Vol. A38 (1970) AéTA PHYSICA POLONICA Fasc. 1

MAGNONS IN THIN FILMS AT LOW TEMPERATURES
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Spin wave procedure is adapted to ferromagnetic thin films with sufficiently strong uniaxial
anisotropy parallel to the film surfaces by using the Heisenberg Hamiltonian for Valenta’s model
of sublattices. The demagnetizing effects are included by means of the effective demagnetizing
factors. The conditions determining the occurrence of single domain films are given. They lead
to the conclusion that the single domain films occur below some critical thickness and the domain
structure appears above it. The magnetization is directed along an axis parallel with the film
surface. The magnon frequencies are determined.

1. Introduction

Low temperature theoretical studies of spontaneous magnetization in ferromagnetic
thin films were made by various authors who, however, did not take into account the angular
distribution of magnetization [1].

The distribution of magnetization directions in a film is one of the important problems
in thin film physics. Such a distribution can change the energy eigenvalues and spin wave
amplitudes [2] and so leads to the dependence of properties of a film on the distribution
of magnetization directions. Up to the present the theoretical considerations are mainly
connected with two problems:

1) the direction of magnetization in single domain films [3] and
2) the appearance of magnetic domain structure [4].
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The aim of this paper is to discuss the spin wave spectrum of thin films in which the distribu-
tion of magnetization directions is taken into account. Conditions of the homogeneous
magnetization or of the appearance of domain structure are also considered.

We assume Valenta’s model of sublattices [5]. A thin film is considered as a superposition
of n monoatomic square layers labelled by » in the direction of the X-axis of the coordinate
system connected with the film. The position of an atom in the plane (yz) is given by the
vector j. In the direction y or z there are IV atoms. The magnetization direction is determined
by the angle ¢,; which describes the rotation of the quantization axis around an axis with
direction cosines ef; (@ = «, ¥, 2) [4]. The distribution function of this angle can be obtained
by minimization of the free energy of the system. This free energy can be calculated by means
of the usual thermodynamic procedure from the partition function which is the trace of
the density matrix diagonalized in the class of the eigenstates in which the Hamiltonian is
diagonal.

For the sake of simplicity of calculation we consider films with simple cubic crystallo-
graphic structure and with uniaxial anisotropy, sufficiently strong in the plane of the film.
This allows us to discuss the stripe domain structure. The demagnetizing field is assumed to
be an effective field expressed by the classical demagnetizing factors.

2. Magnetization direction in single domain films

Let us consider single domain thin films. Their magnetic properties can be described
by Hamiltonian of the form
H= —J@g;j') ; SySvi— % K(»)S3;S5+ ; ; NeSESH )
where S}; denote the spin operator components (@ = x, ¥, z) in the lattice site (vf). The
brackets () indicate that summation is carried out only on pairs of nearest neighbours.
The first term of (1) represents the Heisenberg term with the exchange integral J.
The secoud term corresponds to uniaxial anisotropy including the surface anisotropy effects.
The anisotropy constant K(v) is of the form

K(v) = K+K'(8,,+9,)- )

The third term describes the demagnetizing field Hamiltonian. By analogy to the classical
treatment of this problem the demagnetizing field is assumed to be proportional to the magneti-
zation of the film. In terms of quantum theory this corresponds to the proportionality to the
spin operdtor with the proportionality factor given by classical considerations. Taking into
account that L, €L, L, ~ L, (L, denotes the dimensions of a sample) we can approximately
put N*=~2n3, N’ =0, N* =0, 3= (gh)%Vy; g is the gyromagnetic factor, f—Bohr’s
magaeton, Vy denotes the volume of an elementary cell.

We make the transformation (used in the theory of the screw structures of bulk bodies [6])
to the coordinate system in which the z-axis is directed along the magnetization of the con-
sidered atom in the (»§) position. This transformation is of the form

S5 = 52 RS, 3)
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where

R:ff = Z aayﬂ Sll’l q) .+ azﬂ Ccos (pv1+ev] vj(l_' cos (pVJ)

and &*? denotes a completely antisymmetric tensor. The direction of the magnetization can
be determined by the angle ¢ with respect to the plane of a film. This angle is taken to be
the same for each spin of a film. It varies from 0 (magnetization parallel with the surfaces
of the film) to /2 (magnetization perpendicular to the film surface). Thus the transformation
(3) is reduced to R“ﬂ = R for e,=1,e,=¢,=0.

