that in the classical
lmit the equation

cosh &(F).I3— sinh e(E).S, = k(E) (11)

must be equivalent to the nonrelativistic or relativistic energy conservation formulae for
bound states. Similarly one gets that in the case of the scattering states the equation

— sinh 8(E)S,+cosh e(E).S, = k(E) (12)

must express the energy conservation formula for scattering states.
The Poisson bracket relations give us with ., = crp, a set'of three differential equations
for two functions #; and %,

S ;15} = =I5 {FpIg = “C;ﬁ§ Sy, ;ﬁ} . —J1 (13)

Since the scalars p2, 7p, r2 can be expressed in terms of the variables r, pr and L2, where p,
is the momentum conjugate to r, L% is the squared orbital momentum, and because {LZ%, 1}
= {L2 p,} = 0 we can write (13) in the following way (we put J x = F4(r, p L):

7, _ 95, - &S, oS, g
¢ ( or r . Pr)—- I3; C(—ar—f 35, P =—4

or %, &, o Pr (14)
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These equations can be easily solved. As a result we get
B2+ AL ]
gpr, LA)p:

B2(rp,)2 + AL
&(py 1" ] oL

1
=5 [g(rpw L3y} —

1
Iy=5 [g(rpn I3y} +

where g(rp,, L?) is an arbitrary function of 7p, and L2, A(L?) is an arbitrary function of L?
oaly, and # = ¢*. Now we make the following important remark. Because the operators Iy
and I, are functions of the operators p?, 7p, and 72, the equation (10) is a differential equation in
the position representation with the coefficients &(E) and E(E). Since this equation must
be equivalent in both cases of 1.a) and 1.b) to the second order differential equation for an
arbitrary allowed E value, we see that I; and J; can be at most bilinear in p,. Obviously this
is trite also in the classical limit, so we shall obtain some restrictions upon the form of the
function g(rp,, L?) in the formulas (15). Now for the sake of convenience we introduce the
functions

Sy Iyt Iy I =I5,
which must be also bilinear in p,. £, = g(1p,, L2)p’ satisfies this condition only if
gy, L2) = [a(L?) +b(L2)rp,+o(LH(rp,)21(p) ",
where a(LY), b(L?) and ¢(L?) are arbitrary functions of L% Then for #_ we get the result

_ bR +ATR)
a+brp,+c(p)?

This expression is biline?r in p, in one of the three following cases
1.b=0; a=ad; c=af?
then.f. = o~% and S, = a4 +2(mp,) 2.
2. ¢=0; a282+40%2=0 so that
I_ = p2b2(brp,—a)® and SFy=ar "
3. b=c=10 so that
S = a B2 p )2+ AP I=arh.

Correspondingly, we have

1. S = % {a[A +B72(rp,)rF—a1f}; Fy = B~ rp,

Fy= 5 @A+ +are). 39
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1

2. Sy = 5 [Aa~2(brp,—a)rf +(a+brp,)r=F];

Iy = 5 [Aa(—brp, ) +(a+ bip )] Iy = p-tpr, a7)
3. 51 = o {arP—a Fp ) AN

By =+ {ar P+ a Y B2p i AV Sy = i, a8)

One can easily sece that the cases 1 and 3 do not differ really. Namely, if we introduce in 3:
Iy =—S,and Sy = —F,, and then put A = —f, @ = &' we obtain case 1. Furthermore,
we can at once exclude case 2 since it corresponds to the energy conservation formula linear
in p,. Thus in fact we have only to deal with the first possibility when £, £, and 4, take
the form (16). Let us now consider the nonrelativistic and relativistic cases separately.

