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The use of saturation states in approximating the ground state of an anisotropic ferromagnet
is studied on a general spin Hamiltonian with interactions of arbitrary type and order, the only
conditions imposed upon the interaction tensors being (i) translational invariance and (ii) ex-
clusion of intra-atomic interactions. The equivalence (in a limited sense) of two different methods
is proven, of which the first one (A) resides in minimizing the classical counterpart of the spin
Hamiltonian with respect to the direction of parallel spin alignment, and the second (B) in eli-
minating from the transformed Hamiltonian terms that are linear with respect to spin-wave
(or spin-deviation) creation and annihilation operators. Furthermore, a refined method is developed
which is based on the minimization of the transformed Hamiltonian’s ground-state energy (in the
approximation of non-interacting spin waves). The latter method is shown to lead (under certain
conditions) to a better approximation of the spin system’s true ground-state energy than method A.

1. Introduction

It is well known that the (exact) ground state of an isotropic Heisenberg ferromagnet in
the presence of a homogeneous external magnetic field corresponds to the state of complete
saturation (saturation state) in which all the spins are parallel to the direction of the external
field [1-5]. If the latter is chosen as the x3-axis of the coordinate system, the state of complete
saturation can be represented by the so-called spin-deviation vacuum state [0 > defined
as follows:

SHOY = 510y, S7j0y =0 M

for all j, where S = S}:I:i»S:,-2 and S is the maximum spin eigenvalue. Here, S¢ denotes the
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vector components (¢ = 1, 2, 3) of the spin operator ascribed to the lattice site j, the com-
mutation rules being as usual

[S2, Spl = 10484555 2

Throughout the paper, we apply Einstein’s summation rule to the tensor indices a, b, c, ...
By applying the operators Sjto the vacuum state |0 > one obtains the complete set of
orthonormal simultaneous eigenstates | u > of the operators S?:‘

: S—u)! %, -
lu> =l yjn > = {H [((2%)—'(—;’]))—'] (S; )“’} 0 >, 3)

o
SHu> = (S—u) |u>, u;=0,1,2, ..., 25. @

Thus, the state | u > ascribes to each lattice site j a definite number u; of spin deviations.
The eigenvectors of a Heisenberg ferromagnet lie in the Hilbert space spanned by the
vectors | u >. In the case of an isotropic ferromagnet, the vector | 0 > represents the ground
state of the system and, therefore, when applying spin-wave theory its choice as reference
state (in the sence of [6]) is fully justified. If anisotropic interactions are taken into account,
| 0> generally ceases to be an eigenstate of the system and hence cannot represent its
groundstate (with the only exception of a specific uniaxial anisotropy and the magnetic field
parallel to the anisotropy axis; see, e. g., [5]). Since the exact ground state of an anisotropic
ferromagnet is unknown, various mathematical procedures are being used —according to the
problem be solved — in order to determine it at least approximately. Most widely in use are
variational procedures applied.to suitably chosen classes of trial states generated from |0 >
by spatial (generally inhomogeneous) rotations [5-9]. In this way, e. g., a theory of domain
structures has been worked out in [9-14], although the approximate ground - states derived
in those papers are unstable because long-range interactions and surface effects have been
neglected. - - - ‘ E :
 ‘Another case in point is the choice of reference states in the spin-wave theory of aniso-
tropic ferromagnets (and antiferromagnets, ferrimagnets etc. as well, for that matter), partic-
ularly if the external magnetic field is not parallel to a direction of easiest magnetization..
Apart from the fact that the ground state of a true ferromagnet is hardly one of uniform
magnetization (domain structure), a state of complete spin alignment (in any direction)
is usually not an eigenstate of a spin Hamiltonian with anisotropic interactions — even if
long-range coupling and surface effects are ignored. None the less, because of serious mathe-
matical difficulties such saturation states are commonly used as (homogeneous) reference
states in the spin-wave theory of anisotropic ferromagnets [5, 7, 8]. A typical example is the
uniaxial ferromagnet (or antiferromagnet) with the external magnetic field perpendicular
to the anisotropy axis, in which case one uses homogeneous reference states with field-
-dependent direction of spin alignment. In determining this dependence (and hence the
reference state), two distinctly different methods are being employed : the first one (method A)
resides in minimizing the classical counterpart of the spin Hamiltonian With respect to the
direction of parallel spin alignment [7, 8], the second (method B) — in eliminating from
the transformed Hamiltonian terms that are linear with respect to spin-wave (or spin-devia-
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tion) creation and annihilation operators [5, 15, 16]. Since the applicability of both the
methods is not necessarily restricted to the quoted case, the question arises whether they
ensure the best choice of a homogeneous reference state, and whether or not the results
depend on the particular method used.

