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ON WEYL’S THEORY OF GRAVITATION AND ELECTROMAGNETISM
By A. H. Krorz
Department of Applied Mathematics University of Sydney*
(Received June 4, 1969)

A new interpretation of Weyl’s theory of gravitation and electromagnetism is proposed,
in which it appears related to Rainich’s Already Unified Field Theory. Some of the equations
of the latter are derived by subjecting Weyl’s action integrals to variations in the metric tensor

& and in the tensor S,'i,,, obtained by subtracting an affine connection I’ﬁ,, which defines parallel
transfer of vectors in the presence of matter, from the Riemannian Christoffel brakets of General
Relativity. Matter therefore, appears as a relative tilting of vectors at different points of a Rie-
mannian manifold of four dimensions, which are regarded as parallel by a relativistic observer.

1. Introduction

It is commonly held that Weyl’s unified field theory [1], and its generalisation due
to Edington [2], are based on a true extension of Riemannian geometry. So far, no
unified field teory has gained acceptance; only recently a suggestion has been made how
to test experimentally at least that class of theories which involves a space-time torsion [3].
The experiment, if performed, should discriminate between the latter, and between theories
of Weyl’s type, though without proving either. It is important, therefore, to have a clear
picture of the logical hypotheses on which various proposals are founded.

We suggest in this article that Weyl’s theory can be established without requiring the
space-time manifold to be non-Riemannian. We need only to interpret in a suitable way
various quantities which appear naturally within the context of a four-dimensional Riemann
space V,. In this sense, Weyl’s theory seems to bear a closer relationship to Rainich’s
Already Unified Field Theory [4] than to the later work of Einstein, Schrédinger and
others (e. g. [5, 6]. In Einstein’s theory, the meaning of a Riemannian geometry is obscured
by the ultimate necessity of relating mathematics to physics.’

Actually, we are aiming at something more. Eddington observes (loc. cit., p. 221)
that, a purely gravitational field apart, matter is to be described a tensor K%, (throughout
this article, Greek indices go from 1 to 4, the usual summation convention is observed, and
tensor indices are raised and lowered with the help of a symmetric *‘metric” tensor g,,).
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The tensor K is supposed to represent a physical *‘thing”, but is essentially only a shorthand
notation for the covariant derivative of g,,, formed with the help of an affine connection
I, - I' itself is to be determined from the field equations derived from a variational action
principle. In this search for an immediate electromagnetic interpretation, Weyl put

K., =g,.9"

where (pl was to be the four-vector potential.

Eddington refrained from this simplification at the start of his work but fell back on
it when it came to the derivation of the field equations. In the present article, we shall vary
the action invariant with respect to an unspecified tensor K* (and with respect to the metric)
in order to obtain as general a form of the theory as possible. It is perhaps surprising that
even then we are forced to assume that the potential is proportional to another vector which
must be interpreted as an electric current. This is the relation derived by Weyl; the alter-
native is to admit a very peculiar electrodynamics. We write, with Eddington.

i = gm,}.rzl —guv_Fflgma = K;wl (1)

where comma denotes ordinary partial differentiation.
Hence

K = Kml

"

We can regard (1) as an equation defining either the ‘‘matter” tensor K,,; of the affine con-
nection I™,, assumed to be symmetric so that infinitesimal parallelograms may close. The
object of introducing I, is, precisely, to define vector parallelism.

As we choose different connections, we agree to regard different vectors at some point Q
of the manifold, as parallel to a given vector at another point P. It follows from (1) that

=} -5 @
where
Sts = % 8" (K o+ Kuor —Kia) ®3)
and

l 1 Ao,
e =3 &"(8ov,u+Guoyw —8Lura)>

It

are the usual Christoffel brackets of the second kind.
The Ricci tensor

*R,, = =I5+ 1%

w w,c 2222

+ I, I, —rere, 4)

1 QOr, rather, with respect to a combination S of its components.
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has, in general, a nonvanishing, skew symmetric part
1
*R;iv = "“*Rvy = ?( 30',;1 _S;a,v)- (5)