Nonrelativistic case

In the nonrelativistic case of bound states the classical equation
cosh &(E)S3—sinh &(E)S; = k(E) (19)

according to the assumption 4 must be equivalent to the energy conservation formula

pr '
2 U =E (20)
12
where U, (r) = V{(r) + o and we have put m = 1.
r

Equation (19) can be transformed to the form

I+ I_exp [2e(F)] = 2k(E) epx &(E) (21

where S, =.4,4.4,.
Taking into account that ., = a[4 +8-2(rp,)2]r # and S_ = a~1r¥ we get

afA+B-2(p,)? rf+e*Eg-1P = 25 EVL(E). (22)

Now if we substitute p} = 2[E—U,(r)] into (22) we obtain the following identity condi-
tion

aAr P+ 2082 PP E—U, ()] +e*Ea1 1 = 2e°B(E). (23)

This condition is satisfied only in two cases:

a) f = 2; & # ¢(E) that is ¢ = const (we can put here & = 0 as there is no a real differ-
ence between ¢ = 0 and & 5= 0 in this case). Furthermore we must have the following equali-
ties

24 | 2 E L2 .
D) =S5 + 5% MB) =5 4= + 1, (24)
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where A is an arbitrary real constant. Defining a new constant & = —- we can write (24) in the
24

form
L2 A w?r? L2 2
Un) = 53 + =5 + —5— 3 ME) = Ef20; A=+ 5. (25)
Correspondingly we then have .
1 s , L2422 o
]_}_'—?a)_(pr_‘_ _—’_‘2‘_‘_‘)’ j———T- (26)
b) f=1; e=In(—2a2 E)"*; E<0; 4 = L1242y
A A y)
k(E) = 7(—_—2&——@—)—% and UL(T) == '27 - ma (27)

where A, y are arbitrary real constants. Defining a new constant § = E—we can write U, (r)
e

in the form

, L? )

Correspondingly we get

2y 412
r

FL=ua (rp:? + ) 3 S_=olr. (29)
Since E must be negative we have an additional condition in the case d < 0. Namely, we
must have in this case L24-2y < 0. Thus we see that for § << 0 bound states exist only for
L2 < —2y. Similarly we have only the two possibilities § = 1 and = 2 for the scattering
states. However, there is an essential difference between the case § =1 and f = 2 with

respect to the whole energy spectrum of a considered physical system. In the case f =2
24 o

we obtain for bound states the potential Uy, = o +=+
7 F

2 i o

a different potential Uy, =-— + — —
potential Yo =95 T2 T 3

to. different physical systems. Uy, corresponds to the system having only bound states, Up
corresponds to the physical system having only scattering states. In the case # = 1 we ob-

. . L2 6 .
tain the same potential U, = oF + —7—;— — — for bound and scattering states, and therefore
2 r
these states belong to a one definite physical system. Bound and scattering states corresponds

here to E <0 and E > 0 respectively.

and for the scattering states

. These two potentials obviously correspond

Relativistic case

Now the energy conservation formula

Cprm? = [E—e(]* (30)
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must be equivalent to the equation

a) cosh &(E)Fy—sinh e(E) S, = I(E)
for bound states, or

b) —sinh &(E) Fz+cosh &(E) I, = k(E)
for the scattering states.

From equation a) and (16) one gets

a[A+B-2(p,)?% r P42 Elg-1 1 = 265 E)(E). (31)
On the other hand from (30) we have

pi=[E—q()]2— %:- —m2. (30a)

Substituting (30a) into (31) we obtain the identity condition
2
o {A’—}— e [(E——(p)z— —% — m{l} r=F 2B 1rf = 2¢¢BEV(E).

The above identity is satisfied only for § = 1; m2—E2 > 0,

0F 8
T

e =Infomt—EY]t; KE) = g™ s 9l) = —

and A4 = L2— 062, where § is an arbitrary real constant.
Correspondingly we get -

2__ 52

J.o=a (rp§+ . ) s S_o=al (32)

In the case of relativistic scattering states we obtain in a similar way the identity
I3
A+ | (E—¢)2 — = —m? | rof—e¥Bo1F = 2eEVi(E), (33)

which is satisfied also only for 8 =1, E2—m? > 0,

oE 0

A = 13—, o(B) = In [BH(P A, HE) = g gy » 9) = — 7

where 4 is an arbitrary real constant. The form of £, and £_ is the same.

