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A SELFCONSISTENT CONFORMATIONAL ANALYSIS
OF CONJUGATED AND AROMATIC MOLECULES WITH A STERIC
HINDRANCE
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A new, .selfconsistent conformation analysis is developed for conjugated and aromatic:
molecules with a steric hindrance. The method is a generalization and combination of the
SC LCAO MO and the Coulson, Senent and Haigh methods. The optimal choice of the van.
der Waals interactions for the pairs H...H, H...C and C...C is discussed, taking biphenyl as
a reference compound. )

1. Introduction

Determination of the structure of a molecule is one of the principle tasks of quantum
chemistry. In this article we shall deal with a narrow part of this general problem; we will
consider organic conjugated and aromatic systems which cannot be strictly planar because
of a steric hindrance.

No ab initio calculations are known for the systems in question and semiempirical
methods are used, as a rule. By far the most of them are based on purely harmonic forces
which counteract the deformation from the idealized form and on van der Waals forces
which behave in the opposite way (Westheimer, Mayer 1946; Westheimer 1947; Hill 1946,
1948a, b; Hendrickson 1961, 1962, 1964; Wiberg 1965; Jacob et al. 1967; Allinger et al.
1967; Kitajgorodsky 1961; Kitajgorodsky, Dashevsky 1967a, b; Coulson and Senent
1955a, b; Coulson and Haigh 1963 and others). More recently also the extended Hiickel
method has been used with this purpose in mind (Hoffmann 1963, 1964a, b, ¢, 1966a, b
Hoffmann et al. 1968, 1969; Van Dine and Hoffmann 1968; Adam et al. 1968), as well as
the CNDO method (Pople et al. 1965a, b, 1966; Tinland 1968) and the semiempirical
SCF CI method (Parr 1963; Beveridge and Jaffe 1965; Wettermark and Schor 1967; Ima-
mura and Hoffmann 1968; Tinland 1968 a, b).

All these methods show merits and demerits. Mechanical models are simple, but they
work properly in the case of small deformations only. Among them the Coulson, Senent
(1955 a, b) method is to be recommended, particularly in the form extended by Coulson and
Haigh (1963). Occasionally the pure mechanical model has been uséd for molecules with
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a large deformation like that in biphenyl (Dashevsky and Kitajgorodsky 1967). However,
extensions of this kind give rather a rough estimate od the real structure and the physical
information gained is usually scarce. The extended Hiickel and CNDO methods, on the
other hand, are very laborious. Besides, their findings are not always adequate. An example
of this is Tinland’s analysis of biphenyl by the CNDO method (1968). He has shown that
a minimum of energy is obtained for a twisting angle equal to 90°, what compares rather
poorly with the experimental value, 42°.

In what follows we develop a new approach. Basically it is a modification and combina-
tion of both the Coulson and Haigh method (1963) and the Longuet-Higgins and Salem
method (1959). Semiempirical parameters in our approach will be optimized for the particular
case of biphenyl. :

2. Brief outline of Longuet-Higgins and Salem's theory

Let g, be the zi-electronic population at atom ¢, p; the mobile bond order for bond i, «,
the Coulomb integral for atom ¢ and f; the resonance integral for the bond i. Neglecting
overlap integrals over 2p,-orbitals and all resonance integrals except for next neighbours,
and assuming additivity of energies of o-bonds, one obtains what follows:

E.o = const + D} ¢(r) +2 D) pif; + D 4., @

where 7; is the bond length of bond i and e; is its o-electronic energy. The value of p; and
g, follow from the appropriate eigenvalue equation and depend thus on the a,'s and §;’s.
However, yet another relation between these quantities is postulated. It is assumed that

B; = Bo; exp [—x(r;—1.397)] @)
where

o= a—bpj, 3

7; is measured in Angstroms, and f;, @ and b depend only on the nature of the atoms bonded
by bond . _
Following the ideas of Wheland and Mann (1949) one could similarly put

&, = %o +o(1 —q,) (4')

where a,, depends only on the nature of the atom ¢.

