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The essential facts and problems of spin wave resonance (SWR) are reviewed. Using the
surface inhomogeneity (SI) model (an effective surface anisotropy field pinning the spins and
identical on either surface of the film is introduced) as well as the Heisenberg model in the spin
(exchange and Zeeman) Hamiltonian, an energy dispersion relation and spin-wave functions
for the ferromagnetic film are derived. The theory is valid for Bravais lattices with arbitrary type
of film surface orientation (provided it falls under the SI model) at arbitrary configuration of the
static field and arbitrary value of the surface anisotropy. A surface parameter, having the physical
meaning of a ‘‘measure’’ of surface spin pinning is introduced and is related to the suiface
anisotropy energy. The semi-classical picture of spin waves in thin films is elaborated and the
influence of the surface parameter on the shape of standing spin waves is discussed. A detailed
discussion of the properties and conditions of occurrence of surface spin waves in thin filmsis
given as well as a8 method of their experimental identification.

1. Introduction

Spin wave resonance (SWR) consists in the absorption, by a ferromagnet immersed in
a static magnetic film H, of energy from an external electromagnetic field k oscillating per-
pendicularly to H. There are commonly several and often more than 10 lines, in contra-
distinction to usual, simple ferromagnetic resonance. Each peak corresponds to excitation
of a distinct spin wave. Kittel [1] was the first to have predicted the possibility of observing
SWR in thin ferromagnetic films. An experimental confirmation was immediately provided
by Seavey and Tannenwald [2] in permalloy samples. Soon after that, SWR was made apparent
in thin samples of pure ferromagnetic metals (Fe, Ni, Co) and in ferrites (NiFe,0,, Suran [3]).
Research by various authors permitted to establish and interprete the basic facts of SWR,
though some problems are as yet unresolved.

Experimentally, SWR is carried out some well-defined configuration @ of the static
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field H with regard to the surface of the film (we denote @ = X(H, m,), with n, the normal
to the surface); most commonly, measurements are performed at perpendicular (@ = 0) or

parallel { @ =—72£ configuration. The alternating field kb oscillates in the plane of the film

perpendicularly to the static field H. The film thickness ranges from 100 to 6000 A. The AC
field frequency is constant and in most cases lies within the 10-100 GHz range. =

The basic fact of SWR consisted in the finding that the resonance spectrum of “‘good”
samples (predominantly pure metals obtained in ultra-high vacuum) differed from. those
of ““bad” ones (samples obtained in classical vacuum) (see, Kooi ez al. [4]). In “good” samples,
the separations H,—H, between positions of the n-th (n = 1,2, 3, ...) and first resonance
peak grow according to an approximately n? law whereas the absorption of consecutive
peaks diminishes in accordance with an approximately n~2law. In “bad” -samples, the
separations are initially linear (~7) and, for higher n, quadratic in n; the absorption of the
first several peaks is strikingly high and fails to follow the n~% law.

The majority of existing SWR theories resort to the semi-classical approximation of
the Landau-Lifshitz equations of magnetization motion. All the theories are unanimous in
‘concluding that, in order that resonance shall occur, the film has to present inhom »eneities.
The above stated, basic fact consisting in a relationship between the nature of the resonance
spectrum and the technology of preparing the sample is accessible to explanation within the
framework of two, fundamental models, namely the Surface Inhomogeneity (SI) and the
Volume Inhomogeneity (VI) model. With regard to “good”” samples, the approximation of the
SI model is adequate; here, the internal spins are assumed to be acted on by an effective
‘magnetlc field which is homogeneous, whereas the-surface spins are moreover subject to
a “‘surface anisotropy field” affecting their pinning. The earlier ST theories took into cons1de-
ration only the limiting cases of spin pinning: either ° perfect freedom™, or perfect pinning”
(Kittel [1] considered the latter case); subsequent theories 1ncluded ‘partial pinning”
(Soohoo [5], Wolf [6]). The SI model always leads to a quadratic k? law of resonance peak
spacing (k — wave number); however, the experimental occurrence of deviations of the
first several peaks from the %2 law even in very “‘good” samples (Phillips and Rosenberg [7],
Nisenoff and Terhune [8]) as yet lacks satisfactory explanation. The VI model, 'where
the effective field within the sample is assumed as inhomogeneous, is efficacious in explaining
the nature of the SWR spectrum of ‘‘bad” samples, but the results (linear spacing of the
first several peaks, quadratic spacing of those with higher n) can hardly be said to depend
on the type of volume inhomogeneity assumed there (effective field varying linearly with
the distance from the central layer (Schlomann [9]), or varying quadratically (Portis [10],
Hirota - [11], Davies [12])).

" Neither is there clarity as to the source and nature of the- 1nhom0geneltles Surface
inhomogeneity is predominantly considered to be due to the presence of a very thin foreign
magnetic stratum on the surface proper of the sample.-SWR measurements yield surface
anisotropy energies of the order of 0.1to 3 erg/cm? (Kooi ez al. [13]) leading to the conclu-
sion that the Néel surface energy is insufficient for giving rise to SWR. Wigen et al.[14, 15]
consider the pinning of surface spins as due to a lower magnetization value at the film surface
as comparéd with the magnetization within the film leading to a difference 4wAM of de-
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magnetizing fields (“‘ dynamical pinning”). This explained certain effects observed in SWR
(the critical effect, as well as the dependence of the SWR spectrum on frequency, see further
on) but met with severe criticism on the part of Soohoo [5], who showed that a confrontation
of the “‘dynamical pinning” theory with experiment required the assumption of quite
unreasonable AM values of the order of the total magnetization of the sample. The source of
volume inhomogeneities is seen chiefly in the magnetization varying along the normal through
the sample. This inhomogeneity in magnetization can arise in the process of deposition
by evaporation or, as shown by Ferchmin [16] as well as Sokolov and Tavger [17], can be
““induced” by surface defect.

