Vol. A37 (1970) ACTA PHYSICA POLONICA Fasc. 6

EIGENVALUE APPROACH TO DISCRETE DOUBLE GROUPS OF
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A complete set of independent and commuting symmetry operators is defined for discrete
double groups of symmetry elements. Possible sets of eigenvalues of this complete set are derived.
The eigenstates are related to irreducible double valued representations. The discussion involves
the double groups C,, S35 Cpys Crp» Dy Dy Dipgs T Ty Ty, O and O,

1. Introduction

It has been shown recently by the author (Golebiewski, 1970) that for any discrete point
group of symmetry elements a complete set of independent and commuting “symmetry
operators can be defined. The eigenvalues of this set of operators characterize the symmetry
eigenfunctions” in a similar way as do the full representation matrices in the standard ap-
proach. The eigenvalue description has made it possible to introduce a new type of projection
operators into the framework of the group theory of discrete point groups. In the present
work we are going to extend this treatment to double groups in order to cover the double
valued representations. In what follows we mean by I a reference to the previous work

(Golebiewski, 1970) in which all theorems necessary in this treatment are described in de-
tails.

¥

2. Properties of symmetry operators. Equivalence

Let Ry, Ry, ..., Ry, be a set of symmetry operators which make up a group G. With
any symmetry operator R, there is associated a new coordinate system. We can put

R,(xyz) = (xyz) D,R,),t = 1,2, ..., h (L)

where Dy(R,) is, by definition, the regular representation of the element R,. Usually we say
that R, = R, if, and only if, D,(R,) = D,(R,).

We adopt a similar convention for the case of double groups, putting

R(ap) = (@f)DR), t=1,2, ..., h @)
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where & and f are spinfunctions for spin 1/2 and its components +1/2. We say that R, = R,
if, and only if, D)(R,) = D)(R,) and simultaneously D(R,) = D(R,).

It is customary to derive the regular matrices D)(R,) and Dy(R,) with the use of the
Euler transformations. However, an alternative treatment seems to be more convenient in
many cases. Let @ be, for example, the rotation angle, and let e be a unit vector parallel
to the rotation axis. For clockwise rotation of the coordinate system we have then that

R,(0, €) = exp (-I— % Oc —i) , when acting upon a function of Cartesian coordinates, and

R,(@, €) = exp (+ WL O¢ - 5 |, when acting upon a spin function. Acting with these oper-

ators upon the row vector (xyz) or («f) respectively, one finds what follows:

CE(e) (wy2) = (xy2) {1 cos x+V(1—cos x) + W sin } - (3)
C@) (2B) = (aB) {1 cos % +isin % T} ()
i (172) 2= —(ay2)3 1 (af) == (ah) (5)
o(€) (72) == Qi Co(8) (wy2) = (wyz) (1—2F) 6)
o(6) (aP) = —i (@f)T @

S, €) (xy2) = Ck(e) a4(e) (xy2)
= (wyz) {1 cos x —V(1+cos x) +W sin x} 8)

(St, 8) (@B) = (ap) {1 sin %— —1i cos %—T} 9

where x = 2mk/n, Q = R(2m, ¢) and

€€y Cx€y €4E, OSEFeIn=—el
V=|ee, ee, eel|, W=|—e 0 e, (10)
€8, €,€, €€ e, —e 0

e —ie
e (11)

e, +1e, —e,

In spite of the evident simplicity of these formulae we could not find them in standard
books on group theory and quantum mechanics [e. g. Bhagavantam, Venkatarayudu (1951),
Cotton (1963), Hamermesh (1962), Heine (1960), Messiah (1962), Tinkham (1964)]. However,
we did not try to trace them in the more than voluminous literature. One way or another,
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these are the formulae which have been used to prove all equivalence relations applied in
this work. ’

Formulae (3) to (11) allow one, for example, to prove easily that 7) if there is an axis
C; L C, or a reflection plane ¢,|| C,, then C, and C;'Q belong to the same class; i) if
there is an axis Cy L S, or a reflection plane o,|| S,, then S, and S(*~!) belong to the
same class; iii) if there is an axis C, || ¢ then ¢ and 0Q belong to the same class.

