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The cross-section of electron-deuteron elastic scattering is evaluated at very large mo-
mentum-transfer, assuming that the internal nonrelativistic wave function of deuteron is an
absolute, i. e. independent of the Lorentz frames of reference, characteristic of deuteron. This
assumption is a consequence of the geometrical hypothesis — called the phase geometry —
which is briefly presented in the first part of the paper.

1. Introduction

Large momentum-transfer scattering of electrons from deuterons is one of the processes
where the relativistic dynamical theory of composite systems — here of deuteron — becomes
especially urgent. This is so, because the structure of deuteron (i.e. its ground state wave
function) is relatively well known, as well as the electron-deuteron interaction which is
dominated by pure electromagnetic forces. Therefore electron-deuteron scattering is rela-
tively well suited for measurement of the deuteron vertex function. The dynamical theory
should just determine this vertex function or, which is equivalent, the relativistically in-
variant form factors of deuteron.

It is remarkable that the same problem when the incident particle is strongly inter-
acting is much more involved, because its interaction is poorly known (at high incident
energy), hence the separation of the interaction from the structure of the interacting particles
is not well defined. Thus at present we can prove or disprove some hypothesis concerning
the structure of the form factors at very large momentum transfers mostly with the help
of the electromagnetic interactions.

From general symmetries, such as the Lorentz invariance, time reversal, and the gauge
invariance, combined with the assumption of the Born approximation — which is very
well justified in electron collisions with light nuclei [1] — one can draw a general expression
for the electron-deuteron scattering amplitude which is the analogue of the Rosenbluth
formula for particles of spin one [2], [3]. Since the corresponding cross-section deals with
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relativistically invariant form factors, it certainly does not impose any restriction upon the
magnitude of the momentum transfer. However, the shape of these form factors remains
undetermined, much like in the case of the Rosenbluth cross-section, as long as we have
no satisfactory dynamical, relativistic theory of composite systems.

In low energy physics, the Schroedinger equation gives a. complete account for the
dynamics of the collision process together with the structure of the interacting entities.
Even in high-energy collisions we still have a reliable theory as long, as the recoil of the
target particle remains ‘‘nonrelativistic”, i.e. [t| < M2, where M is the mass of the target
particle. For example, the *‘ eikonal” approximation proposed by Glauber [4] gives powerful
a tool in describing such collisions. This approximation can be even applied to high-energy
collisions of strongly interacting particles when the Born approximation is not sufficient [5].
The fundamental difficulty always arises when the parameter t/M? cannot be neglected,
i.e. when the recoil of the target particle — in our case of deuteron — becomes “relativi-
stic”.

The attempts at evaluating, in some approximation, the relativistic form factors of
deuteron follow different ways. One of them is mostly based on dispersion relations [6].
However, this method has a tendency to mix up the internal structure of the interacting
particles with the over-all interaction. This implies that any theory or model capable of
predicting the internal structure of interacting systems (particles) is hardly translatable
into the dispersion relation language.

Z One of the most interesting approaches to the problem in question is based on the so
called “‘relativistic wave functions”. The idea of relativistic generalization of the concept
of the wave function has been proposed by Blankenbeckler and Cook, and corroborated
by Cutkosky [7], and different other people [8]. In particular, it has been applied by Gross [9]
to loosely bound sytems. The Lorentz-covariant generalization of the wave function notion
can be, in principle, done on the basis of the field theory (e.g. making use of the Bethe-
-Salpeter equation) or dispersion relations. The relativistic wave function, much like its
nonrelativistic (NR). counterpart in low energy physics, should describe all the properties
of the interacting particles which are necessary to an interpretation of the experiment. Thus
this scheme parallels that of elementary wave mechanics. Of course, the covariant wave
function must account for the relativistic effects, in particular, for the most fundamental
kinematical effect of the Lorentz-FitzGerald contraction of the system under description.
Basing on this idea, Gross [10] has evaluated the electron-deuteron elastic cross-section in
the first-order approximation of the parameter /M2, where M denotes the deuteron
mass.

In a series of papers [11] we have proposed some geometrical framework — called
the phase geometry — which, in contrast to the relativity theory, implies that the internal
wave function of a composite system is its absolute characteristic, similarly as its invariant
mass. If so, the very idea of the Lorentz-covariant internal wave function is wrong. In Chapter 2
a brief survey of the phase geometry framework is presented. In particular, it provides
us with the recipe of how to construct the deuteron vertex function. It will become apparent
that the modifications implied by the phase geometry (PG) framework come together with
the ‘‘relativistic recoil” of deuteron.
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The final formula for electron-deuteron cross-section requires the following assump-
tions to be fulfilled. 1° The deuteron structure is described within the PG framework. This
point will be elucidated in Chapter 2, and assumption 1° will be formulated at the end of
this Chapter. 2°. The Born approximation which, as we have already mentioned [1], is very
well justified because of the small electromagnetic coupling constant. 3°. The one-photon
exchange as responsible for the interaction between electron and the nucleons in deuteron.
Moreover, we use the nucleon form factors from the Rosenbluth cross-section for electron-
-nucleon elastic cross-section. 4°. The interaction between electron and deuteron is assumed
to be equal to the sum of the interactions between electron and proton, and electron and
-neutron. This is the basic assumption of the impulse approximation which can be found
e. g. in the classical paper on electron-deuteron collision of Jankus [12], and which we call
the additivity assumption. Thus all ** collective” interactions due to the deuteron as a whole
are neglected. In particular, we neglect all corrections due to the meson exchange currents
in deuteron. They have been discussed by several authors [13], but the quantitative estima-
tion of these corrections are rather vague. For the momentum-transfer not too large,
t| 5 10 F-2, they seem to be negligible [14], nevertheless it is an open question whether all
¢ collective” interactions remain negligible for large [¢|. If not, they should make the veri-
fication of any hypothesis concerning the deuteron vertex function, very difficult.
The situation then should become similar to that of strongly interacting particles. Thus
assumption 4° is to be regarded as a hypothesis which, it is claimed, is plausible for ultra-
high momentum transfer ([t| 2 M?), when we are very far from the diffraction peak.

These four assumptions enable us to evaluate the cross-section for elastic electron-
-deuteron collisions at arbitrary large |¢].

The electron-deuteron cross-section determines, although indirectly, the neutron form
factors at any value of ¢. Apart from the technical difficulties of this procedure, due mainly to
the small deuteron form factor, there is one advantage which results from simple kinematics.
The maximum value of the momentum-iransfer |t| is equal to

(e = 2ME
max = 1Y M]2E’

where E is the laboratory energy of electron (whose mass is always neglected), and M is the
mass of the targer particle. If E> M, then (—£)p,y is,at fixed value of E, almost twice larger
for electron-deuteron than for electron-nucleon collision. As ¢ is a common argument of
all form factors which enter into the cross-section, one obtains the nucleon form factors for
|¢| almost twice larger from electron-deuteron than from electron-free-nucleon collision.