A selfconsistency of all these equations is obtained using an iterative procedure, the
method being called the SC LCAO MO method for this reason (Golebiewski and Nowakow-
ski 1964). It has been shown that with these conditions the g-electronic energy of the bond i
follows from Eq. (5):

i) = 2 (bl ) 2 ©

where P, follows from Eq. (3) after replacing p; by P,
Restricting the discussion to hydrocarbons let us note that several sets of parameters
a, b and x have been used in this context. Two of them deserve special attention. Boyd and
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Singer (1966) suggest the following values: @ = 1.524, b =-0.194, x = 2.835. Nowakowski
and one of us (1964), on the other hand, suggest the following set: a = 1.517, b = 0.180,
x = 4.1. The first set gives the best reproduction of the experimental bond lengths in
naphthalene and anthracene. The second ‘set gives the best reproduction of the bond lengths
in ethylene, benzene and graphite (Coulson and Golebiewski 1961) and a good reproduction
of many other physical properties of a large class of alternant hydrocarbons (Golebiewski
and Nowakowski 1964). In what follows we assume the second set.-

3. Bricf outline of Coulson, Senent and Haigh's theory .

Let us consider- the fragment of a conjugated or aromatic system shown in Fig. 1, with
the bond angles all equal appoximately to 27/3. According to Coulson, Senent and Haigh,

Fig. 1. A fragment of a conjugated system

its deformation can be described by in-plane coordinates, say gs = Aay3, gy = Aotgy, ...,
@7 = Ary5, gy = Ary 3, etc., and by out-of-plane coordinates, say

ay = 140 [(2g—2y)[ry,a+ (23 —21)[ry 3+ (22 —21) [y 0 (6)
b1y = 1.40 [(2, —21)/ gt (2 _22)/ To —(za—2)/r. 4,1] - ]
—(25 _zz)/ T 5,2] : (7

and similarly a,, where, apart from a factor, a, is the distance of atom 1 from the plane
defined by its next neighbours and by, is the twisting angle of the central bond.

Let us define a row vector of all the in-plane coordinates, ¢, and similarly the vectors @,
b and 2. Let W(R,) be the sum of van der Waals interactions which cause the deformation.
They minimize then the total energy,

1 1 1
E,,, = const + EaKaaT+ 3 bK,bT + o qK q" +W(R) 8
or, equivalently,

1 v 1 0
Etot = const -+ Eszz + E qqu + W(Rz)‘ (9)
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If a =zA4and a =z%B, then
K,= AK, A"+ BK,B". (10y
Here, K,, K, and K, represent the force constant matrices. According to these authors
it suffices to consider the matrices K, and K, as diagonal, as well as the Kq matrix. Let us
recall that, at least for the case of benzene, the off diagonal elements of the K, and K,
matrices are few percents of the diagonal elements (Coulson and Gotebiewski 1960). In the

case of the K, matrix the off diagonal elements may be some 189, of the diagonal ones
(Whiffen 1955).

The following values of the force constants can be recommended in this method:
i) for in-plane deformations within the benzenoid rings (Coulson and Haigh 1963):

K(<x C—C—C) = 1.4504x 10~ ergfrad?
K(<x C—C—H) = 0.9903x 10~ erg/rad?
it) for in-plane deformations within the chains (Westheimer 1956):
K(<x C—C—C) = 0.833x107 ergfrad?
K(<x C—C—H) = 0.567x 10~ erg[rad? 12y
K(« H-C—-H) =0.333x10"" erg/rad?
i11) for out-of-plane deformations of hydrocarbons (Golebiewski and Parczewski 1967):
K* = 0.1254x 105 dyne/cm .
K% = 0.0947% 105 dyne/cm (for benzenoid bonds). (13)

(1

We do not cite the values of remaining force constants as they are considered differently
in our approach.