Various experiments have been performed with the aim of clarifying how a foreign
stratum can influence the SWR spectrum of the sample. Kooi et al. [13] and Searle et al. [18]
found SWR in 809, Ni permalloy to depend highly critically on the degree of surface oxida-
tion: among other findings, an increase in oxidation entailed a very marked “damping”
of peaks with even n. Searle et al. [18] ans Stankoff [19] deposited Fe or Ni strata several
tens to several hundred A thick on both surfaces of a (80%, Ni) permalloy film and found
this to modify the SWR spectrum essentially. These experiments are accessible to an explana-
tion by the SI model and, consequently, argue in favour of the hypothesis that surface spin
pinning depends on the presence of substances coating the surface of the sample; moreover,
they permit the statement that, at perpendicular configuration, antiferromagnetic oxides
cause an increase of spin pinning (particularly so Fe,03; whose Néel temperature is higher
than that of NiO), whereas a layer of pure ferromagnetic metal Fe or Ni causes a decrease
in spin pinnig i.e. acts inversely.

There is no doubt as to the fact that SWR spectra depend on the configuration of the
static field, but as yet no full explanation of this has been given. Results for different samples
diverge. In most samples there exists a “‘critical” angle @, for which the SWR spectrum
reduces to a single absorption peak. As a rule, in such samples at angles ® < @, the
spectrum consists of a large number of absorption peaks, whereas at @ > @_,, there are
only several (2 to 3) peaks. This has been found to be the rule in numerous 80%, Ni permalloy,
(both ““good” and “‘bad”) samples (Wigen et al. [14, 15], Rossing [20], Nisenoff and Terhune
[8]) as well as in samples of cobalt [15] and NiFe,0, ferrite (Suran [3]). On the other hand, in
measurements carried out with a high degree of accuracy, Okochi and Nosé [21] failed to ob-
serve a critical effect in samples of 769, Ni permalloy. Searle et al. [18],inan 809, Ni permalloy
sample “‘coated” with a 50 A Fe stratum, obtained a single absorption peak at perpendicular
configuration and a very well-defined multi-peak SWR spectrum at parallel configuration,
which is a quite exceptional result. All this proves that the changes in SWR spectrum caused
by a transition from one configuration of the static field to another depend very stronglyon
the material of the film and on the chemical compound used for coating its surface. A quantum
theory of the critical effect will be proposed in Part 2 of this paper; it will permit to explain
the preceding, heterogeneous experimental results.

Comparisons by various authors between SWR from films prepared in identical condi-
tions but differing in thickness had, essentially, the sole aim of ascertaining the presence
(or lack) of an absorption peak atiributable to the uniform spin wave (k = 0). This wave
cannot be expected to be excited in massive metallic bodies (Kittel and Herring [22]), but
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cannot be ruled out in a thin film (thickness less than skin-effect depth). Theoretically,
the position of the absorption peak of the uniform spin wave cannot depend on the film
thickness. In experiments where the uniform peak was thought to appear, its position
was said by the authors to be  virtually” independent of the thickness; in reality, this statement
implied that, as the film thickness decreased, this peak shifted slightly towards stronger fields,
whereas the other peaks shifted towards weaker fields. A number of authors have reported
observing the ‘‘uniform” peak at various configurations (for the literature, ¢f. Ref. [21]).
Thus, some report it to appear at perpendicular configuration only, whereas others re-
strict its occurrence to parallel configuration (see also Frait and Mitchell [23]); yet others
admit both eventualities according to the material of the film (Searle ez al. [18]), or decidedly
exclude either (Okochi and Nosé [21]). Wigen et al. [14, 15], from an analysis of the critical
effect, suggest that the absorption peak obtained at the configuration @, corresponds
to the uniform mode, while Holzer ez al. [24] uphold that the uniform peak occurs at con-

7
figurations @, < @ < 3 The theory to be proposed here will reconcile these seemingly

inconsistent results. It will be shown that the uniform spin wave can be excited in a film
only in conditions of “‘natural” surface defect (absence of surface anisotropy) or if a ““non-
-natural” surface defect is compensated in conditions of resonance. It is this author’s belief
that the former conditions cannot be achieved in practice; the latter will be shown to be
fulfilled in the critical configuration; whereas the peak occurring at non-critical configurations
and interpreted by various authors as the uniform peak turns out, in reality, to be one corre-
sponding to a surface spin wave.

The problem of the occurrence of a surface peak in SWR has arisen but recently.
Wolf [6] was the first to point to the theoretical possibility of its excitation. In later years,
Sokolov et al. [25, 26] and, independently, Puszkarski [27, 28] worked out a method of
identifying such a peak in the SWR spectrum. They showed theoretically that, in very thick
films, its position has to be practically insensitive to thickness, whereas in thinner ones
(102—108 A) it should shift towards growing field strengths with decreasing thickness.
Puszkarski [28] showed that a surface peak can appear in the SWR spectrum if the surface
spins possess ‘‘freedom” in excess of the freedom arising by natural defect (i.e. if they
are unpinned). From considerations to follow, it will be seen that such a situation can indeed
occur in various samples at various configurations of the static field, leading to an explanation
of the preceding divergences between experimental results (see, Part 2). ‘

Experiments on SWR have revealed yet.other facts: thus, strong roughness of the
surface causes the spectrum to vanish, although in some cases its effect is restricted to
a broadening of the lines (Searle et al. [18]). Inhomogeneity of oxidation in the plane of
the film acts similarly (Wolff [6]). Also, the SWR spectrum shows a dependence on the AC
field frequency, which affects the positions and intensities of the peaks strongly at parallel
configuration but quite insignificantly at perpendicular configuration (Wolff [6], Nisenoff
and Terhune [29]).