We do not discuss in this paper the polarization effects of deuterons or electrons, alt-
hough they can be easily evaluated within our approach. The summation procedure over all
polarization states of electron and deuteron, which deserves some caution, leads us to the
differential cross-section for the angular distribution of electrons.

Finally, in Chapter 4 a brief comment is given concerning a very important problem of
the relationship between the space-like and the time-like behaviour of the relativistic form
factors. In connection with this, some simple explanation of the so called *‘dipole” fit of
the nucleon form factors is proposed which is based on the phase geometry framework.
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2. Phase Geometry

2A. An idea of new parametrization

Let us consider an isolated system S consisting of N loosely bound particles which fact
justifies to treat S nonrelativistically. The total hamiltonian £/% (the superscript *“ G”” means
““Galilean”) takes the following general form

HE = (PO 2m+K°@S, ... §%_,3 G5, ... 5, (2A.1)
; N
where m =Y m,, is the total mass of .S, y5and ¢S (B=1, ..., N-1) are some relative coordi-

an N
nates of the constituents of S, and their canonically conjugate momenta, respectively, and P®

is the total momentum operator of S L. The whole parametrical dependence of HS on the
external (here Galilean) reference frames is manifested through the external hamil-

tonian (P%)2/2m, whereas the internal hamiltonian 4% is a Galilean-invariant operator,
as it is parametrized in terms of the Galilean-absolute relative phase coordinates. Thus the
Schroedinger equation of the internal motion of S -

K% Gs = wOyC, (2A.2)

is Galilean-invariant, hence it provides us with the set of the Galilean-invariant eigenvalues

wC:, w® = G-inv.

Let us suppose now that the same system S is considered in a reference frame where its

velocity is comparable with that of the light. Then we must apply the relativistic kinematics
1

to the external motion of S. Let P, be the four-momentum of S asa whole, P, = <P, - E)

The Lorentz-invariant mass M of S then is equal ‘to

= % (—P2% = —i~ (E?%c2—P?% = L-inv.. (2A.3)

Since S is a loosely bound system, we have that
wC 1
M=m+ - +0 (c_4> ; (2A.4)

1
However, M and m are Lorentz-invariants, and O (E is a negligible correction, therefore

(2A.4) proves that wCis an absolute quantity not only of the Galilean, but also of the Lorentz
geometry, i. e.

w® = w = L-iny. - (2A.5)

In fact, the external motion of S as a whole does not affect 0, independently of the magni-

1By & we always denote the g-number, while by a its c-number eigenvalue or the corresponding classical
quantity.
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tude of O. Consequently, the internal NR eigenfunctions $S; must be the characteristics
of S which are also insensitive (as the mathematical functions)‘not only to the Galilean, but
also to the Lorentz frames of reference, much like the eigenvalues w® = w. Thus, according
to the completeness of the eigenstates S of AC, for any internal wave function 9 we have

that

9% = p = Lorentz-absolute quantity. (2A.6)

By omitting the superscript “G” we mean that the corresponding quantity is considered
within the theory which accounts for the finitness of ¢. We deliberately do not call such
a theory the relativity theory, because, as we try to show, the statement (2A.6) conflicts
with the Lorentz geometry of the relativity theory.

Let us illustrate this question in the most simple example when S is a system composed
of two spinless particles in the S-state. Then the internal wave function of S is a scalar func-
tion of spherical symmetry, $%(-%) =y(r). The meaning of 1%is clear, as we have 1= 2§ — x|,
where @ , are the Galilean space coordinates of the constituents of S. The meaning of r
which is the argument of the Lorentz-absclute function y will become clear from further
considerations. Note that within the Lorentz geometry, the Lorentz-absolute nature of implies
that y must be generalized into a Lorentz-invariant function ¥(x2) (v2=(4x)2—c%(4%)?),
as xf‘ is the only Lorentz-invariant interval which generalizes the Galilean-invariant interval
rG. Let us postpone to Chapter 2C the question of the relationship between 4 and ¥. The
point is that independently of the details of this relation,T(xi), in contrast to the NR internal
wave function sz(rG , does not account for the fact that S is a system which is stable in time.
This is due to the indefinite metric of the Lorentz geometry. . v

On the other hand, we have the Lorentz-covariant generalization of the NR internal
wave functions [7, 8, 9] which accounts for the aforementioned stability of the described
system, but these functions cease to be Lorentz-absolute. Indeed, the relativistic wave
functions, as the solutions of some relativistically covariant equation — e. g. the Bethe-
Salpeter equation — account automatically for the Lorentz contraction of the described
system S. Thus they are not Lorentz-invariant (-absolute) characteristics of .S any more.

In order to reconcile both requirements: A) the stability of the described system, and
B) the Lorentz-absolute nature of o, i. e. the parametrical independence of y on the external
Lorentz frames of reference, one is forced to introduce a new geometry which we call the
phase geometry. The continuum of the phase geometry will be regarded henceforth as
the first physical continuum which means that the space-time continuum ceases to be re-
garded as the fundamental physical continuum. We shall show that the latter is the limiting
case of the x-continuum of the phase geometry conditioned by the structure of the physical
system under consideration. In particular, the Lorentz space-time continuum governs all
directly measurable quantities.

The phase continuum of the phase geometry (PG) is parametrized by six g-number
coordinates, and the internal time 7 satisfying the following four postulates:

1. The Cartezian representation of the phase coordinates 37,., é\, G, ky ... =1, 2, 3) ful-
fil the canonical commutation relations

[5;]‘9 j’\k] e [ép ék] =0, [5;;7 é\k] =ih 6jk’ (2A'7)
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where the square of the x-interval 72 is given by the positive-definite form y? =-§j )71 (sum

over j).
2. Let us assume for the moment that the Lorentz geometry of the relativity theory
rules all directly measurable — we call them external — quantities. Let &, P J and K

be the ten generators of the Lorentz group. For any complete theory, i. e. for any theory
which does not introduce any external field, the eigenvalues of these ten generators lead us
to ten integrals of motion which implies that the system under consideration is completely
isolated. The general idea of the PG consists in that that it provides us with the parametriza-
tion of the internal degrees of freedom of all isolated systems, and that this parametrization
is a priori cut-off from the Lorentz parametrization of the external, directly measurable
quantities. Let us explain this in more details. Note first that any isolated system can be
enlarged by adding to it another isolated system. However, independently of how involved
is this composite system, any measurement, as such, remains *‘external” with regard to all
isolated systems [15]. Measurement means namely an irreversible, actualized process of the
reduction of the wave packet which is of entirely different nature than the unitary, hence
time-reversible, development of an isolated system [16]. Thus there is no iné:)nsistency in
that that the same object when measured from the outside (by heavy apparatus) is contracted,
but when, as a constituent of an isolated system, it collides with another constituent of the
same system, exhibits its absolute, internal structure. These are two entirely different pro-
cesses. In the first, we must ascertain two coincidences of the edges of this body with the
external rods, and these are irreversible processes which result in the determination of the
usual length [17]. In the second case we measure the invariant momentum transfer of the
recoilled entity, and indirectly we determine the absolute internal shape of this body [17].
Thus the consistency of the PG picture is *“protected” by the quantum difference between
what Heisenberg calls the ‘‘actual” and ‘‘potential” [15].