-»

3. Groups C,, S, and D,

The case of groups C, and S, (for even n's) is trivial. We reproduce the double valued
eigenvalues in Tables I and II for completness.

Tables of symmetry eigenvalues for double groups

TABLE 1
Groups C3, and Sj,
) . E; E, E, E,
Con  Son = - = ; p - v 5 Comment
T | T, | Te| T | T I T, Ton_1| To,
[
HCo) S 2 | 21| 58 -3 | 5 25| ... |gm—=1] j1-2u| Z = exp (mi/2n); all bases are
(Can) 4Spm) £ i formally 1-dimensional
TABLE II
Groups Cém.l
A E’ E E;
Cén+1 " 1., ,2‘, : = n, Comment
T 7, , 279 N /A Ton '72n+1,
MCapi) = P 8| 8 w21 | -2y | 2= exp [7i/(2n+4-1)]; all bases are
= I formally 1-dimensional

~ The group D, is generated by two operators, Cyand C,. Thus C, and C*~1Q = c;t
belong to the same class. Following the definition of the almost complete set (1.2) we find the
set: X = Cgand Y = (C,+C" Q). Looking for possible eigenvalues of X and Y we find

that A(X) = £1, +i end A(Y) = cos k_n , where £ =0, 1, 2, ..., n, in accordance with
‘n

theorems L1 and 1.2, edapted to double groups. However! the eigenvalues A(X) and A(Y)
are interrelated through the condition A(Q) = =+1. In particular one notices that

a) for the D, case: Q = X2 = 2Y2—E,
b) for the Dj case: Q = X2 = 4Y3-3Y,
c) for the D, case: Q = X2 = 8Y*—8Y2-LE,
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etc. All the possible pairs of simultaneous eigenvalues 4(X) and A(Y), which correspond to
the case A(Q) = —1, are given in Tables III and IV. By taking sets of eigenvalues which make
complex conjugate pairs we can group the eigenstates into two-dimensional sets (Tables I

and IV).

, TABLE IIf
Groups Dy, C3, o and Djy for even n
E E, E o E;
Doy Cono Dha 7 : B = : P . : ; - n' Comment
Tyl T | T | Ta| % | Te | v |Tem1| Tom

MCH Aoy AMCH | i | =i | & | —i| i |—=i| | i |—i]| =3l
AY) AY) AY) cos % cos 3x cos 5% o |cos@n—1)z| Y= (Co chz‘l),

| Y= § (ot SE )

TABLE IV
Groups Dy, and Cop 10
E! E; E] E,
, 1 2 3 n+1
Doyi1. Contro|— - . A n - 7 - Comment
’L’l 12 Ts 14 TE Ts wee [Topt1 T2p1-2
MC)  Moy) A A T L 2 S i | —i | x=a/@nt+l),
AY)  ANY) cos x cos 3z cos 5z e | =1 | =1 ] Y=1% (Copp1t+ Qc§:+1),
last two states never mix

’

4. Groups C,,, D,y and C,,

The group C,, is isomorphous with D.. Tt suffices to replace Cj by o, (Table III). The
group D, is isomorphous with D, in the case of even values of n. It suffices to replace Cg,
by S,, (Table III). po

Considering odd values of n we have that D., = D,XC; As A(i) = =1, all the eigen-
states of Table IV have to be doubled now, once as g states and the other time as u states.

 Similarly €., = C,X Gy, Now A(s;) = £1, &iand A(C,) = exp (ink/n), k=0,1,2, ...,
2n—1. However, A%(s;) = A*(C,) = A(Q). Therefore the double valued eigenstates of o
follow from doubling the number of eigenstates of group C, (Tables I and II), once with
Ac;) = i, the other time with A(sy) = —i.