It is our aim to construct a quantum theory of SWR that will account for all the facts
and provide a clarification of the as yet unresolved problems. Certain papers have dealt
with SWR in a quantum approach, thus: Pincus [30] (linear chain), Ferchmin [31] and
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Valenta and Wojtczak [32] (thin film of cubic structure), and Puszkarski [28] (hexagonal
structure). The present theory is based on the SI model and comprises: (a) arbitrary Bravais
structures, (b) arbitrary surface orientations (within the scope of the SI model), (c) arbitrary
orientation of the static field, and (d) arbitrary surface anisotropy.

2. Assumptions

Let us consider a sample, consisting of non-conducting material, in the shape of a thin
film of homogeneous crystallographical structure (arbitrary Bravais lattice) extending
unboundedly in directions parallel to the surface (fulfilling Born-Kérmén periodic boundary
conditions in these directions). On the above assumptions, atoms lying in the same lattice
layer parallel to the surface (to be termed in brief ‘‘a layer”) are in identical physical conditions
i.e. are mutually equivalent, forming a magnetic sublattice (Valenta [33, 34]). The approxi-
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Fig. 1. Choice of XYZ coordinates. 77 is the versor of the magnetization direction in the sample (in the text, the

T -
angle ¢ = -2—throughout); H is the static magnetic field

mation of the SI model consists in the distinction of only two sublattices in the film, namely
a sublattice consisting of the two surface layers and one comprising all the internal layers.
An atom is labelled by means of an index Zj, where /is a number denoting the layer, thus:
1 = 0 (substrate surface), [ =1, 2, ..., L—2 (internal layers), [ = L—1 (free surface layer),
whereas j is a two-dimensional vector lying in the plane of the film (there are N such vectors).
The crystallographical XYZ axes are chosen as in Fig. 1, unit vectors being respectively
n, n, n,

We perform the calculations in accordance with the Heisenberg localized spin model
assuming an exchange (nearest neighbour interaction) and Zeeman Hamiltonian in standard
form: s = j?+"/f/ s

S

H=-2 2 ISy Suey—sus D HT Sy, 2.1
RN A ] '

W = —&MUpB IZj]h i Slj: (2.2)
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where summation extends over different pairs of neighbouring spins, J, is the exchange
integral between nearest neighbours situated respectively in layers [ and /4g, whereas HY
anf h are respectively the effective static magnetic field and the alternating magnetic field
acting on a spin of layer . We shall assume throughout A < H¥, meaning that % is
a small perturbation with regard to . On diagonalization of 2 (we use the second quanti-
zation method), we calculate the peak intensities by methods of perturbation calculus in
a first approximation.

Within the framework of the SI model, only such orientations of the film surface can
be considered at which the nearest neighbours of a given spin belong to the same layer
and the two closest lying layers: g = 0, +1. Admitting only such orientations, a lack of
active neighbours resulting from the thinness of the sample is “felt” only by spins lying
in the surface. According to an analysis by Jelitto [35, 36], in cubic lattices orientations of
this kind occur most commonly in practice (theseare: sc(1, 0, 0), (1,1, 0), (1, 1, 1); fee(1, 1, 1),
(1,0,0); bee (1,1,0), (1,0,0)).

We shall be applying the following terminology: Surface Defect is a defect in the structure
of the body due to: (1) the absence, with regard to atoms on the surface, of part of their
neighbourhood and simultaneously (2) to the presence of an effective field K, on the
surface; whereas Natural Surface Defect is the defect due solely to the finite thickness of
the film.

Our calculations will be performed in the approximation of quasi-saturation. Conse-
quently, the results will be valid only for temperatures low with respect to the Curie point
of the material.

3. Diagonalization of the Hamiltonian

3.1 Equilibrium condition of the system

Let us assume, in a semi-classical approximation, a spin Sy = Sy (with S in A units)
as present in each lattice site, 7 being the quantization direction shared by all the spins.
We determine the direction by minimalization of the expression E(), derived from the
Hamiltonian (2.1) on replacing therein the operators by classical spin vectors (Tyablikov [37]).
We obtain:

PN H') = LHY 2K, 3.1
[

whence the dependence of the direction y on the effective surface anisotropy field is seen
to be significant in very thin films only (small L). For thicker films, we have y||H#, which
leads to the following equation of equilibrium of the system:

H sin 2¢
dnM ~— 2sin(p—D)

We assume the externally applied static field H and the magnetization M as homo-
geneous throughout the sample and able to take any orientation with regard to its surface
(see, Fig. 1) though remaining within the YZ-plane (¥ is the versor of the M direction).
The effective field H¥ within the sample is the sum of the external field and demagnetization

32
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field and, at the surfaces of the film, includes moreover the effective surface anisotropy
field K, :
H = HY +(80,+ 0, 1,_) Koy (3-22)

HY = H—nAnM cos ¢. (3.2b)
The alternating field h is linearly polarized in the X-direction, thus kb = m/e?, and o
is the circular frequency.