But, from (2), Sk, is the difference of two connections, and therefore is a tensor. Hence

l .
Pu = b3 Suo (6)

is a vector whose curl is *R,,. It follows that
Ryt Ryt Ry = 0, ()

and we can identify *R,, with the electromagnetic field intensity tensor f,,. We may note
that when K ,,; = g,,k,, we get k; = ¢;. Also, @, is determined by (5) only up to the addi-
tion of a gradient:

1
pi= 5 S35+

would have done just as well.
Having got f,, we define a current vector density 3" by

5 .
o= g5 IV —&f*) =3 ®)

where g = det (g,,). Furthermore, from (4),
*R‘ﬂ” = Rlﬂ'+ / " +S;3953v —wasgg’ (9)

wle — “ucly

where R, is the Ricci tensor formed with the help of {:v}’ as in General Relativity; the

. .. . A . .
stroke denotes a covariant derivative w1th{ : as the affine connection. Thus we still have
U

g,uvM =0.
We shall also use the tensor

P,=*R,—R,. (10)
In particular, the symmetric part of P

Puv = *R"_V_R"’_v., . and P/,:u = *R[\fl' =fll’"

All the above formulae are well known from Eddington’s book; we recall them here because
of their use in the variations which follow.
We adopt as an action invariant, first,

#r =V =g CR2+Bf ] ™), (1)
where f is a constant and

*R = glw* R’w — g""*R,,_,,, (12)
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secondly, we shall take
Hy =V —g*R,*R". (13)

For the sake of convenience we shall vary #;, and H 5 With respect to g** = l/—g &g" and
S%, rather then K1 There can be no loss of generality until field equations are actually
derived and interpreted.

We may note, finally, that Einstein [7] proposed a theory in which I %, was used as the
arbitrary variable. Ours is an analogous theory but it seems that some of the alleged artifi-
ciality of Einstein’s proposal is eliminated.

2. Derivation of the field equations: the case H1

If we adopt the interpretation of °

o =Ry = G0~y (14)

as the electromagnetic field, it follows from equation (12) that we cannot use V—g *R as
the action density. The electromagnetic quantities simply disappear from it althoug the
density remains dependent on S%,. We add the term Bf u S precisely in order to preserve
electromagnetic terms. A density

V=g *R+Bf,,f*) (15)

could be used, but it would appear dimensionally unbalanced unless this were remedied by
a suitable choice of 8. Such densities have been used (e. 8. [8]), leading to theories essentially
distinet from Weyl’s. Since we are investigating in this article the theory of Weyl, we adopt
H, given by (11), without further ado.

Consider the stationary action principle

8 [ Hydr=0 (16)
where dv = dx' dx? dx®dx*. We assume that all integrated quantities (triple integrals) vanish

at the boundary of the region ¥ in which the variation is being contemplated.
We can write (16) in the form

Il +Iz = O,
where
I, = 2[dv (§"*R&*R,,+ B of,,).
and
A i 1
P fdr [2(*R*Rm+ﬂg”€fuufvﬁ) (6566 5 gﬂ’ggg) + 5 ngea] 4gec
and

HlV—‘“—g='%p1



13

Consider first the variation 8S%, in the tensor S%,: it comes exclusively from I;. We have

0*R,, = OR,,+S5; e — —06S5% vl Sz,,ds;’ﬂ
+S“ﬁ65’3,, —Sﬁﬂész,, —SM,,BSﬁﬁ,
and
fdf,, = f*(0S5) o
where

=V,
It can be shown easily that
[ ¢”*RéSE, dv = — [ g"*R _0S5%,dv— [ (*RS;‘;,,)iuég’“dT,
and

f G""*ROS® AT = — f g””*R},éSf,‘“dr— f (*Rszﬂ)’végMd‘r.

par

All that we require is to remember that covariant and partial differentiations behave exactly
in the same way with respect to the integration by parts of invariant integrals; we must

d
2 a /3
The result of equating to zero the co-factor 4Sf, is then

also assume, as is usual, that §, —

1 v
(@ R)jat 5 (6" R)j00a + 7
1 v o v
~ 5SS EA S R+ £ (G gray =0
Contracting this equation over » and @, we obtain
(@ R)o = §7*R,, = gL R — = 3,
so that, from (17),

G Re = (§5%-+§ Sl —"S2) — L (@bt 3.