‘While answering these questions, we shall not go into the much ignored but still
unsolved problem of whether the very use of homogeneous reference states is in those cases
adequately justified or, in other words, of how reasonable an approximation of the aniso-
tropic ferromagnet’s ground state is the state of complete spin alignment. (Note that the
departure of the reference state from the system’s ground state would be immaterial, indeed,
were it not for the standard approximations made i in the spin-wave theory, such as the neglect
of higher-order spin-wave interactions.)

In determining the homogeneous reference state for a quite general spin Hamiltonian,
we use the variational method in a semi-classical approach to a class of saturation states with
arbitrary direction of spin alignment, and show the methods A and B to be equivalent —
in a limited sense. Furthermore, we outline a refined approach in which the reference state
is determined by minimizing the ground state energy of the corresponding zeroth-order
spin-wave Hamiltonian (non-interacting spin waves), and show it to lead to a better approx-
imation of the system’s true ground state than the methods A and B.

2. Saturation-state approximation

Using spherical coordinates, we can denote by [0(, ¢) > the saturation state in which
the spins are parallel to the direction given by the angles 9 and . Such a state can be gemer-
ated from |0 >, Eq. (1), by means of a unitary transformation U = U(#, g),

03, ) > = U0 >, 5)
‘which transforms the set (3) into the orthonormal set
w(®, @) > = Utlu > . - ©

Instead of using the representation (6), it is convenient to transform the Hamiltonian H
(and other dynamical variables, if necessary) of the system,

A =URU+ = H(ﬁ 9, Y]
and to work with the representation (3). In carrying out the transformatlon (7) we note that
the operator U is equivalent to the matrix (R®) defined by (cp. [9])

UStU+ = R#®SE. ®
Thus,
A = UH(...53..) Ut = H(... UStU*.. ) = H{(.. RBSE..). )

If' 9 =0 and ¢ =0, 9 = 7/2 correspond respectxvely to the coordinate axes x and x;,
the transformation U can be specified as follows:

U=TIU; U= [exp(idSH] [exp (igS], (10)
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cosBcosp —sing sind cos @)
(R%) = [ cos & sin ¢ cos@ sindsing |.
—sin ¢ 0 cos ¢

The method A in our formulation resides in determining the angles # and ¢ by mini-
mizing the expectation value of H in the class (5), i.e.,

min <0(8, ¢)|H|0(9, ¢)> = min (0|H(9, ¢)[0). 1)

Let us consider a spin Hamiltonian with exchange interactions of arbitrary type and order:

H=3H, (12)

m=1
. A183...am Qa1 Qa a
H, = 2} Ajfe-7nSpSia .. Si.
Ji..dm .

(Note that Einstein’s summation rule applies to the tensor indices a;, @, ..., @,,) The only
conditions imposed upon the interaction tensors are:

(é) translational invariance, i.e., the tensors depend only on the differences between lattice vec-
tors:

ag...am . ...0m
Ah...]m A]l“]nh‘jz:n»

(%) intra-atomic interactions are excluded, i.e., Afm = 0if j, =j, as k # n (b, n <m).
Because of these conditions, monoionic anisotropies and multipolar (i.e., higher than
dipolar) interactions are not accounted for.

Condition (i) ensures that sums like

Z A%4%s..am —  [010s..0m (13)

Jijs...Jm

Jauodm

are independent of j,, and due to condition (iz) all the spin operators in the products in Eq.

(12) commute.
The application of the transformation (10) to the Hamiltonian (12) is, according to (9),

straightforward:
~ M ~
H=)H,, (14)

7] = as...am a;b 1 ambm bx bm
H, = 3 Ag-gmRobs .. RombnSl: .. St
Jieedm

Let us now replace the %;-components of the spin operators with the spin-deviation operators

= S—S3. (15)
This permits to split the Hamiltonian in two parts,
F—ioirkr, =X, B=XI 16)
m m

where HO is a c-number, as

I?'(')’ = NS™A%..amRa:3 Rm3 a7
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(V being the number of lattice sites), and H], are operators consisting of linear combinations
of products of the form
Sn.. Sy, ..u (18)

1 Jp “JpH1 Ja?

J
0<p<qg<m, p+qg>0, r,=12

Due to (1) and (i) we have

OISz ... S;;zsz e 4igl0> = 0. (19)
Hence, <0|H"|0) =0 and
OIH|0)y = Ho = E(3, ). (20)