The model of unidirectional surface anisotropy, represented on either surface by the
effective field K,,,;, is implied (the case is assumed to be that of symmetrical boundary
conditions). The field K_,,; is considered as a phenomenological quantity accounting for
the difference between the “‘pinning in y-direction” of the surface spins and internal spins,
and containing contributions from all physical factors giving rise to differences between the
effective fields active within the sample and on its surface (in particular, the field K,
comprises the contribution from any foreign magnetic compounds that may be present on
the surfaces of the sample). We assume K, as lying in the YZ-plane and subtending an
angle & with the Z-axis. Both & and K,,,; can take arbitrary values. Moreover, K, is

assumed as independent of the configuration and strength of the field H and magnetization M.

3.2. The diagonalizing transformations
With the aim of finding the eigenstates of the Hamiltonian (2.1), we perform four
consecutive canonica! transformations. The first transforms the spin operators from crystallo-
graphical X, Y, Z-axes to an orthogonal sylem of axes X', Y',Z’ with Z'-axis coinciding
with the spin quantization axis  and Y’-axis lying in the XOY-plane (Tyablikov [37]):
L
%)
A is a vector fulfilling the following relations:
@) =1 (7:4) =0, (yx4) = iA,
(A- 4% =1, (Ax A*) = iy. (3.4)
Next, we go over from spin operators S,'j to Bose operators by means of Holstein-
Primakoff’s transformation in the quasi-saturation approximation:

ar - A e ~ Aot AL A
ﬁ,‘; and c'i,j are respectively creation and annihilation operators of spin deviation, localized
in the lattice site [j, and satisfying the commutation rules:

[&Ij’ aAl_"}'] = 611’6jj" [&Ij’ C31’5'] =0. (3.6)
In order that the Hamiltonian shall become diagonalized in the boson variables, we perform

two more transformations (see, Corciovei [38], Ferchmin [31]): a Fourier transformation
““in the plane” of the film,

Sy = 755 + o= (AS}F +A4*55); 3.3)

éf = # Y e nth, (3.7)
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with # denoting the reciprocal lattice vector, lying in the XOY-plane (the coordinates ”,
and %, are quantized in accordance with Born-Kdrmén conditions); and a transformation
““in the direction” normal to the film,

A+ "

by = 2 ui(0)& (3.8)

T
On effecting the transformations (3.3), (3.5) and (3.7), the Hamiltonian (2.1) takes the

following shape (constant terms are neglected, terms linear in the operators IA);% and bz
vanish as a result of minimalizing Ey(y) (Tyablikov [37])):

2 +1 e
H = Z 2 20 Ry 14g(2%) b:-:lb;t:l+g’ (3.9a)
% g=
R, , +g(;) = —25],I';+ 6, g[2Sd§1 2+ gHB(H;ff M (3.9b)

= eI,
: i

(j €L, j’ €l+g, jgiven) (3.9¢)
I ==I"% Ty=1% Il =2, (39d)

Z' stands for summation over the nearest neighbours of a lattice site; summation over

nearest layers (up to layer ) is denoted by, >" (but >}’ denotes summation including the
g g=0 .
layer I); and z, symbollzes the number of nearest neighbours (of a lattice site of layer l) lying
in the layer l;i:g
. The transformation (3.8) makes the Hamiltonian go over into the diagonal form:

# = Z B &, (3.10)

where §—> is the creation operator of a, spln wave of energy E(%, 1), prov1ded the functions
u(7) satisfy (1) the set of difference equations

u,(‘c)E(%, T)i— 2’ R, l+g(%)ul+g(1:) I=0,1,..,L-1 (3.11)

and (2) the orthonormahty coﬁdltlons :
P (3122)
e ul("’)@Z(") = 6110; (3.12b)

T

The set of Eqs (3.11) can be rewritten in the form:
[R(%)— E(%, ) —a]u(r)—25 3] ?’J (1) =0, 1=0,1,..,L-1; (3.139)
R(x) = R(—%) = 2SJo<z0 I7) +4Sz,J, +gup(Hy - 3); (3.13b)
a=0  for 1=12, ceey L—2,
Ay =0ap_1=0= 2SZ1J1_gluB(Ksurf ' ?7)7 (3.13¢)
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which is conveniently solved by a method due to Jelitto [35]: one introduces two ““fictitious”
layers I = —1 and [ = L, thus replacing the set of L equations (3.13a) by an equivalent set
of L+2 equations consisting of two ‘“‘subsets”:

(1) the system of equations of the “bulk body” (¢;=0, X}}=2] ):

g g=+1
257, Ity (9) +IR() — B D]y(0) =25 Ty (0) = 0,
1=0,1,..,L—1 (3.14a)
(2) the system of boundary equations:
Augln) = — T¥uy(a),
. 1
Aug,_+(z) = zi-r;?’ wi(2), (3.14b)
1 .
with the notation:
A= —1- (K, 5). (3.15)

= 2T, o 254,

The sets (3.13a) and (3.14a, b) are indeed equivalent, since on eliminating the ﬁctltlous
layers from Eqgs (3 14a) by means of Eqs (3.14b) one returns to the set (3.13a).

Eqs (3.14a) can be considered as boundary equations imposed on the general solution
of the set (3.14b). We shall refer to the quantity A4 in the boundary equations as the surface
parameter (not to be confounded with exchange constants, commonly denoted by an A
in the literature). In Section 5, it will be shown that- 4 measures the degrees (strength)
of ““pinning” of the surface spins. The next subsection will be devoted to solving the set
of Egs (3.14).