4. Outline of the self consistent conformation analysis

Let 7 be the row vector of bond lengths, Aa the row vector of Aa.’s, @ of all a;’s, b
of those b;’s which are expected to be small and @ of those twisting angles which can be
large. Let W = >} W,(R,) be the sum of vdW interactions which are expected to influence
the structure significantly. We use thus a central field model for vdW interactions, putting
R, = R;(4a,a,b,0, Ar). We use a harmonic model to calculate the energy associated
with the vectors Ae, @ and b, and the explicit SC LCAO MO method in calculating the
influence of @ and Ar. Thus we minimize the total energy:

[FIREer S -;— AaK Ao+ % o e % bE,bT+W +

+En(r, @)sc —Ex(r, O)sc+ Es(r, ©)sc—Eo(r, O)sc (14)

where E (r, @)gc is the o-electronic energy for the twisted case calculated with the use
of Eq. (5), E,(r, O)sc has a similar meaning for the planar case, and E_ (¥, @)g; and
E_(r, O)gc are the appropriate z-electronic energies which follow from the SC LCAO MO
method.
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Let us specify the various terms of Eq. (14) in details. Calculating E (1, @)ss and
E,(r, O)g; with the SC LCAO MO method we include a twisting factor of the resonance
integrals, putting

Bi(r, ©) = B(r;» 0) cos @; = Py exp [—(r;—1.397)] cos O, (15)

where, for hydrocarbons, x = 4.1/&, B, = —1.403 eV (Golebiewski, Parczewski 1967).
With this value of B, the delocalization energy of benzene, according to the SG LCAO MO
method, amounts to 28 kcal/mole. It compares reasonably well with the experimental value
36 kcal/mole, despite the fact that Sy was estimated from the vibration analysis of benzene.

The selfconsistency requirement of the SC LCAO MO method, which follows from
Eq. (3), is replaced now by Eq. (16):

b dW(Rj) JR;
2x;(r;, 0) - dR; r;

r;i = a—0bp;(0) cos O;+ (16)
where the parameters a, b are approximately the same as previously provided the vdW
interactions of the meta type, like I-5 in Fig. 1, are neglected.

Indeed, we obtain within the SC LCAO MO scheme the following expression for the
total energy:

2 1 '
Etor = const + i Z (; -—a—i—rj) Bi(rj> 0).

J

+2 2 pi(@)Bi(1; 0) cos O+ X5 W(R,). (17)
J s
However, for the equilibrium,
Bt
37‘,’ il (18)

Substituting Eq. (17) into Eq. (18) we obtain the condition (16).

Certainly the influence of the X, term in Eq. (16) decreases rapidly with an increase
of the R’s. On the other hand, the original relation (3) seems to work satisfactorily in the
case of planar systems despite the different neighbourhoods of the given bonds (ethylene,
benzene, graphite, etc.). This behaviour could be understood if, for the most significant
contributions from the vdW interactions (like I-5 in Fig. 1), the effect would not depend on
the nature of the neighbouring atoms:

awc..H) [ dwC..C)
(_ dRcu )z.m"w( dRcc )2.41 (19)

Considering the vdW ' interactions of atoms 3-5 and 4-6 and their unresricted in-
fluence on ry, (Fig. 1) we obtain, using potentials given in Eq. (20-22), a change of Ary,
= 0.0007 A for the case of H...H interactions and slightly less than 0.005 A for the C...G
case. Thus using the same values of @, b as in Eq. (3) for simplicity we overestimate, in
some cases, the role of vdW interactions by not more than 0.005 A. A more accurate technique
would be to use different values of a, depending on the neighbourhood of the bond.
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In a strict treatment one should consider the vdW interactions for all pairs of atoms
except perhaps those of the meta type. This would be an unnecessary burden, however,
at least for large molecules. In the present treatment we consider only those interactions,
which are expected to influence the structure significantly. In the case of biphenyl, for
example, we consider the interactions which are indicated by a wavy line in Fig. 2. These

—_—

Fig. 2. Numbering of atoms, definition of independent coordinates and local Cartesian coordinate systems,
types of vdW interactions which have been considered explicitly in the case of biphenyl

interactions are expected to change the twisting angle @ ; and the central bond length r, ,
rather distinctly, although the estimated bond length ry , may be too large by about 0.005 A.
The choice of the van der Waals potentials is postponed to the next section.