For further purposes, let us single out of A’ the terms with p=gq=1, (which are
linear with respect to the operators ), and those with either p = ¢ =2, (bilinear with
respect to S) or p = 0, ¢ = 1 (linear with respect to u) One easily verifies that these parts
of H', denoted respectively by H' and H?2, have the forms

T = K 3 87, 1)
J

P =3 BSisi—C Ny (22)

J1fa i

where
M m )

K= Z Sm—1parpad  pamd Z Aone-oram (23)

m n

B;:;: — % Sm— 2 R R TS Ra,s. . Rams X

X 2 Z A;‘:f‘,l‘";‘,‘"';:‘"g:'."‘, 24
Js.odm nyk
C — Z Sm-—lRaﬁ.”Ram:i Z Aan...a‘...am. (25)
m=1 n=1

In the above formulae, we use a simplified notation, according to which in (23) and (25) the
indices @, and g, are to be interchanged in the tensor 4% defined by (13), and in (24)
the pairs of 1nd1ces (@1 71)» (ay)p) and (a,j,), (azj;) are to be interchanged in the interaction
tensors of the Hamiltonian (12). Note that

B"l" _— B"l"z . B”l"l (26)

J1Js J1~Ja Ji—ja

due to conditions (i) and (7).
We can now apply the classical saturation-state approximation (11) to the Hamiltonian
(12). According to (16), (20) the quantity to be minimized in the class of trial states (5) is

o
E@, 9) = X Hy, 27)
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‘the conditions for E to have a minimum at 9, ¢, being

[0E]d¢], = [9E[d9], = O, (28)
[(92E|9¢?) (92E|99%) — (92E[999¢)%]o = Ay > 0, (29)
[92E|99%], > O (30)

where the symbol [ ], indicates the insertion of ¥, ¢,.
From (27) and (17) we have

M )
(©OEjo) = 3 (GH/81), ¢ = 8, 3 (31)
(aﬁ'(')tlat) = NS™Ae--am[3( RSB, Ram3) /01]
= Nsm(aRaxalat) Ra’3...R“m3 ZAan...a,...am (32)
: . op=1 -
with the notation as in (25), and from (10) it follows that
(OR®|9¢) = R**sin 9, (9R%[99) = R (33)
Thus, equations (28) take the form
[2E[d9]y = NSK (84, o) =0, (34)
[9E[9g]o = NS sin $,K2 (8¢, o) = 0 (35)

with K and K2 as defined by (23).
It is seen that sin 9 # 0 implies K" = 0, and the same holds for the solutions sin ¢ = 0
if A, defined by (29) is to be non-negative so that minima may exist, as in that case

Ay = (NS)2 [(9KY/99) (9K?[dg) sin & —
—{(9K2/99) sin 9+ K2 cos §)%], = —(NS)? [K?]; <O. (36)
Therefore, the necessary corditions for minima of E to exist are in either case K" = 0.
This, however, destroys in the Hamiltonian automatically the terms that are linear with
respect to the spin components .S}, as is evident from (21). Obviously, this is equivalent to'
the elimination of linear terms in the Hamiltonian when passing, as usual, from the spin’

operators to. the more convenient Bose operators a;, af (cp. following Section), no matter
whether using the (non-unitary) Dyson-Maleyev mapping ;

St —>128(1—n;[28) a; S —}25aF,
S?—>S—n;, n;=afa, [apafl=0 (37
or the (unitary) Hblétein-l;rimakoﬁ mapping l | '
- St = (S > VQST;ijaj = V2§{1—ﬁj/45—...}aj, (38)

o8 CoA
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or, for that matter, any other mapping in any approximation [17-21]. (Note that the transi-
tion from S} to n; has actually been carried through in (15).)

Ttis thus seen that the method B, as applied tosimple Hamiltonians and specific rotations
in [15,16] resides, generally, in determining the angles @, ¢ from the conditions K" = 0 which,
as shown above, coincide with the necessary minimum conditions (28) of method A. In this
sense both the methods are equivalent. However, the method A requires beside (28) the
conditions (29), (30) to be satisfied, too, which permits to eliminate some of the solutions.
of the equations K" = 0. Also, the method A has a clear physical meaning, as it aims at
determining the approximate ground state of the system, whereas the method B serves
purely mathematical purposes (elimination of linear terms from the mapped Hamiltonian
equivalently, of constant terms in the respective Heisenberg equations; cp. [15. 16]).
These arguments speak, in our opinion, in favour of method A.