3.3. The dispersion relation, and the transformation functions u(7)
Introducing a particular solution of the forﬁ;:
w(7) = ¢ #l (3.16)
mto the set of equatlons of the “bulk body , we come to the dlspersmn formula:

B ) = B ¥) = gug(HY - )+

+2S]0(z0——113) +4SJ1(z— ]"I"’lf [cos T'), ' (3.17)

where 7’ is a new quantum number, defined as follows
7 = 1;'-|-(p, (3.18)
I% = |T§|e"™, ¢ = (). (3.19)

The quantity @ is yet a new quantum number, the value of which is defined by the structural
Sactor I’ f . It is'worth noting that ¢ is non-zero only if the nearest neighbours acting from
the layer g = +1 are distributed non-symmetrically with respect to the projection of the
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lattice site under consideration onto that layer. For a given # and well-defined structure and
orientation of the surface, ¢ takes one and only one valuel.

The quantum number 7’ can in general be complex; however, from the condition of
real energy E(%, 7') it results that only three “‘types” of 7’ are permitted, to each of which
there corresponds a different kind of spin wave:

(1) 7' = k— space spin waves,
@) 7' = it — “‘acoustic” surface spin waves,
(3) 7' = m+iz— ‘‘optical” surface spin waves. (3.20)

Above, k and ¢ are real numbers. A justification of the preceding terminology will be given
in the next Section. On inserting (3.20) into Eq. (3.17) one obtains formulas which show that
the acoustical and optical surface spin waves have energies lying respectively below and above
the energy band of the space spin waves.

The energy values E(x, '), as obvious from Eq. (3.17), are twice degenerate, being
related to two particular solutions of the type (3.16) with quantum numbers 7, = —@+7’
and 7, = —@—71'. The general solution of the set (3.14a) is thus of the form:

uy(v) = e Pu(t), u(v) = e e - (3.21)
The superposition constants ¢, and c, are to be had from the boundary conditions (3.14b)
and normalization condition (3.12a). After some calculations, we obtain two kinds of normali-

zed solutions:

uf(7') = c(7’) cos ( L;1 —l) 7’ (symmetric solutions), (3.22a)

L-1
2

u7(t") = ¢_(7') sin ( -—l) 14 (antisymmetric solutions), (3.22b)
the normalization factor being:

(3.23)

sin L7’ ) —%

sin 7’

Ci(f’) = VZ_ (L'_‘I:

3.4, Characteristic equation

We still have to find what T’ — values satisfy the boundary conditions (3.14b). Inserting
(3.22a, b) into Eqgs (3.14b), we get the following characteristic equations determining 7’:
, 2

J(&") =cos L-2}-1 T'/COS—2—1 v = A(%) for symmetric waves, (3.24a)

L—
2

;-1 7'[sin v = A(%¥) for antisymmetric waves, (3.24b)
where we have used the notation:

A(%) = A\ Tyzl"t,  A@0) = A. (3.25)

g(t") =sin

1 A method of computing structural factors, and its application to cubic structures, has been proposed
by Jelitto [36].
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The spectrum of allowed 7’-values is thus seen to depend on the surface parameter 4 and
(by way of the structural factor) on the quantum number % as well as the structure and
orientation of the surface. It is easily verified that all distinct solutions u(z') are obtained
on restriction to the interval k¥ € (0, 7) for space spin waves and ¢ € (0, + o) for surface
spin waves. ’

There is no general analytical method available for obtaining solutions of the equations
(3.24) for arbitrary values of the quantity A(%). In order to gain some essential information

Alx) -
Alx)
4

4

Acoustic
surface 3
modes

Le1

-4 |

n=1 2 3

-4 Opticat surface
modes

Fig. 2. Accessory graph for the discussion of the characteristic equations (3.24a,b) (here, we denot,
F(t) = f(it); G(t) = g(i). Dashed lines — antisymmetric states; continuous lines — symmetric states
n — labels the states. L==11 is assumed

on the 7’-spectrum, we shall resort to a graphical method. In Fig. 2 are plotted the functions
f(*') and g(7’) (in the middle — for space waves; to the right and left, respectively, for optical
and acoustical surface waves). On fixing some value of the parameter A(%), the roots of the
characteristic equations are found by searching for the points of intersection of the straight
line A(x) = const (which is parallel to the axis of abscissae) with the curves. This graph
shows that:

1) We always obtain L distinct values of 7’; for |4(%)| <1 the spectrum consists of
space states only, whereas for |4(%)] > 1 also surface states appear (one such state or two
states, see Table I);

2) As A(%) increases, all values of the 7’-spectrum shift towards lower energies; the
density of states varies insignificantly for the space waves but strongly for the surface waves
(for the latter, at sufficiently large A(%), we have practically twofold degeneracy);
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3) The uniform wave (k= ¢=0) —the limiting case between space waves and
acoustical surface waves — occurs in the spectrum for two, particular values only: 4(%) = 1
(for symmetric waves) and A(%) = (L+1)(L—1)-! (for antisymmetric waves).

It will now be our convention to label the spin-wave states corresponding to distinct
7’-values by numbers n =1, 2, ... L running from the energetically lowest state. In this
way, to a root 7' of the characteristic. equations, a number is attributed -according to the

TABLE 1
L+1 L+1 -
MG >7— | 1<4() <7 46 <1
number of space states L—2 L—1 L
number of surface states 2 1 0
TABLE II
k n for symmetric waves | for antisymmetric
waves
. 7
A(x)=0 ”L_I_ 1 1,3,5,..,L* 2,4,6,...,L—1
- T
A(e)y=1 (n_l)f 1,3,5,....L 2,4,6, ..., L—1
= 7 : »
A() =—1 nf ; + 1,3,5..,L 2,4,6, ..., L—1
[A@#)| = o - s L,3,5,..., L—2 2,4,6, ...,L—3
o —1 .