The above considerations can be formulated as follows: The phase geometry coordinates
(operators!) 7; and éj commute with all generators of the Lorentz-Poincaré group

[ijaE[] = [é\jsﬂ] il [ippk] =[é],pk] =0
5 Jil = 14 Jil = 19 Kl = 1, K] = 0 (2A.9)

Eq. (2A.8) implies that all scalars constructed from the three-dimensional vectors of the PG,
like the fundamental scalars ffj}'f\j, ijg?j, c_'ij gfj, are the Lorentz-absolute quantities, as they
commute with all Lorentz generators. We shall show that these scalars cannot be a priori
expressed by the Lorentz geometry objects, and therefore the phase geometry parametnza-
tion is not isomorphic with that of the Lorentz geometry.

Let us emphasize that according to the commutation relations (2A.8) the rotation genera-
tors Jk do not generate the PG internal rotations. The point is that a priori there is no connec-
tion between the two, external and internal continua, in particular, between the space orienta-
tions of the internal (PG) and the external (Lorentz geometry) vectors. We show in the next
Chapter 2B that such connection exists but @ posteriori and it is established via the real

asymptotic states.
3. The internal, absolute time 7 can be defined by the internal Schroedinger equation
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in the PG continuum, namely

ih %Qf_- = hy, (2A.9)
where B is the internal hamiltonian parametrized by the PG coordinates. This hamiltonian
generalizes the NR internal hamiltonian 7S — ¢f. Eq. (2A.1). The eigenvalues W of % are
the rest-energies of the isolated system under description, i. e. W = Mc?, where M is the
Lorentz-invariant mass of that system.

4. In the case of free-particle systems, laws of motion which result from the PG frame-
work are equivalent with these based on the classical (Lorentz) space-time continuum. In
other words, the PG framework maintains the relativistic kinematics.

9B. Lorentz and phase geometries

Basing on four assumptions formulated in the previous Chapter 2A one can prove that
in the NR limit (c = oo) the PG coordinate  becomes isomorphic with the Galilean relative
space coordinate yC, and the internal time 7 becomes isomorphic with the absolute New-
" tonian time € [11]. Thus the NR phase geometry is isomorphic with the Galilean geometry of
the classical space-time. This is due to the absolute character of the Newtonian space and
time, each separately, which implies that we deal with two invariant (Galilean-absolute) in-
tervals

1% = |y°| = G-inv., and 4t = G-inv., (2B.1)

corresponding to the Lorentz-absolute intervals r = |y, and 47, respectively, of the PG. In
the relativity theory the situation is quite different, as we have only one invariant interval xi

Another limiting case of the PG coincides with the Lorentz geometry. We shall show
this in a simple example which at the same time will illustrate the PG approach to the pro-
blem of motion. Let us consider the two-body system S of spin-less particles. The internal
PG hamiltonian A of S can be taken in the following form (¢ =1)

b= (m2+q2%+(ma+q) %+ U, (2B.2)

where ¢ is the PG momentum canonically conjugate to 9, r = g, and U(7) is a scalar func-
tion of 7 which vanishes when r — oo. This function generalizes the NR potential. The Schroe-
dinger equation (2A.9) results in the eigenproblem for the invariant mass M of S

hy = My. (2B.3)

For the sake of simplicity (in order not do deal with the infinite representation of the rotation
group) let us assume that ¢ is also the eigenstate of the internal angular-momentum square

iz, and /3, where

2; - jksj\'kés ([7% 2,'] = 0). (2B.4)
Then v takes the following form (A = 1)

Py, 1) = Ry(1) Y1 (0, @) exp (—iM7). (2B.5)
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Now, i. e. a posteriori when the internal structure of S is realized, we construct the corres-
p
ponding ten generators of the Lorentz-Poincaré group. We have namely

H= 2+ Po%, B, T = o, X,P,+ L9, K, = X, (M2+ Pr)%. (2B.6)

Here 131 is the total momentum operator of .S, and X"j is the coordinate canocinally conjugate
to P, i.e. .

(X, X =18, B] =0, [X, D] =ihs, (2B.7)

‘Since i21p = I(l+1) y, we have that (L?)2 = [(I+1), where L are three (2/+1)-dimen-
sional matrices which represent the rotation group. The essential point is that that the quan-
tities M and L}’) are c-numbers, as they describe a definite eigenstate  of the internal mo-
tion of S. Therefore the generators (2B.6) commute with the internal PG coordinates ffi
and éj which stands in accordance with the commutation relations (2A.8). Note that exactly
in the same way, i. e a posteriori, one constructs the Loreritz-Poincaré generators for a par-
ticle of mass M and spin [, both taken from an experiment.

On having these generators we have the ‘‘ external” equations of motion for the composite
particle S, namely

ih 57 (X, 1) = Hy(X, 1). (2B.8)

This equation is of course Lorentz-covariant, hence X, ¢ denote the Lorentz four-point repre-
senting S as a whole, from the outside of S.

In the usual picture which is based on the universal space-time continuum there is no
room for the presented above ‘‘hierarchic” description of the motion of S. Here we must
start from the two-body hamiltonian parametrized by the Lorentz variables

B = (mi4+p)*+(my+pD¥+ Uiy~ k). (2B.9)
Therefore HL never commutes with the relative Lorentz coordinate @ =‘:%2-:E1
[AE, &1 #0. (2B.10)

On the other hand, by comparing the hamiltonians (2B.2) with (2B.9) we infer the following
c-number equalities
' Djk‘]k = 9," §P2j|2=0a and Djkyk =’J’;1" o (ij_xlj) |p=oa (2B.11)
where D is an arbitrary orthogonal matrix. Since from Eq. (2A.8)we have that [H, fj] =0,
we see from Eq. (2B.10) that in spite of the numerical equalities (2B.11) the geometrical
nature of the PG coordinate y is different from that of the space part of the Lorentz four-
vccior %, = (@— 2y, ity —1y)).

In the scattering problem the asymptotic states of S are directly measurable, hence
simultaneously parametrizable in terms of both, the phase and the Lorentz geometries.
Therefore they establish a posteriori (i. ., when the asymptotic state of S is given) a definite
relation between the space orientations of the external (Lorentz) and the internal (PG) re-
ference frames. Then we can put D = 1, and we have
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Now, the rotation of external devices (Lorentz frames) performed by some orthogonal
matrix induces the same rotation of the internal (PG) reference frames. However, this rela-
tion is due to the boundary conditions which are the asymptotic states. As such, it is given
a posteriori, and it is consistent with the commutation relations (2A.10) which tell only that
the Loreniz generators J; do not induce @ priori the internal (PG) rotations. Thus the quanti-
ties such as (yF)2, y“q~ or (q*)%are the Lorentz-invariants, but a posterior, as the c-number
condition P= 0is unanvoidable in determining y>-and gr. At the same time, the corresponding
scalars of the PG, namely y2, yq and @2 are also the Lorentz-absolute quantities, but a
priori. Similarly, the quantities (y°)2, y©qC and (q°)? are Galilean-invariants ‘a priori, be-
cause the boundary condition P = 0 is superfluous in determining yC© and € from the
Galilean coordinates. This reflects the already well known fact that in the NR limit the PG
is isomorphic with the Galilean geometry of space-time continuum.