- 5. The group D,
(]
If 7 is even then D!, = D,X C; and the number of eigenstates of Table IV has to be

doubled, denoting the eigenstates as g states for A(i) = 1, or u states for A(i) = —1. In the
case of odd values of n the group D., is generated by two elements, S, = C,0; and C;-
We obtain thus the commuting set:

X=Cp Y= (CoHC o, a2
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Let us consider the particular case of the group Dj,. The eigenvalues of X which cor-
respond to A(Q) = —1 are equal to +i. On the other hand one can prove that

3t 1
NESi= @ Y+ Ky on(E+ Q). ©(13)

Thus, if A(Q) = —1, then A3(Y) = 2A(Y) and A(Y) = 0, }}/3, —%‘/3_ Similarly for the
A(Cy) = +i case of the Dy, group we find that
5 5

1
5 - =~ V3 __ _—_ Ay
Y=Y - Y o5 oi(E+Q) | (14)

) that“
BY) = S B+ — AY) = 0.
) 6

Possible sets of eigenvalues for any odd value of n are given in Table V. In Table V all the
eigenstates which are complex conjugate have been grouped together. With this grouping
the orthonormality condition (I.5) is satisfied. Therefore the description of the symmetry
properties is complete and no other symmetry eigenstates do exist.

TABLE V
Groups Dén+1,h
) E E, E! R IOV 7
D2n+1,h ; ) ; i . p . . Comment
Ui Ty T3 | Ts Ts Tg oo (Tan+1|Tan+2
AC) A A l i =i .| i ’ —i | %= 27/@2n+1),
MY) ) sin % sin2¢ | .. | sin2us | Y =3Copy1+Corr1)0p

6. Groups T' and T,

Let us consider the group 7" first. Similarly as in the case of the T group (I) we introduce
a set of commuting and independent operators which happens to be complete:

1
X =Ci(say Cgp), Y = 3 (Cox+Coy+Cyo). (15)

Discussing the 4(Q) = —1 case we find that A(X) = z, z* and —1, where z = exp(iz/3).
On the other hand, .

il 1 :

YZ——g—(E—FQ)Y—?Q:O. (16)

Therefore A%(Y) = —1/3. All the possible sets of eigenstates are given in Table VI. In
order to find the mixing properties under the action of any element of the group 7" upon

these eigenstates let us note that Cg, Y = 1 (Cg,+Cy,+GCy,)Q ‘and that R = (Cy,+Cgp+
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TABLE V
Group T”
E G
T - Comment
7 T 7, T, | 7! 7
- MGy) z £ -1 z —1 z* z = exp (7i[3),
A(Y) il)/3 |—i/3| if)/3 |—i)/3|—u)/3| ity/3 | Y= } (Cayt-Cayt-Ca,)

+Cy,+Cy,)Q does obviously commute with any element W € 7", Therefore [W, R] = 0,
where R =C; (3Y +Q). It follows from theorem 1.3 that only eigenstates which have equal
A(R) can be mixed together. Let us denote by x(7;) the eigenvalue A(R) which corresponds
to the state 7;. Then x(7;) = %(7) = —2, a(7y) = 2(vy) = 1—i)/3, x(z}) = x(v5) = 1+i/3.
The irreducible basis sets cannot be larger then than the following ones: (v, 73), (t3, 7) and
(73, 75). However, with this subdivision the orthonormality condition (I.5) is already satis-
fied. Therefore no further division into smaller basis sets is possible. There is, however,
a physical equivalence of states 73 and 75, and 7, and 7.

7. Groups O', Ty and O},

Let us start with group O’. Adopting the complete set of commuting and independent
operators of group O (I) to the requirements of a double group we obtain the set:

and a subsidiary commuting operator Z, where
1 .
However
1
Z8 = (E+Q) (E+CE). 19)

Therefore, if A(Q) = —1, then A(Z) = 0. The double valued eigenvalues of C,, are equal
to z, ¥, —z and —z*, where z = exp (in/4). Passing to the eigenvalue problem for Y let
us note. that

4Y? = Z+E+(Cy, +C3,Q)Y. (20)