Next we apply the dlagonahzatlon procedure discussed in [7]. The main steps of this
procedure are the following:

a) We introduce the creation and annihilation operators of spin waves in the Holstein—
Primakoff approximation by means of the relations

S5 = VZSa,,’, Sy =S—a,a,. 4)

(]

i into a; by means of Fourier transformation in the

b) We transform the operators a
plane of a layer; A& denotes the Wave vector in the plane of the film.

¢) To diagonalize the terms of the type a - af  we divide the region of propagation
vectors in the film plane considered into two regions such that if b belongs to the first region
(h) then —h belongs to the second one (k). The point b = 0 is excluded and will be treated
separately.

d) We mtroduce the canonical conjugated operators gq,,, p,, by means of the usual

-elations aX = et
re 1 vh V2 (%h ph)

e) We transform the operators g,,, p,, into the operators q,,, p, representing independ-
ent oscillators. This transformation is of the form

= 2 T (5)
th Z Twp Th'

The coefficients 7%, T?" are determined by means of the difference equations [8] (s.c. struc-

vT?

ture is assumed with orientation (100))

_xthfrh—i_ Tf-’ifl 1: Tffl = (6)

with the boundary conditions
(H—a T3+ T = 0, (62)
o o @

2 Tl = e (6¢)
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The index k represents g or p respectively; the parameter *" is determined by the surface
anisotropy K’ and the angle ¢ as follows

rh — pph — ] 4 I—j—cos2 @,

[

rah = pph — ] 4 K7 cos? @. (6d)

The point b == 0 is now included into the first (k) region.
The solution of (6) with respect (6a), (6b) and (6¢) is given by

L I:“kh (v—— n—l—l) - n(‘c—l):l

2 2
xfh = 2 cos oc];h, (7

where a*play the role of x-components of a spin wave vector. The solution for a* depends
on the surface anisotropy constant K'. For K’ > 0 we obtain the surface modes (¢f. [9]).
The important role of this parameter K’ in the resonance effects, especially, in the appearance
of the surface resonance modes, is discussed in [10]. The various approaches to the resonance
problem (¢f. [11]) show that the surface anisotropy is responsible for the appearance of some
of the resonance peaks which are observed in experiments. The surface parameter K’ also
influences the variation of magnetization across a film [12].
Eventually we obtain the diagonal form of the Hamiltonian (1) as follows:

1
H= H0+H'(’)+ Z Eop, (nrh + _> p (8)
zh

2
where
1 K N* 2 K’
— 2 — A 2 A g = 2
H,= JS(S_—I—I)Nn[(3 n) + 7 cos? ¢ — —sin 9+ — = (p],
1 K/ 2
| [Z T3 (K+N%) 5 + 7(Tf?+z~f,2>]
' rQane sinz(p_l_ Y |
Hy= — J$:N°n \—; nZ KW
T 1—cosa; + 7 cos2¢
Ep=17JS [em+2- cos2¢ En+2 cos2 p—2-—| ,
J J J
gh
Eup = sinzhyTa + sinzilzz—a + sin? OZ -

In the above formula Hy originates from the shift transformation reducing the linear terms.
n,, denotes the mean number of spin waves. v

The direction of magnetization can be obtained by minimizing the free energy of a sample
with respect to the angle @. At absolute zero temperature this corresponds to the minimization
of (8) for n,, = 0. The calculations lead to the following results:
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The direction of magnetization depends on the anisotropy constants, the demagnetizing
field and the film thickness. The conditions for occurrence of magnetization parallel or
perpendicular to the film surfaces are found to be analogous to those discussed in [3]. However,
in our theory, an additional condition should be taken into account, i.e. the spin wave spectrum
should be positive; then K > N*tg?¢.

In our case of films with sufficiently strong uniaxial anisotropy in the film plane the
above conditions are fulfilled if the magnetization is parallel with the surface of the film.
This case (strong anisotropy) is especially interesting in investigations ol domain structure
in thin films; the domain in the form of stripes then appear and such structure is relatively
simple to describe. The considerations of domain structure in the present paper are con-
nected with the conditions in which the appearance of single domain films is possible.