Eq. (2B.11') clearly shows that within the classical framework (h = 0) there is no room
for other fundamental continuum than the space-time. Indeed, here the positions and mo-
menta are a priori sharply determined (h = 0), and therefore the notion of the relative
coordinate must be secondary to the notion of the cooridnates #; and @, which are the ends
of y. Since &, and &, are the Lorentz coordinates, the coordinate ¥, as a geometrical object,
must be identified with y~, i. e. with space part of the Lorentz four-vector x, = %,—%;,,
in the CM-system. Within the quantum physics the situation is quite different. The boundary
condition P = 0 which is necessary in determining y* implies that the uncertainty of the
localization X is infinite, AX = oco. Thus the interval r = |y| of the PG, and similarly the
interval A7 of the PG time, both are a priori completely unlocalized with respect to the ex-
ternal (Lorentz) measuring rods and clocks, respectively. If so, there is no necessity to identify
the geometrical natures of g and yL; Yy is absolute a priori, while yL is absolute @ posteriori,
as the Lorentz relative coordinate in a given reference frame. Eq. (2B.11") tells only that the
numerical values of y and y” coincide.

From the aforementioned we see that the modifications implied by the PG come with
finite ¢, but the very possibility of the PG hypothesis is due to the second universal cons-
tant A. ,

Let us show now that the Lorentz geometry can be regarded as the limiting case of the
PG. For this purpose we consider the PG hamiltonian (2B.2), and we perform the following
limiting procedure

AL = lim (h—my) = (@2 +md) %+ U(y). (2B.12)
my—00

The limiting hamiltonian AL isidentical with the relativistic one-body hamiltonian, and so it
results in equations of motion for particle “m,” which are covariant under the Lorentz
group. Thus the heretofore absolute quantities of the PG, like y or U, can be relativized
according to the symmetry group of the equations of motion, i. e. according to the Lorentz
group. In particular, U must be identified with the fourth component of the four-vector
U,. The four-potential U, then becomes an external field which is time-independent in the
rest-f.rame Z, of infinitely heavy particle, “m,”, and, in % it takes the form U, |5, = (O, iU).
The infinitely heavy particle “m,” has dropped from the equations of motion, but it has
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generated the Lorentz space-time continuum. Thus in this limit, the x-continuum of the PG
becomes isomorphic with the Lorentz space-time.

From the viewpoint of the PG upon the relativity theory, the relativity together with
the calssical continuum of events x, is secondary to the absolute continuum of the PG.
In particular, the measuring devices play the role of such infinitely heavy bodies which ge-
nerate the classical space-time, hence the relativity theory.

Let us emphasize that within the physical framework which takes into account the finit-
ness of h the procedure of the determination of a four-point %, requires infinite energy-
-momentum; At = 0, hence AE = oo. On the other side, the finitness of ¢ implies that any
isolated system is of finite energy:, W = Mc2® < oo. Therefore it seems to us that within the
theory which accounts for the finitness of #i/c the four-points x ,, are wrong variables for the
parametrization of internal structure of any isolated system. The parametrization given by the
phase continuum of the PG eliminates this dilemma, and consequently modifies the physical
description of these processes where the universal constant #i/c cannot be neglected.

2C. Absolute functions

“Let us now consider the question of the relationship between the Lorentz-absolute
functions in the PG continuum, and the Lorentz-absolute functions in space-timé, i. e. the
Lorentz-invariant functions. For the sake of simplicity, we shall discuss the PG Lorentz-
absolute functions which depend on r = |y|, and the corresponding Lorentz-invariant
functions which depend on xi :
Let us denote by ¥(x}) the Lorentz-invariant function. Its four-dimensional Fourier

transform ¥(p%) is given by
P(py) = [ AP (xl) exp (—ip,2,).

By putting p; = 0 we define the three-dimensional absolute momentum space q for the
space-like four-vectors p ,; p% = g2 > 0. This three-dimensional absolute momentum space
q is identified with the- momentum continuum of the PG, and according to this fact we can
determine the Lorentz-absolute function of the PG in the momentum representation

w(q®) =¥(p, = qO.

By virtue of the canonical commutation relations (2A.7) the x-representation of the Lorentz-
absolute function y is given by the three-dimensional Fourier transform

¥() = y() = @n)=® [dqp(q?) exp (iqy) (= ly)). 2C.1)
Vice-versa, on having y(r) we find its three-dimensional Fourier transform y(q?), and
we extend it analytically for all p, (i. e. for pﬁ < 0) by inserting pi in place of g2 In this way
we obtain the Lorentz-invariant function in the momentum representation, namely
P(p) = v(q® =p))-

Finally, the four-dimensional Fourier transform of ¥( p2) determines the corresponding
Lorentz-invariant function in the x-representation, i. e. in the Lorentz space-time,

P(2) = 2m)4 [d*p¥(p2) exp (ip,,)- (2C.2)
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In high-energy physics one very often encounters with the presented here procedure of
determining the Lorentz-absolute function y(r) from the Lorentz-invariant function !F(xi)
In particular, in electron-proton elastic collision one deals with the Lorentz-invariant electirc
form factor Gz which determines the proper charge distribution of proton e(r), exactly in
the way indicated in (2C.1) [18].

Let us consider two examples: i. First we take the Lorentz-invariant function ¥(x?)
which is the Feynman propagator (distribution). Then ( pf‘ =—( p§+m2— i0)yYh=c=1)
and from Eq. (2C.1) we determine p(y),

$y) = o exp (—m) (2c3)

This is the Yukawa potential in the x-representation of the PG. In particular, in the Lorentz
limit (2B.12), when the particle “m;” connected with the Feynman propagator becomes
infinitely heavy, the static field (2C.3) becomes identical with the external Lorentz field,
where r is the Lorentz distance from infinitely heavy particle “m;” in its rest-frame. ii. Now
let us assume some Lorentz-absolute function p(r) in the x-continuum of the PG, e. g.
w(r) = exp (—r%2a?). The corresponding Lorentz invariant function in the space-time is
then given by Eq. (2C.2),

W(a?) = (2n)* (V27 a)? [d*p exp (—ap}2) exp (ip,%)- (2C.4)
However, this integral is unreasonable.