IR;
rs
known. This is a simple trigonometric task if local Cartesian coordinates are used. Let
us consider biphenyl, for example, introducing three local coordinate systems (Flg 2)
We jassume, for simplicity, that both carbonic rings are planar, so that z; = z2 = 2z
=z, = z; = 25 = 0 and similarly for the other ring. Additionally we assume that 27, = 774 = 0,
==y =x =% =25=0,31, 2, H~<1, 2, 13,4, 3, H~ <4, 3, 14,etc., By

the relation R; = R,(da,7,@, b, @) must be

1
=— E%, and similarly for all equivalent positions. For all C —H bonds we assume a con-

stant bond length, 1.08 A. We have then the following independent coordinates: Tigs
T1,2 Togr Tagr %1 %> Py» @17 and z1g. Let us pass now to Fig. 3. Analyzing all triangles in
this figure we obtain the Cartesian coordinates %', y, 2’ of any atom in question. It suffices

ik s .
then to rotate the coordinate system «', y’, 2z’ around the y axis by _301’7 and to shift

1 v
it along the y axis by — — (71,7 +714)-

The a;- and b;-type coordmates which appear in the force field are expressed by out-
-of-plane z- coordmates like in Eqgs (6) and (7). However, in contrast to Coulson and Senent,
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-Fig. 3. A detailed diagram of a phenyl ring of biphenyl
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we use a local coordinate system for this purpose,-chosen in such a way that all 2’s are
small. In the case of biphenyl, for example, we express a,, @y, by 5, by g in terms of z;-values.

140 ,

Thus a; =0, ay = Tog ™ etc.

- The floating chart of our program which has been written in Algol-60 is given by the
following diagram:

Input data:
r, 0, 2l0c, o,

bond orders py;, <~
atomic populations ¢;,

other (fixed) data.

v

Construction of the energy matrix according to the SC LCAO MO method and
diagonalization

v

Calculation of new values of p;; and g, calculation of D= max (Apij,Aq’:-)

4

| Y% | D<e?
v J mo
END , .
Calculation of derivatives and of r’s

Tij

v

Minimalization of E,,in respect to 8, 21°¢, A, keeping the values of T4» Pij and g;
constant
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The program allows us to keep the value of a given @,; angle constant. It can be used,
therefore, for an estimation of rotation barriers and related problems. It can be also used
for ions and excited states within the framework of the SC LCAO MO theory.

The division of all twists into small and large ones, into bi]--typé and @);-type, is arbitrary,
of course. For small twists we can consider them within the harmonic force field only. On the
other hand, we can consider them all within the'SC LCAO MO scheme. For small twisting
angles both variants are equivalent.

5. Optimal choice of vdW potentials. Biphenyl

There is a large variety of semiempirical formulae known for the van der Waals inter-
action between the carbon and hydrogen atoms. In order to make a proper choice for the
selfconsistent conformation analysis (SC CA) we have decided to test their utility for the
case. of biphenyl. '

Certainly the main effect in biphenyl comes from H...H interactions. Restricting the
discussion to these interactions (Fig. 2) we obtain the ground state properties listed in Table I.

TABLE I
The réle of W(H...H) interactions
Biphenyl
, w8 k) ( j‘lK) R(Woy) | Wimin)
Potential ©V) dR | 184 (A) ) | v
(eV/A) @1,7 r1,7(in A)
Hill (1946) 0.034 —0.245 242 —0.002 16°12’ 1.474
Barton (1948) 0.032 —0.221 2.40 —0.005 16°23’ 1.474
Kitajgorodsky, Dashevsky ]

(1967a, b) 0.056 —0.385 2.46 —0.004 | 21°46’ 1477
Kitajgorodsky (1961) 0.106 —0.620 2.46 —0.003 | 27°45 1.482
Bartell (1960) 0.122 —0.545 298 | —0.001 | '31°00° 1.484
Pauncz-Ginsburg (1960) 0.263 —0.793 4.36 —0.000 | 46°01" 1.497
Mason, Kreevoy (1955) 0.527 —1.588 >4 == 58°01’ 1.506
Experiment - —_ — — — 42° 1.48—1.49

The remaining vdW interactions (Fig. 2) will certainly modify these results, causing an
increase of @, and r;,. We see therefore, that the second Kitajgorodsky’s and Bartell’s
approximations seem to be best suited in our case. Hill’s and Barton’s potentials are definitely
too soft, while the remaining potentials are definitely too hard.