* L is assumed odd.

following principle: (1) The curves in Fig. 2 are labelled, beginning from the one furthest
to the left, by numbers n =1,2,... L (but note that the curves n =1, 2, i and L
consist of two halves each, the one half “belonging’ to space and the other half to surface
states); (2) a root (¢ or k) is labelled with the number of the curve from which it was obtamed
by the graphlcal procedure. .

For certain particular values of A4(z), it is possible to obtain strict analyt1cal formulas
for roots k (see, Table II). The roots k for all other values of 4(%) and roots ¢ for surface
waves can be delermined analytically to within some approximation only. Approx1mate
formulas for roots ¢ will be adduced in subsection 4. 3. For space waves, the following
approximation is of particular practical interest:

Fop = (n—0) —L_ZET i (3.26)
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/

with L—1 defining the film thickness (in lattice units). On inserting (3.26) into (3.24a, b)
we obtain the following equation whence & can be determined:

sin [5 il 2 ]g=z4(5§) sin 6 =,

L-1 L-1
n=13,5,... for symmetric waves,
n=2,4,6,.. for antisymmetric waves. (3.26a)

It hence results that the “shift” & is a function of the label of the wave, the parameter A (%),
and the thickness L; thus: 6 = 6(4(%), L, n) with, always, & € (0, +2).

4. Spin waves

4.1. Semi-classical picture of spin waves in thin films

The transformations (3.7) and (3.8) can be rendered jointly by a single transformation,
as follows:

df = 20 3wyl ) €L @.1)

bl

Acting with each side of this equality on the ground state |0), we obtain:
1> = Z uy(%, )%, T, (4.2)

where |Ij) and |%, 7) are, respectively, the state with one spin deviation localized in the
lattice site /j, and the state with one spin wave characterized by quantum numbers %, T.
By equalities (4.2), ulj(;, 7) is a function of the spin wave in Bloch’s meaning. On adjoining
the standard time factor, we obtain from Eq. (3.21), with T" the time:

| E(my ) S
uy(fs v e = Vlﬁ expi [+ gl I B ) TN uf(@),  (43)

‘whence the spin wave is found to be a plane wave characterized by the four quantum numbers
Hyy % @ and T : ' .
.+ To use the picture of precessioning classical spins (precession about p), one sees from
(4.3) that the amplitude of the precession cone N-*u,(7’) varies from one layer to another
in a manner depending on the quantum number 7’ (in bulk bodies, the precession amplitudes
of all spins are the same), the precession frequency is h=1E(x%, 7'), whereas the initial phase
in the lattice point /j is %+ j+¢l. Propagation of a spin wave consists in displacement of
the plane of constant phase in the direction %+ g@n, (the quantum number % is the wave
vector of propagation in the plane of the film and ¢ the wave number of propagation in that
of the normal n,). Certain highly significant differences appear with regard to the picture
of spin wave propagation in bulk bodies; namely, in thin films:

1) For any given vector %, the number ¢ takes ‘(see, subsection 3.3) only one value
depending on the structure of the body and type of orientation of the surface. This means
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that, given a thin film sample aad a well-defined propagation direction # in the plane of the
film, only one oblique direction of spin wave propagation is allowed;

2) Propagation in the direction of the normal is due to structural causes, since the
shift in phase by the amount ¢ on going over from layer I to layer I+1 (see, Fig. 3) is due
to the asymmetric distribution, in layer 741, of nearest neighbours of the lattice site [j.
As a consequence, the energy of the spin wave does not depend on the quantum number @

2k

N
!

\

-\
fA'—

Piane of fiim

Fig. 3. Semi-classical picture of a spin wave in a thin film (in direction of the normal). Explained in sub-
section 4.1

(¢f- Eq. (3.17)). (A ““structural shift in phase” like this occur sin bulk bodies only in the
case of structures that are not Bravais lattices: the initial precession phases of spins belonging
to different sublattices are different; cf. the case of hexagonal cobalt dealt with by Low [39]
and Valenta [40].)

In the case # = 0 (which involves ¢ = 0), the spin wave function is of the form:

) 1
ugy(%, v’y @) = VTV u(t’), (4.4
stating that all spins perform a precession in phase with one another. For this reason, the
function u,(z’) is commonly referred to in the literature as that of the standing spin wave
(mode). Since the quantum number v’ takes L values, L is the number of types of spin-
-wave modes able to appear in a thin film for a given value of the surface parameter.
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4.2. Effect of the surface parameter on the spin-wave modes

The shape of the spin-wave mode u;(7’) depends on the value of 7', which in turn
depends on the surface parameter 4 by way of the characteristic equation. The following,
general rule can be stated: for real 7/, the spin-wave mode amplitudes vary sine-wise along
the thickness of the film {oscillation modes or space modes; n—1 is the number of all nodes
of the n-th mode), whereas for complex 7’ the waves are of a “localized” nature, since
their amplitudes vary monotonously from a largest value at the surface to a smallest value