3. Domain structure of thin films

In the following we assume there is a domain structure, which appears in thin films with
sufficiently strong uniaxial anisotropy lying in the plane of film. The domains are stripes
parallel to the magnetization. The width of the domain is A. The neighbouring domains with
antiparallel magnetization are separated by a wall of width 6. We would like to notice here
that the domain structure examined by us is different from that called in literature “‘stripe
domain structure” in which the magnetization points out from the plane of a film due to
strong anisotropy perpendicular to the film surfaces.

In the present paper the domain structure is considered as a screw structure with the

angle @,;. In the case of our domains the angle distribution can be assumed, for the sake

TR A S - . 7 7
of simplicity, in the Néel aproximation: cos? ¢,; = 1, inside the domains and ¢,; = 57 + 5
in the domain walls, where y is calculated from the wall midplane. This means that the
domain structure can be considered as the screw structure in which the rotation angle of
the quantization axis is a constant inside the domains and changes linearly inside the walls.
Now, the coefficients Rf,‘f in (3) are functions of the y-component of the vector j(p,; = @,)-
We consider the Néel (¢f; =1, €);=ej;=0) and the Bloch (e; = ej; =0, ¢}; = 1)
walls. Taking into account the mentioned Néel approximation for a distribution of the
angle @, we can assume by analogy to Zietek’s calculations [6] that the angle ¢, changes

very slowly between two neighbouring positions of spins. Then the following approximations

are valid
1) cos (g —p,) = 1 inside the domains,
b= Py) = 1—3a22(v'j'—vj)n?/6? inside the walls,
2) sin (¢ —g.) = 0 inside the domains,
S0 Py Py av,(v'§' —rj)m/0 inside the walls,

3) sin @, = 0 inside the domains.
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Here a is the lattice constant and ,(»’j’—j) denotes the direction cosine determining the
position (¥j') of the nearest neighbour to the atom (1) with respect to the axis y of the
coordinate system. In the case of the simple cubic structure we have 6 nearest neighbours
with the coefficients v, (»j'—2j) = >(0,0, 1, — 1,0, 0).

We start from the Hamiltonian (1). Now the demagnetizing factors are different for
spins in the domains and those in the domain walls. Their values can be determined by
assuming approximately that the walls are ellipsoids with the axes 8, L,, L,, whereas the
domains are ellipsoids with the axes 4, L., L, [13].

Substituting (4) and (3) into (1) and taking into consideration the approximations
described in this chapter we can express the Hamiltonian (1) in terms of the creation and
annihilation operators, neglecting the products of more than two operators, as follows

H = Hy+Hi+ 0+ Hy ' Hf* + Hy ® + Hy+ Hy, 9)
where .

Ho = —_J Z S(S+]') Cos (¢'y’—(py) - ; S(S+1)K COS2 ¢y+

X e

+S5(S+1) Z [NV*(y) cos® @, +N*(3) sin® ],

lVS 252[(K+Ny(y) —N(y)) sin 2¢,+2] 3 sin (p,—9,)](a;;—ay;),

v'§’ € v}

H* = Z V() — V(5] sin? g, + [K ~N(y)] sin? g, }adai,

S
Hi=— 37 ) (L—cos (g —m) oy,

{vgs vy
Hy=S ; L*(y) (ay; av +asjas}),

: S - =
Hy— =57 ) (+oos (py =) (@favy +asaly),

{viv'd'>

L) = L+ 5T Y cos (g —5),

v'j’ evj
1 . 1 :
L(y) = | K—N#(y) + §Ny(9’) costgyt 5+ | -5 K+ 5 N#(y) —IN*(y) | sin? gy.