One easily verifies that the semi-classical minimizing procedure used in [7] in deter-
mining the approximate ground state of an anisotropic ferromagnet in the saturation-state
approximation is strictly equivalent to the method A as formulated here.

3. Quasi-saturation-state approximation

~ In the spin wave approach to ferromagnetism, the spin Hamiltonian is eventually ex-
pressed in terms of Bose operators [19-21] and, upon elimination of linear terms (in case
they appear), its bilinear part can be diagonalized by means of Bogolyubov’s general transfor-
mation [6-8]. This procedure produces additional constant terms in the (mapped) Hamil-
tonian and leads to an approximate ground state energy that differs from (27). Clearly, if
the conventional spin wave approach is considered to describe adequately a ferromagnet
(or antiferromagnet) at low temperatures, the minimization (28)-(30) should actually be
carried through after — and not before — diagonalizing the Hamiltonian. This should
ensure a better approximation of the system’s true ground state energy and, consequently,
the best choice out of the class of homogeneous reference states (5). In the limits of non-
-interacting spin waves we shall show that such is the case (under certain conditions) for the
Hamiltonian (12).
For this purpose, let us apply the mapping rules (37) or (38) to (21) and (22), and
neglect all the terms higher than of second order with respect to the Bose operators. This
yields the zeroth-order (free particles) Hamiltonian

ﬁu= E+4y Z.aj-l'xzaﬁ-l-
g S 7

1
+ E 2 Pmaa’f-rah +2szah a],+P,,,, X ,,)7 . (39y
J1Js
where o
P;; = S(BY, —B¥ +2iB}%), (41)

Q. = S(BY +B%)—2C0; ;. (42)

J1J2 J1je
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and the remaining symbols are defined by (23)-(25) and (27). (Note that the linear terms in
(39) vanish if conditions (35) apply.)
The method A as defined by (11) amounts to minimizing E = (0|H,,|0>, whereas now
we shall minimize the ground state energy of Hj;. To eliminate the linear terms in (39)
we use the transformation [6]
a5 =g+, )
which leads to

- _ _ N . —
Hy = E+N(gx+gx) + - (8%P+2880+8°P) +

+y Z b +y Z bi+ 5 Z (Pibit b} +2Q;.b3b;,+ Biibibs) (44)
where "
— x+gP+8Q, (45)
P= Z e Q=0Q= Z Qi (46)
The constant g is determined from the condition I
y=0. 47)

In the case of inhomogeneous fields or reference states, the constant g in (43) depends
on the lattice site j, and the same holds for the coefficient y; moreover, (when higher-order
terms are taken into account in (39), the coefficients y; become non-linear functions of the
constants g;, and condition (47) converts into a set of non-linear equations.)
The solution of (47) reads
= [%Py—x (Q=PY2W, g5 = [xPy—x, (Q+P][2W, (48)
W=Q@-P}—P}+0

when splitting the complex quantities g, x and P into their real and imaginary parts,

8 =g1tigs, x=x+ixg, P =P;+iP, 49)

With that the Hamiltonian (44) takes the form
- P..btbF +20. .bib, +P; . 50
iF 9 Z ( wi0ia O, +2Q5,5.55, 05, + m; Eh J.) (50)

JiJs
where

OF = N[2xx,Py—x3(Q—Py) —3(Q + Pyl /2W

= Dx3+2Fxx,+ Ga3. (51)
If Q> P;, then
8E <0. (52)

{Note that all the quantities are functions of 9, ¢.)
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Although E' = E+6E is not yet the ground state energy of the Hamiltonian (39),
it is instructive to write down for E’ the conditions (28):

OE'|9t = OE|9t+ (53)
20,10, (9D 9t) +2D(2,|9%) + 325 OF|98) -+ 2F (925, 91)] -+
2,0, (9G91) + 26 (92, [ 82) -+ 2, (OF|82) +2F(92,/04)]

where t = @, g. From (34), (35), (40) and (48) it is seen that the solutions of (34), (35) are
among those of equations (53), though they do not necessarily correspond to minima of E’
even if they do satisfy the conditions (29), (30). In fact, for the case of a uniaxial ferromagnet
with perpendicular external field it can be shown [22] that the minima of E correspond to

maxima or inflection of points E'.
- The exact ground state energy of Hj; is obtained upon diagonalizing (50) by means of

Bogolyubov’s linear transformation

b = Z (u kck+v]kck) [e €] = O (54)

which leads to
Hy=E'+ Y Egcie,
%

E” = E+ 6E+AE, AE == Z lvjklz Ek' (55)