Tt turns out that the class of the Lorentz-absolute functions in the continuum of the PG is
much larger than that of the Lorentz-invariant functions in the space-time. The NR internal
wave functions regarded as the Lorentz-absolute functions are of such a mathematical
structure that their Lorentz-invariant counterparts are usually given by unreasonable inte-
grals, much like it takes place in the example ii. The so called “dipole” fit of the nucleon
form factors represents also an absolute function, whose time-like behaviour is unreason-
able because of the dipole divergency [19]. ‘

- Tt seems to us that here is the answer to the general question, namely why the relativity
theory is so exceedingly restrictive for any dynamical theory — like is the field theory —
which is formulated in the space-time continuum [20], and at the same time, why the same
relativity theory does not impose any essential restrictions upon a theory — like is the
S-matrix theory — formulated from the very beginning in terms of the momentum inva-
riants [21]. The answer is that the momentum invariants of the Lorentz geometry (as the
only Lorentz invariants!) are at the same time the objects of the PG. For example, in the
elastic scattering of two particles, the full set of the momentum invariants s, ¢ is given
“from the outside” of that system by the Lorentz invariants, namely

s = = (pl,u +.p2y)2’ b= — (ply—pi,lu)z’ (2C5)

(1,9 (P31, 2), ave the asymptotic four-momenta of the colliding particles) and “from the
inside” of this system, by the Lorentz-absolute quantities of the PG, as we have

s = [(g2+m) " +(g*+m)*]*
t=(q—-9) (al=I19)- (2C.6)
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Here q and q’ are two asymptotic eigenvalues of q. and as we know, their relation to the
external (measurable) asymptotic Lorentz momenta is given a posteriori, as we have q=ps|p_0»
Q' = ps|p_¢» where Pis the total momentum of the whole isolated two-body system. Thus
the S-matrix theory does not imply the universal validity of the Lorentz geometry.

We see then that the momentum-, not x-representation provides us with parametriza-
tion which enables the measurement of the internal structure of isolated systems. This is not
accidental, because sharp determination of momenta eliminates the space-time localization
of the interaction process, which fact is the basis of the PG hypothesis.

According to the PG viewpoint, the geometrical nature of (r) is identical with that of
the charge distribution e(r) of proton, and speaking generally, of all quantities which charac-
lerize the internal structure of any isolated system. In the PG picture no difficulty arises
when we interpret e(r) as the proper charge distribution of proton, as e(r) is a Lorentz-abso-
lute internal characteristic of isolated system (proton). Within the Lorentz geometry, the
argument r of the function e is identified with & =|y*|—cf. (2B.11") — which coinci-
des with the space-interval in the CM-system of the colliding proton and electron. However,
if e(r*) has to represent the proper charge distribution of proton, then in the CM-system
such a shape is contracted by the Lorentz factor of proton. This makes that the relation of
e(r*) to the proper charge distribution of proton is quite obscure [18], the more so that
the recoil itself parametrizes the shape of the charge distribution [17].

Let us emphasize that the x-continuum of the PG is not directly measurable, hence e(r)
is not directly measurable either. The function e(r) is evaluated from Eq. (2C.1), whereas the
directly measurable is its momentum representation, as we have that e(q?) = Gglpi = ¢?.
Due to this fact, the PG framework can maintain the energy-mass relation — which is the
momentum representation relation — without at the same time identifying its x-continuum
with the Lorentz space-time. ]

This short survey of the PG framework enables us to formulate our fundamental
assumption 1° concerning the description of deuteron namely that: 1° the internal non-
relativistic wave function of deuteron is a Lorentz-absolute characteristic of deuteron in the
continuum of the phase geometry.

3. Cross-section for elastic e—d scattering

The NR internal wave function of the ground state of deuteron, which according to the
assumption 1° is regarded as the Lorentz-absolute characteristic of deuterou, takes the follow-
ing well known form

Ym = (dm) % % [u(rl) + vl—/%— w(rl)S(n;)] Xon. (3.1)

Here X,, (m =0, +1) are the triplet spin wave functions, S(n,) = 3(c®n,)(c"n,) — 6®)a™,
where 6®™ are the Pauli spin matrices of proton and neuteron, and u(ry), w(r;) are the radial
wave functions of the S- and D-states of deuteron. The coordinate Y, is the PG (relative)
coordinate of neutron with respect to proton, and 1, = Yyry, where r; = |y, |. % The radial

? Since we are working in the Schroedinger representation, the coordinates ¢ ¥”’ are c-numbers.
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functions » and w are normalized as usually, namely

f dry [u®(r) +w?*(r)] =1,  hence f 31 YY) YY) = Oy
b

Assumption 1° enables us to generalize the expression of the scattering amplitude for
high-energy, and large momentum transfer (i. e. ‘‘relativistic”) collisions of composite par-
ticles. The essential point is that that the absolute wave function (3.1) determines directly
the vertex function of deuteron.

Making use of the Born approximation (assumption 2°) and of the assumption 1°, the
matrix element for electron-deuteron elastic collision can be written as follows

Sy o = 16Q27)* 8(P, = P) o (D)7, a(D) [ dPyy(yy)

mym’

exp [i(g—q VY1V, W1, Y3 b) vu(y)- (32)
By unprimed (primed) letters we always denote the corresponding quantities before (after)
the collision. Here P,, P, are the four-momenta of the whole (isolated) system of electron and
deuteron. The Dirac spinors u,(p), u,.(p’) describe eleciron of momenta p, p’, and the polari-
zations o, &' = +1/2. The asymptotlc momenta ¢ and q’ are the elgenvalues of the PG
absolute momentum ¢, where ¢ is the momentum canonically conjugate to ¥, and ¢ is the
PG coordinate of electron with respect to the centre of graviiy of deuteron. The four-potential
V, depends on y, and y, which are the PG coordinate of electron with respect to proton and
neutron, respectively. Besides, V, is an operator in the spin spaces of proton and neutron,
and it depends on the kinematical factors denoted by *“b” which is due to the fact that the
interacting particles have spins. This dependence will become clear when we construct V,.

The Lorentz-absolute amplitude (3.2) will be evaluated in the CM-system of electron
and deuteron, where the kinematical dependence of 7, on *“b” becomes particularly simple.
In this system, where the electron momenta amount to: p = q, P’ = q’, we denote *“b”
by «b,”.

The additivity assumption 4° implies that ¥, is the sum of two terms, the first respons-
ible for the interaction between electron and proton, hence depending on y,, and the second
describing the interaction between electron and neutron, parametrized by y,. Thus the
potential V7, takes the following form

VY1, Y3 bo) = VPy,; bo) + V(Y3 bo), (3.3)
as we have that Yy = y,—3¥y; = y,+3¥, (it is assumed that the deuteron mass M is twice
larger than the average nucleon mass m). Moreover, making use of the deuteron ground state
symmetry which tells that y,(—¥,) = v,,(¥,), the matrix element (3.2) can be rewritten
in the following form

S’%, = ie(2m)* (P, —P,) e (@)7,0(@) [ dyrpsi(y) exp (ikyy)
{f @V Py; b))+ V(s b)) exp 2iky)}y, () (3-4)

Here k = §(q—q’), hence k% = —1t, where ¢ is the invariant momentum transfer. .