Next we can apply the usual steps of diagonalization procedure described in the previous
chapter and applied to films with domain structure in [4]. However, taking such procedure
into account in the case of films with hexagonal structure, it was possible to diagonalize the



113

Hamiltonian only approximately [4]. In'the case of films with the simple cubie structure and
with K’ = 0 the complete dlagonahzauon can be obtained. At first there is to be made the
transformation / o ‘

ai—ZTa;i;, _ . (10)
where the coefficients T, satisfy the conditions
(1—/‘:1) T11+T2r = O’
(1—x-r)Tm+ Tn—-’l,r = 05
: v+1 1+T ';erh =0

:They have the usual form [14]

T,,? =V1 ‘;f]_t cos (W(Tn—].) (’V—— %)) : i
%y == 2Iéos‘ (M)

The introduction of the transformation (10) as the first step is possible for the Hamiltonian
for which the coefficients T, are independent of h. This is satisfied, in particular, for films
with the simple cubic structure and without surface anisotropy.

and

Next we transform the Hamiltonian in the plane of the film by two steps. We apply
first the standard Fourier transformatién in the direction of the magnetization

TJsz (1/N) Z elhzjz Uzp, 2" (11)

By analogy to the calculations in the previous chapter (transformation steps c) and d) we
isvide the region of propagation vectors in the film plane into two regions such that'if &,
dilongs to the first region (%,) then — % belongs to the second one (h,).. The point 4, = 0
be excluded and treated separately [7]. Next we introduce the canonical conjugated operators
Donsiy> Prhziy:

In the second step we introduce new transformation in the direetion perpendicular to
the domain walls:

Gotein = 23 Ty, o Gon T o) (12)
: Y

p‘thz]’y : ; Fiy,y(ch+RgOhy)'
Y
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In this manner'the diagonalized Hamiltonian (1) becomes '
H=Hy+H+ Z E,,.<n,,,+ 5) .
z
o = 1 q ‘2 El 1 AT EP 1
0= — 1 Z [(R6ony)2 (Edon,) ™+ (Roor,)? (Eoon,) ],
hy .

+8/2

SYSN
Eop = 2AESWEL)%; R&, = ‘fth”[ V9 f ’;y g, dy (13)
i —é/2

where Hy is given by (9). The values E?,, E%, and the transformation coefficients I a3 f,fy’y
satisfy the following difference equations for. 2, belonging to the first region

A TSIy g+ Ty ]+ [Bop— Yol T3, , = 0, (14)

2 2
where s=g¢ or p and 4?=1, 4? =1 inside the dornains ‘and AP =1— % (%)

inside the domain walls; P

Yia= B +I(), Ea, = 2JS [sin2 e sine “—(;n;l)] + IS4,
. i |
Li(y) = S { lK —N() + 5 N"(;V)]  cos? @, —N3(y) - sin® %},

I2(y) =S {[K —Ne(y) +(y) — —;— N"(y)] 008? @y+[N*(y) K ~DP(y)] sin® %}--

The coefficients T,‘,y » for b belonging to the second région have the following properties

Ty hyy T hy,y’ I lfy,y‘ =TI, oy (15)

and for Ak, = 0 these coefficients are the same as for the first region. We remember that
the described coefficients must. fulfill the: orthogonality ‘conditions.

2 Dhus Ty = Onyy; (16)
¥

To determine the spin wave eigenvalues (13) in the films with domain structure the
parameters 6 and A must be known. At absolute zero temperature these parameters can be
calculated by minimizing of the energy (13) for n,, = 0 with respect to 8 and 4. The energy
of a sample found in this manner is the energy of the ground state in which the “‘zero point”
fluctuations of spins are included. Taking into account our results obtained by the same
method [15] for the case of simple hexagonal structure we can see that the contribution of
the ‘‘zero point” fluctuations can be neglected for sufficiently thick films. To calculate the
domain parameters in their explicit form the factors N* must be known. For the sake of
simplicity we assume for them the simple form used in the classical theory of domain walls:
N*, N? inside the walls are the demagnetizing factors of an ellipsoid (¢f. [16]); N* inside the
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:dpmains can vbe‘ vapproximated by [17}: N* = 2n3 I {A—6). Minimizing H,, we thain the

following equations for the ‘domain parameters

A AL N @z I % | |
wem @) [ Rt o
in' the case-of Néel walls and
{INET, L Ne w, es(ssi2L) | |
e ) oo 0] s
in the case of Bloch walls. The domain width is )
' ‘ L [K§\% J a®a® 4madL; | NE%
4= 7(@:}) [1 txE T rIE T Y] 19)
B==xor 5