In the next step we have analyzed the effect of all vdW interactions indicated in Fig. 2,
considering various combinations of the Bartell (1960) and Kitajgorodsky (1961) potential
W(H...H) with those known for C...C and C...H pairs (Bartell 1960, Eliel ez al. 1965, Dashev-
sky and Kitajgorodsky 1967b). The best agreement with the experimental ground state
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properties of biphenyl (both, isolated and in the solid state) was obtained for the following’

set:
W(H...H) = 285.90 exp (—4.08R) —2.134/R® (V) (20)
W(C...H) = 1939.4 exp (—2.04R)/R® —5.4179/R8 (V) 21)
W(C...C) = 1635.3 exp (—3.52R) —20.561/R® (eV). (22)

Formulae (20) and (21) have been suggested by Bartell (1960) and formula (22) by Dashevsky
and Kitajgorodsky (1967b). We would like to add that this set of vdW potentials also satisfies
the selfconsistency requirement (19).

W(R), ev
a.5 1
04t
03¢

a.2 +

. o
1729 10 15 2.0 2.5 30 8 R A

Fig. 4. Dependence of the van der Waals interactions W(H...H), W(C...H) and W(C...C) on distance R

The dependence of these potentials on the distance R isillustrated in Fig. 4. A comparison
of calculated and observed properties of biphenyl with this potential set is given in Table II.
The experimental data for the isolated state are taken from the article written by Almenningen
and Bastiansen (1958) and that for the crystal — from Robertson’s papers (1961a, b).

We see from Table II that the agreement with experiment is quite satisfactory. In the
case of the isolated state the calculated @) , angle, all the calculated bond lengths and all
the remaining bond angles are close to the experimental ones. A comparison of the calculated
structure for the constrained planar case with that observed in a crystal is certainly less
grounded. Nevertheless, not only does the central bond length again agree quite well with
experiment. Also the deformations of the benzene rings are now expectedly larger and well
comparable with those observed except for the angle 8,. However, 8, is defined by the
position of a hydrogen atom, which by the X-ray method can be measured only very approxi-
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TABLE 11
Calculated and observed ground state properties of biphenyl
Isolated molecule Planar molecule (in crystal)
Property Cale. Obs. Cale. Obs.
0., 40°21’ ~42° 0° 0°
iz 1.498 1.48—1.49 1.503 1.497
e 1.402 ~1.40 1.409 1.397
Tas 1.396 ~1.40 1.395 1.387
Tsa 1.397 ~1.40 1.398 1.379
‘A 120°19” ~120° 121°47 118°48’
B, 120°00 = 119°55 —
o 119°35’ ~120° 118°20° 117°20"
oy 120°17” ~120° 120°55’ 121°10"
o3 119°59” ~120° 120°10° 120°30”
A 119°547 ~120° 119°31" 119°20
2, 0.01 — 0 [ 0.017

mately. One way or the other, the decrease of #; below the ideal value, 120°, is physically
unrealistic, at least as long as interactions with other molecules are neglected. This abnormal
value of f; was also pointed out by Miller and Murrell (1967).

We would like to point out that our theory predicts a longer bond length ry ; for the
planar case than for the twisted one. The calculated difference, 0.005 A, compares well with
the experimental value, 0.007 A. To our knowledge this is the first analysis which predicts
this behaviour properly. The absolute values of r, , are slightly too high in both cases.
However, a correction of the @ parameter by 0.005 A (see Section 4) would make the agree-
ment quantitative.

6. Final remarks

It is hoped that the selfconsistent steric analysis of the conjugated and aromatic systems
will yield valuable information in all the cases where the steric hindrance might be large.
We have applied the method to extended calculations on biphenyl, butadiene and stilbene,
discussing ground states, excited states, ionic states, rotation barriers, etc. We are in the
course of preparation of these results for publishing. They will be published in the nearest
future.
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