3 We have adopted the conventions used in Kwantowaja Elektrodynamika, A. I. Achiezer and W. B.
Berestecki, Gosizdat, Moskwa 1959. The only difference is that the Dirac spinors are here normalized in a co-
variant way, i. e. uu = 1, instead of wtu =1, as in A-B-
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We see that the directly unobservable PG coordinates y and y, which parametrize
the internal structure of the whole isolated system of electron and deuteron are integrated
out. In consequence, the cross-section resulting from the amplitude (3.4) will be a function
of the PG momentum scalars, and according to the Eqs (2C.5) and (2C.6), the latter can
be rewritten in terms of the Lorentz momentum scalars, e.g. k2 = —1/,¢. Therefore, the cross-
-section, as a function of the Lorentz momentum invariants, fulfils all requirements of the
relativity theory, although the corresponding amplitude is based on the PG framework
which is not isomorphic with that of the Lorentz geometry. Remember that the cross-section
must be compatible with the relativity theory, because the latter rules all directly observable
quantities, hence in particular the cross-section.

Before going to determine the four-potential ¥, let us introduce the Fourier transform
of the density matrix of the ground state of deuteron. We have

Ry = f dBrym() exp (ikx)y,: ()

1 i} 1
— (Uo— = Wo) XX+ (g W,— 3 V2) [SO) XX+ XX S(v)] +
3 3 9 9
i (74'0‘ Vot 95 Pat g5 ”74) T g (Wart W) Ko+

+ % Wy(6@W) (6/) X, X (6®W) (6v), v = Kk,

Udk) = [dx u?@julkn),  Wulk) = [dx wia)ju(ha),
0 0
Valk) = f dx u@u(@ake);  jale) = (=2 ( = ) (Sij ) ,

3
L = X, X 5400 X, X 10600+ 660 X, X 06,
Ko = X, X;5(6®) (™) +6{P(6"V) X, XF.(6"v) 0P+
+0P(6"™) X, X} (W) oi + 6 (6PW) X, X 1. (") ol +
+ a}")(c@)v) X, X:5(cPv) O.j(_n) +(c®) (6™) X, X (3.5)

(summation over j, k =1, 2, 3).

In order to determine ¥, let us begin from the following remark. Spins of proton
and neutron in deuteron are described by the Pauli spinors, therefore the potential ¥,
must also be expressed in terms of the Pauli spin operators of both nucleons. On the other
hand, we know the nucleon currents, hence the interactions between electron and nucleons,
but expressed in terms of the Dirac operators. So we must translate the nucleon currents
onto the language of the Pauli operators. For this purpose, let us consider the one-particle
amplitude z'Opu, where u and u’ are the Dirac spinors describing a spin one-half particle
with given momenta and energies, and Op is a 4 X4 operator of the Dirac algebra. We
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introduce the following notation:

o1 012 FET v
On = (021 022)’ and =]/73T LI
E+M

Here O% (j, k = 1, 2) are the Pauli operators, and v is the Pauli spinor normalized to unity,

v = 1(uu = 1). We define the Pauli operator O attached to the Dirac operator Op, (without

index “D” we always denote the corresponding Pauli operator) in such a way that the
following identity takes place

u' Opu = v'*0v.

This identity dictates the following relation between the operators Op, and 0, and it explains
the origin of the kinematical dependence ‘b of V),

E+M E'+M Po P'c Po Po
0= |/ o0 oM [011“712 oy v Al s 7 oo v B

(3.6y

Note that in the NR limit we have O = OL. In order to determine the current operator

of deuteron, and consequently the four-potential ¥, let us assume for the moment that

we deal with two free nucleons, proton and neutron which move with the same momenta

and energies. According to the additivity assumption 4° the current amplitude of such an
“‘unbound deuteron” amounts to

f” = (ﬁl(ﬁ) Jg’;u@) (ﬁ’(”)u(”))+(ﬁ’(“u(")) (ﬁ’(”) Jgﬁu(”)), (3.7)

where J$) and J, $) are the current operators of proton and neutron, respectively. They
are known from the electron-nucleon interaction, and in the momentum representation
they take the following form

T = yPIFPm() + il Aq FE™(e). (3-8)

Here F®, and F@™ are the Dirac and Pauli form factors of proton and neutron [18].
In the CM-system the four-momentum transfer Ag, is equal to Ag,cpy = (2K, 0). Note
that the current amplitude (3.7) has the proper geometrical nature of a four-vector, and
moreover it accounts for the additivity of the interaction. From (3.7) we see that the deuteron
current equals

B=IReIp+inen, (39)

where I are the unite operators in the Dirac spin spaces of proton and neutron, respectively.
In fact the deuteron current operator (3.9) presumes — which is strongly suggested by the
PG framework — that the spin orientation of the non-interacting. nucleon remains fixed
with respect to the axes of the over-all CM-system. Now, this operator (3.9) must be rewritten
in terms of the Pauli operators. The kinematical factors which enter into Eq. (3.6) are
assumed to be the same for proton and neutron in deuteron, and equal to the corresponding
kinematical factors of deuteron as a whole. Thus E, E’, P, P’ and M in Eq. (3.6) are identi-
fied with the energies, momenta and the mass of deuteron, respectively. This follows from
our general assumption, namely that the NR internal wave function (3.1) accunts fully for
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the internal motion of proton and neutron in deuteron. The internal motion is ‘“nonrelati-

vistic”’, as deuteron is a loosely bound system, and therefore it does not affect the structure

of the current operator Jg? of deuteron. Finally, in the CM-system where

E=F=W=0M+q) P=—~q, P'=—q

the operator J rewritten in terms of the Pauli operators takes the following form

“w
JO =JP @ I+]J" @ I, (3.10)
where
wm _ WM | omnay , ( pomngs QO Q6P o

W+M (Va W+M]’

Jon) — W+ M [1_ (q/c(p,n)) (qc(?m)) '
A (W)

The form of the operators (J™)* can be read off from Eq. (3.8). The amplitude .# u
from Eq. (3.7), in the language of the Pauli spinors, takes the following form

= (v" Py m+) ],Ed)(v(")v(")).

_ q'c(?:”) ]@:’0)22 qG(P’”):I

In order to account for the spin orientation of nucleons in deutron one must replace
the spinor functions v®%™ and »'®»'™ by the spinor functions X,, and X,,, respectively,
where X, and X, enter into the deuteron wave function (3.1). So, we end up with the following
expression of the Fourier transform of the interaction ¥, which entrers into the matrix
element given by Eq. (3.4)

@ (q,.
[ a2 v v oo @iy = 2B gy

The factor (2k)~2 = (—#)~! results from the one-photon exchange interaction (assump-
tion 3°). From the formula (3.10) one can easily read off all kinematical parameters denoted
by “by” which, as we said, are due to spins of interacting particles.