Analysis of the above equations leads to the followmg ‘conclusions:

1) Domain wall width d:

a) N*=0: our equations are reduced to the results of Mlddelhoek’s theory [16];
‘ b) to compare our results with those obtalned for the simple hexagonal structure we
must neglect the demagnetizing factors (N* = 0, 3 = 0) Moreover, we have to remember
that our formula for the Néel wall width in the case of simple hexagonal structure was
obtained using the Hamiltonian with the pseudodipolar interaction C. Namely,*

: 1 Yo
1, 1 R (
J Y2 | 3
-(31\[ = T (—E) 717—11—2— (20)
1+—+—§

for sufficiently thick films. Looking at the formulae (17) and (20) we can conclude that the
role of the anisotropy constants K and € is analogous; the pseudodlpolar interactions are
responsible for the appearance of the uniaxial anisotropy in hexagonal crystals.

2) Domain width 4:

a) the demagnetizing field leads to the finite domain widthg - -

b) the domain structure depends on the geometrical form of a sample (on the ratio
L,JL). Domains appearif 4 < L,,. In the case of a square sample (L, = L,) the equatlon (19
gwes

a8 Ly, cric N (_;'VZ]:-—-K »

which determines the critical thickness of a below which ‘only single domain films occur.

1 This formula in [4] is given in an 1ncomp1ete form. The phys1cal conclusions remain the same as for the
cotrect formula given in [18].
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4. Magnetzzatzon of the one domain ﬁlm

If we consider a thin ﬁlm with sufﬁc1ently strong uniaxial amsotropy in the plane of
a film, we can conclude that a single domain film can be observed in the interval (0, L, i)
of the film thickness. The critical thickness below which only one domain occurs is greater
for films with stronger anisotropy. The magnetization is directed along the anisotropy axis
and lies in the plane of a film. To direct the magnetization out from the plane of a film
a perpendicular field which compensates the demagnetizing field has to be applied if the
parallel anisotropy is small. But, in the case of small anisotropy parallel to the film, domain
structures different from these'conéidgied in this paper may occur, and the conditions for
magnetization direction in the single domain film become very complicated as they are
a superposition of many concurrent processes.

Returning to our case of a single domain film with sufficiently strong anisotropy, we
can get from (8) the spin wave spectrum in the following form

£ Ve yZ
Eq=JS [s,,,ir_z N J“JN ] [e,,. + 355-] @1)

and ¢, is the solution of (6) and (7) for ¢ = 0.

Magnetization M of a single domain film equivalent to spontaneous magnetization can
be calculated by means of the standard procedure i.e. by derivating of free energy. This
method applied to thin films is described in detail in [7]. Taking into account the spec-

trum (21) we obtain
1 —exp[ —J§ D(2 )]

M kT 1 . -
—MK'I’_HJE‘GZIQ' T 2Js ’ (22)

=11 ] - [————DO]
Ix exp | — 7 D(0)

where

al K—{—N" o K\|*
— 2 in2 27
D(x) = [(x—i—sm 5 T+ 7 ) (x + sin® 5 —|—v | ])] )

M, is the value of magnetization at absolute zero temperature, 7' denotes the temperature
of the film, and kg is Bolizmann’s constant.

The expression (22).shows the general dependence of the spontaneous magnetization
on the temperature, on the thickness, the uniaxial anisotropy and the demagnetizing field.
The dependence on the surface anisotropy is given by the terms af which depend on the
constant K’ (Eq. (6)).

N*
Taking into account the numerical results obtained in [7] for ) = 7 Ny = —

J
we can conclude that the dependence of the magnetizartion on T' at low temperatures is
linear. The decrease of magnetization with temperature is the more pronounced the thinner
the film. The anisotropy constant assures the convergence of the expression (12) and the
strong anisotropy leads to smaller differences between the magnetization of a few layers and
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that of bulk bodies. The influence of the surface constant can be studied by taking into
account the solutions for Z given in [9]. We find thus that the appearance of surface anisotropy
leads to lowering of spontaneous magnetization if the other parameters remain the same.

The authors are grateful to Professor S. Szczeniowski for his interest in this paper.
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