Resulis of Section 1

The final resulis of the above considerations are the following. If the assumptions
1-4 are fulfilled in the classical limit then the potential U, (r) or ¢(r) can be only of the form
w?2r? L2422

2 2%

1) W UL = & (34)
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where w? >0, A are arbitrary real numbers, or

d LZ+2y

b) U) = — — Tt (35)
where 8, y are arbitrary real numbers, in the nonrelativistic case; and:

) é
2. (P(r) == 7', (36)

where 4 is an arbitrary real number, in the relativistic case. Now we shall write the Poisson
bracket representation of the SU(L,1) algebra corresponding td each of the cases

1a) UL(r)=i3’;’—2+£2;:—22’l;k(E)=%;s=o
f3=_—iu<%3+ﬁ;r2ﬂ+%ﬁ-). (37)
1) U = = 2+ Z s M) = gy
e = In (262 E|)}; S, = % [oc (rp‘;’ + 2”;]‘2) = é] ;
Sy =1pr3 f3=%[“(rp3+ 27;:”) +§]. (38)
3) B == 2 M) = ey o = In Pt
Sy = % [rx (rp3+ széz) —%]; Iy =1ps
Iy = % [az (rpz + Lzr—az) + :7] (39)

Having the above Poisson bracket representation of SU(1,1) we can easily construct cor-
responding operator representations. We write below the results

| e 2424 .. E

1a) UL(T)—ﬂ:"—Z—-F———zrz—‘,k(E)—-—z—(o—,S—O,
Lo L[ e o]
2|2 722 2 |’

1 [pf L24-2) ‘w?rz] (40)

T
IZZZ(’PT_}'pr'r); I3=2—w 5t —gr— Ty
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where p, = —ih (% + %) . The sign ““4” corresponds here to a physical system having
only bound states and the sign “—” to a physical system having only scattering states.
1b) UL=—2+£?2’;:&; k(E)=W%D—%;8=In(ZOCZ|E|)%
L = ‘21‘ [“ (’P?‘*’ ﬁi‘_gy“)_ %] 3 L =1p,s
I, = % [oc (rp? + E@—) + %] . _ (41)
2) #0) = = 23 HE) = e o) = In (22—
i3 e 252) o
I8 =% [oc (rp?+ L2:52 ) + %] (42)

One can easily see that for I, &(E), k(E) and UL(r) or ¢(r) given by (40), (41) or (42) the
equation

[cosh o(E)T—sinh e(E);] ps = h(E) pg (43)
for bound states, and
[—sinh e(E);+cosh &(E)L] yg = K(E) yg (44)
for the scattering states, are equivalent to the corresponding nonrelativistic or relativistic
Schrédinger equations.
Section 2

The SU(1,1) representations obtained in Sec. 1 can be used to find the energy spectra
of the corresponding quantum mechanical systems. Let us consider the physically most
interesting examples of the nonrelativistic or relativistic spinless particle subject to the
action of an attractive Coulomb force.

1. Nonrelativistic case

é L2

In this case one has Up(r) = :_r_ + 57 6 >0 and according to (41)

1 L2 r 0
: §[“(’PE+T)—E]§12=’PA k(E)=W

L=3 [a (rpﬁ + -I-i) + ;] SRR 45)
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The representation (45) is equivalent to a unitary representation. Namely, if I, are given by
(45) then I; = r* I/ are already hermitian. To find the spectrum of I; or I, we must cal-
culate the Casimir operator W2 = h-3(I{+I3—1I2) of the representation (45). After simple
calculation one gets

. L2
W2 = — = —U1+1), (46)
For this value of 2 we have two possible unitary representations of SU(1,1) namely
Dt(I+1) and D-(I4+1) [4,5]. The corresponding eigenvalues i3 of Iy are l

for D-(I41); ip=(—l—1—nYh; n'=0,1,2.
for DHI+1); ig=(I+1+nYh; n'=0,1,2.. 47)

Since § > 0 and consequently £(E) > 0 we must choose the representation Dt(l+1). Then
from the equality k(E) = i3 we obtain for E'< 0

8

— -t = ! _ e
6(—2kE) (+1+nHh and FE T LI 1)P

(48)
in agreement with the usual formulae for the bound states.