The differential cross-section for elastically scattered electrons can be written in the
form
e? S IS

7 12 (s— M)

where s and ¢ are the Mandelstam variables, &’ is the energy of the scattered electron (whose
mass is neglected), and do’ is the element of its solid angle. The two four-tensors S, and s,,
are the deuteron and electron current tensors, respectively, and they result from the summa-
tion over the polarization states of the corresponding bilinear forms of electron and deuteron
currents. Formula (3.12) clearly shows that the cross-section is Lorentz-invariant. Indeed,
S, S, is a Lorentz scalar which depends on the invariant Mandelstam variables s and .
Also &% do’ is Lorentz invariant, and so, the cross-section do is manifestly Lorentz-invariant.

do = &2 do’, (3.12)
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Inserting the expression (3.11) into the amplitude (3.4), we come to the following
expression for the deuteron current tensor Sy,
S = M2 Y [SP(Rome ) Sp (Rt T,
mym’

where J,(f)' is given in (3.10), and R,,,. is the density matrix from Eq. (3.5). Thus we can
write that

P Ry J) = X Qu X,

We do not write the expression for Q, as it is easy to derive from the expressions of J ;(‘d)
and R, Now we have that

Sw = M2 3 X}:0.X, XFQF X,

m,m
The summation over all polarization states of the initial and final deuterons can be done
with the help of the projection operator

, Z XX = %(3 1 o®)™),
Finally we come to the following expression of S,

S — _M_“z Sp [(3+6® 6®) 0,(3+0® o) 0F]; (3.13)

where now the trace is to be taken from the correspondlng products of the Pauli matrices.
The electron current tensor s, is well known, and in the CM-system it takes the form
(the electron mass is neglected)

= 2(¢pGnt Imfnt TuFim +k26 ) (m,n=1,2,3)
St = —2iq (@ tEm) = —Sgm (3.14)
su=2¢"-#);q =gl
Inserting S,, from (3.13) and s,, from (3.14) into the expression (3.12) for the cross-

section, we come after a rather lengthy calculation, to the following formula for the electron-
deuteron elastic cross-section

d 2 1
'E)(; = 4;2 12 Uz(t) {F%(t) [1 + ( _‘?;4-2)2 - E‘t/Mz +
-I-l- 2| M2 o 1 1 ]
6 G—MPE" T 12 M- et |+
Cld4sME , 11 ]
a0 B [ L 0 L |+

1 19— 143/W+332/M4t
(s— D7)

1 3s/M2—4 "
+ 1_2‘ —M'—:—és—_w t3:|} +D(S, t). v (3.15)

+ MPF3(2) [ THM? + 45
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Here Fy(t) = FP(t) +F§7(), Fyt) = FP(5) +F§(t), and D(s, t) is the correction due to
the D-state admixture of the ground state of deuteron. The expression of D(s, ¢) is given
in Appendix. Remember that t = —4k2, s is the total energy square in the CM-system, and
M is the deuteron mass taken equal to 2m, where m is the average nucleon mass.

The Dirac and Pauli form factors are normalized as usually, namely

FP0)=e FM0) =0
€ n
FP0) = pp = U4) 50 s FE0) = = s 5

where 2, = 1.79, and %, = —1.91. The electric and magnetic form factors Gg(?) and Gy,(2)
are connected with Fy(¢) and Fy(t) by the following relations

@) g(owm) _t_ (p51)
GE(e) = FP(0) + o FE™()

n 7 1
G%,’I’ )(t) - Fé?» )(t) + 5 ng’n)(t) .

Thus the form factors F(t) and Fy(f) which enter into the formula (3.15) are connected
with the electric and magnetic form factors of nucleons by the following relations

Fy() = (1. - z,%)_ [Gﬁs’)(tHG%’)(t)— 5 (cﬁﬁ><t)-+ca'?<t»]

-1
¢ " il ()7
RO = (1= g) [R0+60- & @orern)]. e
If one postulates the scaling law which says that (19)

G2 _ GR() _ 6520)

= F(1),
2 HMp Mn ( )
then the form factor F(t) is quite well approximated by the “dipole” fit
F@t) = (1—t/a)  with a=0.71 (Gev)2. (3.17)

4. Remarks on form factors

Within the four-dimensional Lorentz geometry one deals with the Lorentz-invariant
form factors, e. g. F(xf,), which are determined for all four-points %, Consequently, the
Fourier transform F(p?) of F(x}) is also determined for all four-momenta Py B € for p,
space-like (p3 > 0), as well as time-like (p2 < 0). From the dynamical point of view this
should mean that the same analytical function which for space-like p, determines the scatter-
ing amplitude, for time-like p, determines the corresponding annihilation amplitude [18].
Since the PG framework deals with the absolute three-dimensional space, and absolute
(internal) time, it does not imply this type of symmetry.
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On the other hand, it is a well known fact that the phenomenological form factors
determined from scattering problems, i e. for t <0, when continued analytically onto
the time-like region (¢ > 0) become unreasonable functions. The *“dipole” fit of the nucleon
form factors — ¢f. (3.17) — or form- factors resulting from the Gaussian functions —
¢f. (2C.4) — provide us with examples of this fact. Therefore it is tempting to regard the
symmetry which tells that the same analytical function is responsible for the scattering and
annihilation processes, as a criterion that the interacting particles have no internal structure.
This is really the case in the electron interactions.

From this point of view it is interesting to note that the ““dipole” fit describing the nu-
cleon internal structure results in a simple and natural way from the PG framework, if one
assumes that nucleon is a composite particle which has the internal Lorentz-absolute wave
function in the PG continuum. Let us assume that this wave function is of the form
p ~ exp (—7/2b) which accounts properly for the asymptotic behaviour of y at infinity.
Then u(r) = (2b3)~" r exp (—7/2b), and the corresponding form factors U,(k) can be iden-
tified with the nucleon form factor F in Eq. (3.17). Since all form factors U,(k) have for
each n the same asymptotic behaviour, let us consider the form factor Uy(k). We have

oo}

Uy(k) = f dru®(r) jo(kr) = (1+b%2)~2% = (1— % bzz)— = F(p). 4.1y
b

This is nothing else than the ‘“dipole” fit. In the last equation we have used the relation
¢t = —1J2 characteristic for two-body systems of equal masses, like deuteron. This relation
is by no means justified in the case of nucleon. Nevertheless, this relation is of secondary
importance as it does not influence the structure of the factor which coincides with the
““dipole” fit.

In this particularly simple example we see that the internal structure of the system is
responsible for the form factor whose time-like behaviour is unreasonable, as it has the
dipole singularity.

The problem of composition of a physical system is intimately connected with the additiv-
ity assumption 4°, and with the opposite procedure of the decomposition of the system
(particle) into more ‘‘elementary”” constituents. The quark model of hadrons gives a fashion-
able illustration of this problem. The point is that the scattering amplitude can be estimated
on the basis of the additivity assumption, whereas the annihilation process is not an additive
one. Thus the space-like form factors determined from the scattering processes are not
relevant in describing the corresponding annihilation processes.