Replacing operators by their eigenvalues we find the equation to be satisfied by A(Y). All
the possible sets of eigenvalues are listed in Table VII. The subdivision into .basis sets,
given in Table VII, follows from the following three requirements: 7) equality of charac-
ters for a basis, y(C,,) = x(Y), i) equivalence of eigenstates with complex conjugate
eigenvalues, ii7) the orthonormality condition (I.5).
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TABLE VIJ
Groups T and O’

-
)

Comment

;o

W o~

ASsz)  AMCyy) z z*

z z* -z | -z* z = exp (wij4), x = l/l/i
AMY') AY) x x % I x| %2
l

22 | #2 | 52 | Y=3{Cork Cryt QChAQCL),
Y7 =3 Saxt-Sy+5(3) +5(,)}

"The possible sets of eigenvalues in the case of the Tj; group follow from the
isomorphism of groups 0’ and T7; (Table VII). ‘

As O, = 0’ X (., there are twice as many eigenstates as in the case of the O’ group,
once with A(i) = 1, the other time with A()) = —1.

8. Projection operators and illustration

Similarly as in the case of the ordinary symmetry point groups (I) we can easily con-
struct projection operators which project a given function into a given 7; eigenstate. Consider-
ing for example, selected eigenstates of the O’ group we find, in accordance with Table VII,
the operators:

P(E1, a) = P(r1) = const (Cyz —2) (Y2 — %) (Y+ VT) 1)
P(E3, a) = P(73) = const (Cyz+2) (Y2 = —) ( 1/ _) (22)

P(G', a) = P(}) = const (Cyz—2) (Y2 i %) (Y - V2 ) ) (23)

We recall that.the standard approach to projection operators would require knowledge
of the action of all 48 elements of the O’ group and of all the matrices which form an irre-
ducible representation of the O' group. Thus the simplification is significant.

Let us consider a simple example of d orbitals and the group O’. One finds easily with
the use of Eqs (3) and (4), that

+ — + O — —
Yd1=—%l/2d1—%dxy, Yd]_:"‘%l/?dl’

. e ; + + — +
Yd._']_ = — L ng—l_l- % dxys Yd—]_ = T '}_ Vz d—1a
i - - g+
Y, = — 5 da  Ydy = dy,
+ 5+ - =
deg_ygn:; g K=ty dea_'ay = VT— d —y%s
+ 2 + = oh=
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+ + - - + + - - +
and that Cudy = —2z*d;, Cpd, =zdy, Cpd,, = —zd,, Cyd ;= —2zdy, Cpd_,

+ + + +
Cosdpyp = —2dp_ye, Cpodyu_yp = —2%da_yn, Cyudy = zd,,

+
= z*d_;, Cud,, = —2*d fre

%; xY?

C4zd0 = z*do-
-+ o+ - + -
We see that spinorbitals d, d_y, d,a_ys, dya_ys, dy and d,, are already eigenfunctions
of C,, and Y. In accordance with Table VII

- +
d, €7y = G'(a), d_y Evg=G'(b),
-+ —_—

dy Ety = G'(a), dy ETs= G'(b),

-+ —

dxx._yﬁ € T-l; = GI(C), dxe_ya ET; = G’(C).

The remaining eigenfunctions are obtained with the use of projection operators:

- . .
P(E3, a)d—, =const - ‘I/% {d_l. s % dxy} € Ej ( a),
’ * 2 |+ i = ,
P(E3, b)d, = const - ﬁ {d1+ ﬁ dxy} € Ej(b),

i

V3
= + + — )
P(G', d)d; = const ]/g {dy— V2 id.y} € G'(d).

P(G', ¢)d_; = const - —= {d_;+ }/2 id,} € G'(c),

Thus in the spin-orbit coupling theory of d-electrons in an octahedral force field d,
+ o+ = > :

interacts with d, d_; with d,, 'I/ % {d-_l s 71_ dxy} isinits final form, etc. The same set of
. 2

functions can be also conveniently used in calculations of the magnetic susceptibility

(Ballhausen 1962, Golebiewski 1969).
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