In the case of the scattering states k(E) is related to the eigenvalues 7; of I, so that
K(E) = i;. Since for D+(I+1), 0 < i3 << co we obtain the proper energy spectrum also for
the scattering states

82 .
E=W{%—,0<E<oo. 49)
2. Relativistic case
In the relativistic case of the attractive Coulomb interaction we have g(r) = —38>0
r
and according to the formula (42)
1] g , LE—0% T IR » oF
L= 5 I:“ (rPr + = ) - ;] ;3 Iy =1p,; K(E) = E2—m2t
1[ (., 2=\ r
13——2—[06 (rp,-l— - ) +a—]. (50)

This SU(1,1) representation is identical to the representation (45) with the only exception

that now L2 is replaced by the difference L2— 62 Calculation of the Casimir operator
' 2

)
W2 = h=2(I3+I3—1I7) gives the result W2 = —A-2(L2—6%) = —(I+1) + e This value of

W2 corresponds to the unitary irreducible representations

N = N e
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The eigenvalues iy of I; are the following

for
o 1\ o4 1 1\? &2 ]

-+ . . —_— . g — _ _ . R ’ . I:

D (2 —|—l/(l+ 2) hz)’ ig [2 +l/(l+ 2) 7 —!—nJ,n 0,1,2.
for

(1 {1\ 8\ . 1 [, 1\ e ],
D (E +V(l—|— —2—) i '%2—) H l3— [— 5—’I/(Z+ g) — F—n_, 1 —_—0,1,2...

) or : .
Let us consider now the hound states £2% << m2 Then i, = V_2 =70 Since ¢ >0 and
m2—

E >0 then i3 >0 so that D~ must be excluded. Consequently, one gets
.11 _l 1\ & . oF
=gt tg) gt —l/mz—'~E2

e
E=m [1+ (?rn‘)m] (51)

and

1 7, 1\ g2 ’
where s = 5 —F'/(H— ?) = 2—2 The formula (51) is the usual formula for the energy

levels of bound states given by the relativistic Schridinger equation in the Coulomb poten-
tial. For scattering states k(E) = i; and we obtain ‘

2\—%
E=m (l—%) .
9

Y]
Since for Dt (—;— + '|/(l+—é—) — 2—2— ), 0% < 12 < oo then, as is expected, m < E <Too.

Final conclusions

As one can see the physical assumptions 24, expressed in group-theoretical language,
give for the equations for the stationary states accepted in the assumption 1, strong restric-
tions upon the form of interaction. Thus in the case of the relativistic, spinless particle
we have got the result, that the only possible interaction is given by the Coulomb potential.
The SU(1,1) representation obtained in our work for this potential strictly corresponds to
the rotation invariant representation of the 0(2,1) subgroup of the 0(4,2) dynamical group
used by Barut and Kleinert to describe the nonrelativistic H-atom. The results which
can be obtained for the nonrelativistic H-atom in the framework of this 0(2,1) repre-
sentation, can be obtained in our case with the help of suitable representations of SU(1,1)
which do not belong to the ordinary (singlevalued) representations of 0(2,1) [4,5]. Thus
using the representations of SU(1,1) we can find the energy levels and calculate the proba-
bilities of the transitions which do not change the orbital momentum eigenvalues in the
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case of the relativistic spinless particle placed in the Coulomb potential. The interesting
question is if the group SU(1,1) can be extended to include all electromagnetic transitions
operators and if a full dynamical group, similar to the 0(4,2) group for the nonrelativistic
H-atom can be constructed. However, one may expect serious difficulties here, since in the
‘relativistic case the energy levels are not degenerate with respect to the orbital momentum
eigenvalues. Another interesting problem is to study the possibility of constructing the rota-
tion invariant group representation similar to our SU(1,1) in the case of the relativistic
particles with spin. Investigating the last problem we have already obtained some results
in the case of a particle described by the Dirac equation. They will be published elsewhere.

The author is much indebted to Professor J. Werle for many helpful remarks and his
interest in this work.
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