Therefore,

1 p
& J— *p __
R,w - 2 SGG R 6 ]!4

where
8. =iV ¢
The next step is to consider either the integrability condition

*R:aﬂ _*R:ﬂ“ = 0’

(g"* R) ,,6" +gHo Sw* R+g" Sga* R—g~ Sﬁ *R_
I

and the integration operator, commute with each other.

17

(18)

19)

(20)
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of equation (20), or the equation
g

of conservation of electric current which holds in virtue of the definition (8). The former is
more instructive and gives,

6*R . . . .

g ot = Jup b tiaPs —oPe: (21)
This represents an addition to the laws of the electromagnetic field. It can be eliminated if
we take with Weyl (and, incidentally, also with Dirac, Ref. [9])

@, = ki, (22)
where
k = —pJ6*R, (23)

is a constant so that *R must be constant, too. This is precisely what happens in Weyl’s
theory where a guaging equation

"Ry = — 507 & (24)
is postulated.
To find the result of varying g,, we observe that since (Palatini)
=o)L,
/e rel 1y
the contribution from this term may be written as
Mmerss* L
a H,p
‘where _ )
M, = 2g""*R ,—6"*R ,07 —g"*R L.
This vanishes when *R is a constant.
Therefore, equating to zero the co-factor of ¢g% from I; and I,, we get
~2(*RSg5)ia+ (*RSjls + ("RS7e) + 20°R* Run-+ g fa fi) X
y 1 1
X (6560 - E‘ g’“’gea) + 7 nggo' = 0
or
1 1 a
Ry — 4 Rgops— vy Pgos— % Eo+ Seﬁsgd ~S$¢,Sgp= 0, (25)
where

1
Eq: =faﬁfg + 4 ggﬂflli’f!w7

is the electromagnetic energy-stress-momentum tensor.
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Hence
P = g% (S%S5,—S%,Sh)
and (25) may be written in the form

1 o o v 1
Roo— 5 Rt = sy Boo—(SiaShy— 5% ( SeSe— gﬂ”gea) : (26)
3. Derivation of the field equations: the Case #,

When 3#, is chosen as the action density in place of J#;, we obtain different field equa-
tions unless we should assume, as in Weyl’s theory, that

*R[IV = }“g[w
where A can be a scalar function of position. It g =4, then
Hy = AS,
Without this assumption, we proceed as follows:
6 [,V —gdv =06 [ R™*R" g dv
= [ H/ —g+V —g*R,*R,(e" 0" +5"*08") +2) —g *R"&*R,,)dT = 0.
Let
QU V—_—g* R™,
so that
[ 2*Q®6*R,,dy = [ 2*R”6R ,dv+ [ 2*R"$,,Pdz.
As before
OP,, = 0S%,, —0S%,,+ 55,080, + 50,055, —S5s0S5 — St Se

v|a w-ap

but it is more convenient now to use the identity

« % | ® ) @ :3
65/“’]1: = (6Syv)[a;+szv6 {ﬁa} - Sﬂ,,a {ﬁ“} - ”ﬂé {v“}.

Only the first term of this identity contributes anything to the S-variation. Integrating by
parts where appropriate and rejecting as usual all triple integrals, we find that
8 [ #ydr = [ (*Cudg™ + RE'6S)dr.
where
QU — — ZERWY L ERH SR B 25 RV 24 RIS, — 2+ RWVSE,
—*QUSH 6, —*Ke°S, o

and *G,, remains to be found.
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Contracting the equations

RN = 0.
over » and &, we obtain
5
RH ) = *ROS, — 5 8" 28)
where, as before,
g, =*K.
It follows from (27) that
5
R, = 2(*RES RIS, ) — 4o, R — 3 (3“0, +3"0%) (29)