Az-00 A=0 A=1 A=2 Az+oo
Surface modes Surface modes

n=1 n=1, n=1, =1 '
] ' ; :
i n=2, T n=2, : n:=2' ) - n=2:
il ] : : ‘ : .
n=3/:\ 4: n=3' I, n:3! 4: n=3, i n=3: :
| neAl VARVALSY ) nee : n=4. - n<4:
A # ,(5/\ A AXA s /\;\/ s ! % nes! :
WAV RFA pvaliorh avalart NA [nes AN .
SAAA | T RAAL Y Y AR VYIS AVIES

) i ;
- v Y Vv |

0 0 0 0 0 0 0 o 0

0
L-1 L-1 L-1 L-1 L-1 L-1 L-1 -1 L-1 L1

Fig. 4. Shapes of spin wave modes (with low n) for various values of the surface parameter 4. Symmetric and
antisymmetric modes correspond to odd and even n, respectively ‘

in the middle of the film (surface modes). It is readily verified that the amplitudes of two
adjacent layers ! and /41 have opposite signs for v = kE (—7;-, n) and 7" =m+it; by

analogy with the terms employed in the theory of vibrations of the dia-atomic chain, we shall
refer to such spin-wave modes as “‘optical” ones. On the other hand, modes corresponding
to 7' =k € (0, 7/2) and t" = iz will be referred to as “‘acoustical”. The shapes of some low-
-energy (i.e. acoustical) spin-wave modes corresponding to different values of the surface
parameter A are shown in Fig. 4; we now proceed to discuss certain conclusions from these
graphs.

As A increases (consider Fig. 4 in the horizontal direction), the oscillations of all of
the space modes decrease (i.e. the effective number of wavelength ‘“‘halves” per mode
decreases) and the localization of the surface modes augments (see, Fig. 5). This last property
is illustrated in a different way in Fig. 6, which shows the surface mode amplitude in a given
lattice layer /in its dependence on the number # (it will be kept in mind that to an increase
in A there corresponds an increase in ¢, see Fig. 2). It may be of significant interest to draw
attention (Fig. 5) to the manner in which the shapes of the two lowest modes (n = 1 and
n = 2) change with varying 4. These modes are space modes for some values of A and
surface modes upward of a well-defined, critical value of 4 (cf., Fig. 2). The change in
shape is found to be continuous, the mode for 7" = 0 (£ = ¢ = 0) being of the nature of
a limiting, space-surface mode. (Note the shape of the antisymmetric mode £ = 0, Fig. 5,
at 4 =1.083.)
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From the preceding, we easily find the physical meaning of the quantum numbers &
and ¢: these are, respectively, the wave number of the space mode and the localization
increment of the surface mode.

4.3. Energy of surface spin waves

Localized states are of considerable interest in solid state theory. The whole of this
subsection will be devoted to a discussion of the general formula (3.17), which we shall
specialize to render the energy of accoustical surface spin-wave states.

1uyl*

LIy ? .
141 ! /_71-0 05

3 0.4
03
1=1 0.2

0.1

0

0 m/2 4

Fig. 6. Amplitudes of surface spin-wave modes (symmetric — continuous line, antisymmetric — dashed line}

for various layersin their dependence in the localization increment ¢ (I labels the layer; the film contains 25 layers).

The graph to the right deals with the case I = 0 separately. As  increases, the modes are found to localize at the
surface

t

Inserting 7’ = it into Eqs (3.24) and introducing the notation v = e¢™*, we obtain

after some calculations:

14041

Tt = 4@ v (4-5)

Throughout this subsection, the upper sign (‘4" in Eq. (4.5)) corresponds to symmetric
states, and the lower sign (““—" in Eq. (4.5)) to antisymmetric states. Eq. (4.5) will now be
solved in the approximation

oF = e £l. (4.6)

This inequality is satisfied at L3> 1 or at 4(%) > 1. Resorting to (4.6), we can rewrite Eq. (4.5)
as follows:

1—A()w = +oF "1 (1—0?). 4.7)



234

Since the right hand term is very small, we can assume in a first approximation v = A4(x)-1.
In the next approximation, we obtain:

v = A(%)"1F A(%) "E[1—A(%)?] (4.8)
which, with (3.17), finally leads to the following, approximate formula for the energy of
surface states:

E(x, A) = gug(H79)+25]o(z0—I"9) +4S] 12—
— 2SI, THI[A(%) + AGo M F 2L 514 (%)~ [L— A ()22 (4.9)

As already mentioned (subsection 3.3), the acoustical surface states lie below the
space state branch in the energy spectrum. In addition, Eq. (4.9) gives us the following
information (for comparison, the respective properties of the two space states lying lowest
in the energy spectrum are adduced in brackets):

1) the symmetric state has an energy lower than that of the antisymmetric state (the
same is true of the space states);

2) splitting between the two states amounts to

AR, = AST|T% A%~ [1—AG)]2, (4.10)

and decreases with growing A(x) and L (exponentially) (the energy gap between space
states is much less sensitive to changes in A(%) and L):

3) the position of the centre of energy, about which the two surface states are disposed
symmetrically, does not depend on the thickness L (but does so in the case of space states);

4) with growing film thickness L, the symmetric state shifts towards' higher energies
and the antisymmetric state towards lower energies (whereas both space states shift towards
lower energies). These properties can be resorted to as criteria for the experimental identifi-
cation of surface states (e. g. in spin-wave resonance).