The coefficients uj,, vj, are determined by a set of homogeneous linear equations, and the
quasi-particle (spin wave) energies Ej are obtained from the corresponding secular equation

(see [6, 7] for details).
E” is the ground state energy of Hj; if E, > 0. The minimization of E" with respect

to 1, @ ensures a better approximation of the spin system’s exact ground state energy E,
than the minimization of E if

E,>0, Q>P, <O0,H0,<E" (56)
where |0;;) denotes the ground state of Hy,. In that case, namely, we have
Ey < E"(, ¢) < E(9,9), (57)
hence,
Ey < min min E” < min min E. (58)

One easily proves that |0;; > does not correspond to a state of complete saturation in
the direction given by the angles 9, ¢, obtained from the minimization of E". Let us ex-
press the operators S} (strictly speaking: their mapped counterparts S—ﬁj) through the
operators ¢, ;. Accordmg to (38), (43) and (54) we have

S} > S—aja; = S—|g|*—gb;—gbj} —bjb;
= S—lglP— 3 loul*— X s +evpleath o]

Z (upvjpcrcr +h- c. )— Z (u;k”,k ‘H’,k k)ck Cpre (59)
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Clearly, |0,; > is neither an eigenvector of S} (i.e., of S —ajta;) nor of 3 S?, and the
mean value of Sj3 in this state is. oo Ll

<0H|S,?|Ou} ‘:‘S—"]glz—‘ﬂ§ [v]2 < S. (60)

Hence, there is no comple}e spin. alignment in the direction 9y, ¢, in the state 0, >.
which is why we call it the quasi-saturation-state approximation.

4. Concluding remarks

The method A as formulated in Section 2 is termed saturation-state approximation for
it resides in minimizing the mean value of the spin Hamiltonian in the class of saturation
states (5). It is shown to be equivalent — in a limited sense — to method B which resides
in eliminating linear terms in the mapped Hamiltonian (39). The method outlined in Sec-
tion 3 is based on the minimization of the mapped Hamiltonian’s ground state energy (here,
in the free-particles approximation), and the corresponding ground state is shown not to
represent a saturation state. Hence, it is termed the quasi-saturation-state approximation.
The latter method ensures a better approximation of the system’s true ground state if condi-
tions (56) are satisfied. ‘

The quasi-saturation-state method has been applied to a uniaxial ferromagnet with.
the external magnetic field perpendicular to the anisotropy axis [22], in which case the
mmequality (57) can be proven to hold, though the minimization of E” cannot be carried
through rigorously. From (51) and (55) it is obvious that even for simple Hamiltonians E'*
is a much more complicated function of &, ¢ than E. This leads to considerable mathematical
difficulties in practical applications: By contrast, equations (34) and (35) of method A or B
are relatively simple and can in simple cases be sblved'rigorously [7, 8, 22].

The equivalence of method A and B has been proven here for the class of saturation
states (5) that correspond to homogeneous rotations, (10). One can show that the same
(limited) equivalence holds for inhomogeneous reference states [23], and that for a simpler
spin Hamiltonian with intra-atomic interactions included the proof can be extended to the
general case of a ferri- or antiferrimagnet with arbitrary number of sublattices [24].

Finally, it should be emphasized that the conclusion drawn from (60) is actually independ -
ent of the method of determining the angles ¢, @. For instance, when applying the method A
(or B) one does not need the transformation (43) as x = y = 0 this, however, does not.
destroy in (60) the term originating from the transformation (54). Hence, from this point.
of view the methods A and B are also quasi-saturation-state approximations. In fact, except
for the cases when the saturation state is an eigenstate of the spin Hamiltonian (isotropic
case or simple uniaxial anisotropy with field parallel to anisotropy axis) and the transforma-
tion (54) reduces to a Fourier expansion (v, = 0, cp. [7,25]), the state |0;; can never corres-
pond to a state of complete saturation, as the angles , ¢ would otherwise have to satisfy
simultaneously the set of equations g = v, = 0. An instructive example is the use of the
pseudo-dipolar coupling in describing anisotropic interactions, in -which case there is no
saturation in the ground state in the absence of an external field [26].
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Tt may also be noted that the inequality (60) represents a criterion for the applicability
of homogeneous reference states. If the departure from saturation in the ground state [0,
becomes large, either higher-order terms (interactions) must be taken into consideration
in (39), or else a wider class of reference states must be admitted (e.g., the inhomogeneous
reference states of [6]).
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