At the end we would like to point out that the PG scheme can be as well applied to
inelastic collisions, like is the disintegration of nuclei. It also gives the basis for the gene-
ralization onto the ‘relativistic” momentum transfers the Glauber type of analysis of the:
collision processes, which turned out to be so fruitful in the domain of the ‘‘nonrelativis~
tic” recoils [4], [5]-

The author is much indebted to Professor W. Czyz for very helpful discussions. He alsor
would like to express his deep gratitude to Professor M. Migsowicz, and Professor J. Gierula
for their interest in the work.
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APPENDIX

The correction D(s, £) in the formula (3.15) is due, as we said, to the admixture of the
D-state in the ground state wave function of deuteron, thus it vanishes for w(r) =0. We have

&'?

62
Do) =35 I3

T(s, t),

where
T(s, 1) = Fi(2) [D®4,,+D®B,, +D®Cy, + D¢ DBy +D9G ]+

+ Fy(t) Fy(t) [DA4,,+ DB, +D§3) Cia+DWE,+ DG ] +
+ F3(t) [D® Agy +D®Boy+ DCyy 4D DBy +D®Gy].-

Here F(t) and Fy(¢) are the same form factors as in (3.16), DYJ =1, ..., 5) are the deu-
teron form factors, and Ay, ..., Gy, are the invariant factors due to the structure of the
interaction. Thus we have

DD = 6U Wy +12V2—6)/2 V, W, +3 W2 + = W;,
D® = 22U, V,—2U, Wy +2U Wz+ ~Vev,w, +V2V Wyt

D® =42 UpVy +2U Wy 20, 7, 4873+ V2 Vz A 19—1/-2- VWt
1 1
08V— VWt W 1o L WW‘2+ ) - Wi- g‘; W,

6 12 108 6)2
D@ — = UW,y — — UgW, + 35 U Wy +12V% + T‘/— VeWo—

1
S 12;/2—. VoW + OSV— VoWy +

27
25 Wa—g Wo W+ 175 W W,+
45 . 216 2106
+og i 315 VWt 1225 wi,

. 36 212
D®) —4V2_U0V2+§ UyWy— -‘;”- UVt 5z UpWa+4V3— V VoWy+

18
4’V— VoW 3%2 VW, + W% o Wout pox Walut
2 36 162 _,
T a5 Vi o Walat 555 W1
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The form factors U,(t), W,(t) and V,(t) (¢ = —}k?) are given in Eq. (3.5). We see that
DY vanish for i(r) = 0.

Let us introduce two auxiliary variables z = s% and z = w+M. Then the invariant
functions Ayq, ..., Gy, take the following form

Ay =Ho [7‘1: Mt — % M4w2+f% Me] -+ B2 M3 — A M2+ 3MPw—

— M)+ 422 [4— 10Muw® + 14 M2 — 6MPw + M4 + K4 X
X[ — 8wt +28 M — 16 M2w? +4M31w] + k855 2004 — 24 M3+
FAM20%) + 51028 [ — 16u4],
Aqy = K[ —2MP03 + 2M31w% -+ 2M*w — 2] + Kzt [—8Muw® 428 M2 —

— 160w + A M4] 1823 [— 8w+ 64MuwS — 56 M2+ 16M%w] +-

+E827 [48Bw* — 96w + 16 M2w?] + k1027 [ — 6404,
Agy = FHAMP(w— M)?] + /822 [16Muwd — A8M2w? -+ 16 M3w] + K8z4 x

X [1614 — 96 M3 + 16M%12] + £102-6 [ — 640?];

By = k2 [% wh—2Mwd+ S Mt~ 6Mow-+ - M4] Rz Sut
265 — 3002?24 MPuw— 2%+ o4 [33u0— 88 Mo +
1 T8M20 — 8 M+ MA] 4828 [~ T6uA+104Muwd — 12M%0%) +
+ 510278 [64a0t],

By — K2 [ Minh-+ AMPud— 2M510% — AMA -4 3M5) 4+ b1 [ dgh 4
1363 — T6 M2 456 MPw— AMA] -+ 1553 [56w*— 228 Muw +
+298%0 — 28 M+ AMS] 4 K825 [ — 2240 4368 M — A8 M0 1

1 k1027 [256uA],

By = K2[M2(w?— M3)2] 4 8 Muwd— 28M20? + 24MP0] 1 -2
16004 — 112w 4 1480 %0% — 2403 -+ AMH] 1 H8 [ 128108 +
1320 Muw® — A8M®?] 4 K198 [2564] 3
Cyy = K2[M{w— M)+ k322 2008 — 14Mio + 202w — 10MPup -+ 2% +
K824 [ 16uA -+ 48 Mo — 320 P + 8MPw] -+ K25 40—

— 4B M+ BMPu] + 51028 [ 320,
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Ciy = k2 [Muw*—2M?*w3 +2M*w— M>] + k*z~! [2w*— 20 Mw?® +-36 M 2w?—
— 24 M3w +6M*4 + k823 [ — 28w + 116 Mw3 — 100 M ?w? 4-28M3w] +
+ k855 [11200% — 176 Mw3 + 32 M3w?] + k102~ [ — 128w?],
Cop = K —AMuw3 +12M2w2— 12 M3w +4M*) 4 k822] — 8w + 56 Muw® —
—T2M2w? 424 M3w) + k8z—* [64w* — 160 Muw3 +- 32 M?w?] + k1026
[—128wt];
E;y = K2 2[(w— M)*] + k824 — 8w + 20 Mw3 — 16 M?w? +4M3w] +
4 k8279[20w* — 24 Mw? +4M>w?] + £02-8[ — 16w?],
Ejy = k4% [2wt—8Mw? +12M2w2 —8M3w + 2M4) + k823 [~ 20wt +
+52 Muw3 — 44 M2 + 12 M3w] + k825 [64w* — 80 Mw3 + 16 M 2uw?] +
51027 [— 644,
Eyy = E*(w— M)* +k82~2 [ — 1204 4- 32 Mw? — 28 M 2w? +-8 M3w] +
+ F82-4 [48uw* — 64 M + 16 M 202] + £10278 [ — 64w ;
Gy = K822 [(w— M)2] + k8z4 [ dw?],
Gy = K822 [AM(w— M)?] + k824 [ - 16 Mw?],
Gyy = Koz~2 [AM*(w— M)?| + k824 [ — 16 M 2w?].

In the absence of the D-state the deuteron is characterized by the single form factor
U,(t) which is the multiplicative factor of the cross-section — ¢f. (3.15). Therefore in the
pure S-state approximation of the deuteron structure the cross-section vanishes for vanishing
U,. On the other hand, the most important models of the ground state wave function ac-
count for the ‘‘hard-core” [22], while the ‘‘hard-core” implies that Uy(¢) vanishes in the
neighbourhood of ¢ = —(Gev)2. Thus the admixture of the D-state is very essential, as it

makes that the cross-section becomes a smooth function of ¢, and it does not vanish in the
mentioned region of ¢, which is the experimental fact [23].
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