Eq. (4.9) and the conclusions to which it leads are, in principle, valid for the majority
of samples used in experimental work, since their thickness ranges from 10% to 1044,
corresponding to L > 30 and satisfying the condition (4.6) with sufficient accuracy. In the
case of very thick films, one can neglect the splitting AE,,. in Eq. (4.9); in this approxima-
tion, Eq. (4.8) yields:

t =In A(x) O (4.11)
and the energy of the two surface states (the symmetric and antisymmetric one) is practically
the same and does not depend on L.

All formulas of this subsection extend to optical surface states on replacing 4(%) by

—A(x).

5. The surface parameter as a measure of the pinning of surface spins

5.1. Semi-classical interpretation

The notion of pinning was first introduced by Kittel [1] with regard to spins to account
for their tendency to ‘‘keep to”” the magnetization direction y. In the literature, various
quantities serve as a measure of surface spin pinning. In this Section, we shall propose the
surface parameter as a convenient measure.
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Dealing with a spm as-a semi-classical vector Sy we can take, as an absolute measure
of its pinning in the y-direction, the energy &;; possessed by it in the ground state of the
system. For surface spins, we obtain (see (2.1)):

xurf = emt+2s zl-fl (5 1)

where g, = —2S2z0]0 44Szz1]1—-gyBS(H‘ff y) is the energy of an internal spin-in the
ground state. By (5.1), the surface parameter A can be considered as a relative measure
of the pinning of surface spins as compared with the pinning of internal spins. At 4 = 0,
the two kinds of spins are equally ,,strongly* pinned; at 4 > 0 the surface spins are the
freer ones; whereas at 4 < 0 they are more strongly pinned (less free) than the spins within
the film. The difference in pinning between surface and internal spins is due to natural
defect as well as to the action of the surface anisotropy field K. Natural defect alone, to
which corresponds the value 4 = 1, obviously sets free the surface spins; let us agree to
denote as natural freedom the state of surface spin pinning which corresponds to 4 = 1.

The field K:urf of surface anisotropy contributes ‘addibtionfall‘y towards freeing or stron-
ger pinning of the surface spins, thus changing their freedom to greater or lesser than
natural. It is common usage in the literature to say that a surface spin is “unpinned” in the
former case but “pinned” in the latter. As a measure of this “anisotropic surface spin pinn-
ing”, we can take the energy of a surface spin’ when in the field K,,; or, equivalently, the
energy of all the spins present per unit area of the surface (in ergs per cm?):

E,= —gupSd=(K,;* y) = 25%J,d~* (4-1), (5.2)
with d — the lattice constant. In brief, we shall be using-the following terminology?2:

1) At 4 =1 (E, =0), the surface spins have natural freedom;
2) At 4> 1 (E,;> 0), they are unpinned;
3) At 4 <1 (E; <0), they are pinned.

In the situation when A = 0, the natural freedom of surface spins is compensated,
and their pinning becomes equal to that of internal spins. The cases 4 = +ocoand 4 = — oo
are, respectively, those of “‘perfect freedom” and ““perfect pinning”. The last case is the
one considered by Kittel [1] (¢f. Fig. 4).

5. 2. Quantum-theoretical interpretation

Asa quantum-theoreucal measure of the pinning of a sp1n S i We can assume the mean
energy E,j of the state a,j ;710> i. e. the state with one spin deviation localized in the site j.

Eq. (4.2) now yields:
E,;= Z lug(%, T)2E(x, 7). (5.3)

The larger is -E',j, the more difficult it is to deviate the spin simultaneously creating a *‘packet”

2 In our earlier papers [27, 28, 41], the terms “‘pinned” and ‘‘unpinned” occur in a different meaning.
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of spin waves, For thin films, it results that E,j depends only on the number / labelling the
layer (by Eq. (4.3)) and on the surface parameter A:

Ey=E4) = 2 TN Uu@PEG 7). (5.4)
An idea of E; = Ej(A) for surface spin (! = 0) is to be had from Flg 7, showing “‘spectra”

of |u(¥)|? for various values of A (for simplicity, we have put % = 0). With growing 4,
a) LIGI?

|
T k
Fig. 7. Spectra of squared amplitudes of spin-wave modes in the surface layer (/= 0) corresponding to various

values of the surface parameter 4 (L= 25). As A increases, the position of the maximum shifts towards the
bottom of the energy band pomtm,g to a wea.kenmg of ‘surface spin pm.mng (¢f Eq. (5.4)

the position of the maximum of |u;(7')[? shifts towards the bottom of the energy band,
proving that Ey(4) is smaller for larger values of 4 i. e. that surface spin pinning is weaker.
A similar analysis for internal layers (Kurczewskl [42]) shows that their |u;(7’)|®-spectra
vary with 4 insignificantly.

The preceding considerations, as well as those of subsection 1, permit the following
conclusion: The surface parameter A has the physical meaning (in both the semi-classical
and quantum-theoretical approach) of a measure of the pinning of surface spins.
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Numerous authors take the surface anisotropy energy E as a measure of this pinning.
By Eq. (5.2), a relation of proportionality exists between E, and A. Others atiribute this
role to the value taken by the spin-wave mode amplitude at the film surface. An analysis
of Fig. 4 (and 5) convinces us that the surface value of the amplitude can serve for measuring
surface spin pinning only in the cases of modes n = 1 and n = 2, since only these modes
present a monotonous dependence of the surface amplitude |ug,; _4(z')] on the surface
parameter A. B

In Part 2 of this paper, we shall calculate the spin wave resonance spectrum ‘and shall
show that the majority of experimental results are accessible to an interpretation within
the framework of the Surface Inhomogeneity model taking into consideration the depend-
ence of the surface parameter 4 on various physical factors.
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