If we now express the variation in R, in terms of {fw} with the help of Palatini’s formula

already employed in Section 2, integrate by parts, and add the contributions from §S*

|y
and 6S7,,, we find that all these terms cancel out. Hence

8 [ Hodv = [ (V:EHM,,ég’”+92;‘j,,65;,,)dt,
where

1
Hyy = 8%(*Ryq* Ry +* Ray* Rpy) — 5 Hyg*".

The second set of the field equations is, therefore,

H,, =0. (30)
Recalling that
*R,uv . *Ryv +fpw

these can be written in the form
v v 1 L4
*Ru*Re+fufz = 7 Oulla; (31

where
*JPPB . afBk
_IE“ . R'i'
Since

H, =*R,*R",
the field equations (31) remind us of one set of Rainich’s algebraic relations:

R°R, — % 5,ResR%.
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In fact, we can further rewrite (31) to read
*Ri*Re+E, = % 87 Ryy*RW, | (32)

This form shows explicitly the relation between the electromagnetic energy-stress-momentum
tensor EJ, and the symmetric part of the generalised Ricci tensor *Roy

4. Discussion

We have seen that the choice of wa instead of Sy, as one of the variables with respect to

which action invariant is supposed to be stationary (the other variable is, of course, g**)
reduces Weyl’s field equations virtually to a form familiar from Rainich’s theory. One of the
strongest criticisms of the Already Unified Field Theory is that it does not geometrise electro-
magnetic field in the same sense as gravitation is geometrised in General Relativity. Since
equations (27) contain the electromagnetic tensor E,, it may seem reasonable to assume that
they will also have written into them a mechanical say M. Indeed, (27) are equivalent to
the generl relativistic equations

1
Ro:— 3 oo = —K(Mgo— Eqo)s (33)
if
K = g[*R,
and
1 _ @ oB @ o uer 1 uv
ZRgec = KMo —(SupSas —SuvSap) SeSa—Zg 8eo | » (34
with
R =KM,

as required. In this case, equation (33) must be recognised as a definition of the mechanical
energy-momentum in terms of S. When S,’;,, = 0, the distinction between the present theory
and General Relativity disappears. The tensor E,, is then also zero and *R,, becomes
the Ricci tensor R, constructed from the ordinary Christoffel brackets. However, the
equations

RiR', = ¢ 8RugR%,

of Rainich, to which (32) would reduce, are a consequence of the algebraic form of E,,
when the field equations are
R, =KE,, (35)

Since we obtain (35) from (34) and (32) when M, =0, it follows that "electromagnetic
quantities are more elaborately represented in our version of Weyls’ theory than they were
in Rainich’s. The quantity S%, describes then really a physical ‘ thing” carrying both electro-
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magnetic and inertial characteristics. It is clearly possible for Jur and therefore also E,,,
to vanish, without S, being zero. In the first version of the theory, however, a purely
gravitational field requires that § = 0 so that 8 can be only locally constant. Our theory
can be regarded, therefore, as complementing the Already Unified Field.

But in what sense do we require a non-Riemannian geometry to introduce electromagne-
tism into its structure? Weyl maintained that in his geometry all non-infinitesimal aspects
have been eliminated: rejection of the axiom that parallel transfer of a vector length is
integrable led directly to a fusion of gravitation and electromagnetism. The integrability
conditions needed in General Relativity to define the reduction of a Riemann space to the flat,
gravitationless case, were removed. We have refrained from introducing the notion of
length transfer. Matter, whether merely ponderable or carrying an electric charge as well, is

represented as a quantitative difference in the definition of parallelism. Since I™, and{iv}

00
as parallel to 4* at an infinitesimally distant point. The choice between them is a priori
free and depends on the point of view adopted by a relativistic observer. In other words, we
represent matter as a ‘‘tilting” of ‘‘parallel” vectors. A purely gravitational field is still
given by the equations

are both affine connections, either A*— I o A%dx® or A" — {‘u }Agdx“ may be regarded

R, =0,

and, therefore, preserves, in a sence, a unique character. It must be distinguished from the
special relativistic case of an empty space, in which not only wa =0, but also

g;iv = T’]mﬂ

the metric tensor of Minkowski.
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