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EFFECTIVE POTENTIAL CURVES FOR DEGENERATE VIBRATIONS
IN THE JAHN-TELLER EFFECT
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The decoupling conditions for the vibronic equation, describing the Jahn-Teller effect
in a three atomic molecule, are analysed. It is shown that for vibronic states with sufficiently
large projection of the total angular momentum the decoupling procedure is quite accurate and
leads to the separate effective potentials for nuclear movements.

It is well known that for degenerate electronic states in molecules the Born-Oppenheimer-
approximation is invalid. In such cases mixing between electronic and nuclear motions occurs.
This situation appears in nonlinear polyatomic molecules which possess at least a Cj axis
of symmetry and the interaction between degenerate electronic motions and degenerate,
not totally symmetric vibrations, leads to the Jahn-Teller effect [1]. Because of the failure
of the adiabatic approximation, a single-valued potential energy for vibrations coupled with
electronic motion does not exist. The situation is similar in the Renner effect [2] and in the
vibronic coupling in dimers [3]. We have shown [4, 5] that in limiting cases the two-dimensional
vibronic Hamiltonians, describing the vibronic ‘coupling in dimers and the Renner
effect, can be reduced to some one- -dimensional Hamilfonians with an effective potential
energy for vibrations. In dimers this can be done for sufficiently strong interaction between
monomers, and for the Renner effect for a sufficiently large projection of the total angular
momentum of electrons and nuclei on the long axis of a linear molecule and not too small
Renner parameter. Numerical calculations have been performed for dimers [6] anid confirm
the decoupling procedure used in reference [4].

In this note we shall investigate a similar problem for the Jahn-Teller effect. We consider
a three atomic molecule belonging to the C&, symmetry group and suppose that all electronic

The vibronic function for this case is [7]
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where Q, Q— are the normal coordinates of degenerate vibrations which couple with elec-
tronic motion, Q; is the normal coordinate of the totally symmetric vibration which satisfies
the Born-Oppenheimer approximation, and ¥ (q) are the degenerate electronic wave

functions.
The equation for functions 7., #— can be obtained from the variational principle, and
reads [7]
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H(Q) is the electronic Hamiltonian which depends parametrically on vibrational coordinates,

W(Q,) is the potential energy curve for the totally symmetric vibration, and £ is the Jahn-

Teller parameter of distortion. In Eq. (2) we have retained the linear coupling term only, i.e.,

we have ignored the pseudo-Jahn-Teller effect. ‘
Inserting
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into Eq. (2) we obtain
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and j = +£1/2, £3/2, £5/2... = =1/2 + A, where ! is the quantum number of the vibrational
angular momentum and / is the quantum number of the electronic angular momentum in
a given degenerate state. j is the good quantum number in a linear Jahn-Teller effect and the
optical transsitions between vibronic states which differ in j by &1 are allowed.
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Introducing the dimensionless quantities
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in order to include most of the energy in the diagonal terms of Hamiltonian (8) we transform
it by the unitary transformation

U = cos p65+sin ¢oy

ctg2p = — 2 ¢ ©
and obtain
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Now, we see that the térms proportional to the 6, matrix, which couple the functions
R, and R,, have upper limits, namely: o

dy

—_r Y,
dq < Al
Py 1 dy
L L24 4, ——
dg? q dq

where A = x[j. The term proportional to 63 matrix possesses a minimum:
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Assuming that the derivatives of R, and R, are not excessively high, we may neglect

the coupling terms, if only in the whole region of the g-space the diagonal term (13) is larger
than the nondiagonal ones. This condition is satisfied for

%2> 1 and |j]| >—g—. (14)
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Also for vibronic states with the projection of the total angular momentum | j|>max (2, 3/2)
we may seek the functions R, R, from a one-dimensional effective Schrodinger equation
of the form:
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If we formally put j = 0 into Eq. (17) we obtain curves discussed by Longuet-Higgins [7];
of course such vibronic states do not exist. For vibronic states with |j| = 1/2 we can never
speak, even approximately, about the motion of nuclei on a given potential curve, and only
for higher quantum numbers j, and not too small distortion parameter k are the potential
curves well separated.

The author is indebted to Professor A. Witkowski for helpfull discussions.

REFERENCES

1] H. A. Jahn, E. Teller, Proc. Roy. Soc., A161, 220 (1937).

2] E. Renner, Z. Physik, 92, 172 (1934).

[3] A. Witkowski, W. Moffitt, J. Chem. Phys., 33, 872 (1960).

[4] A. Witkowski, M. Zgierski, Int. J. Quant. Chem., 4, (1970) (in press).
[5] A. Witkowski, M. Zgierski, Acta Phys. Polon., A38, 87 (1970).

[6] R. Lefebvre, M. Garcia Sucre, Int. J. Quant. Chem., 1, 334 (1967).

[7]1 H. C. Longuet-Higgins, Adv. in Spectry, 2, 481 (1961).



