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A proof of the Linked Cluster Expansion Theorem for the Green functions is given. The
use of cumulant averages developed by Kubo and of a generating functional makes this proof’
very simple. The proof is quite general and is valid for the temperature T'54 0 as well as for
T= 0 (ground state).

1. Introduction

In the last two decades methods of quantum theory were succesfully applied to the
many-body problem in solid state and nuclear physics [1], [2]. By “‘many-body” we mean
here both many particles and many spins. The mentioned methods consist, inter alia, of
the use graph techniques in the perturbation theory. One obtains unperturbed averages
of products of several annihilation and creation (or spin) operators. Applying some reduction
formulae (generalized Wick’s theorems) we can represent each of the averages of n operators
by averages of m operatos, where m << n. This makes it possible to obtain a one to one
correspondence between terms of the perturbation series and graphs. To every grapht
there corresponds an expression named the contribution from this graph which is equal
to a particular perturbation term (multiplied by n!, where n is equal to the order of this
term?). ,

In the many-body problem one considers perturbation series for the free energy and
the Green functions (perturbed averages of the ordered opérators). The graph for the free
energy or for the Green function is called unlinked (unconnected) if the contribution from
it is equal to a contribution from a graph of a lower order for the same quantity (for the
free energy or for the Green function) multiplied by a product of contributions from graph
of lower order for the free energy. Otherwise it is called linked (or connected). A linked graph.
for the Green function is called weakly linked if the contribution from it is equal to a product
of contributions from graphs for lower order Green functions?. Otherwise this linked graph.
is called strongly linked.

* Address: Instytut Fizyki Uniwersytetu Slaskiego, Katowice, Bankowa 12, Polska.

1 Drawn in accordance with conservation laws.

2 We consider labeled graps.

3 The order of a Green functions is equal to the number of perturbed averaged operators entering it

(847)
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The Linked Cluster Expansion (LCE) theorem states that both the free energy and
the Green functions are represented by linked graphs only.

There are many proofs of this theorem in the literature, but almost all of them depend
on the concrete form of the Hamiltonian. To the authors’ knowledge there are only
three methods with help of which the LCE theorem can be proved for arbitrary many-
body Hamiltonian. The first method based on the Uhlenbeck’s theorem (see [3], p. 132)
and the second one given in a paper of Kubo [4] can serve to proving the LCE for
the free energy while the third method given by Watanabe [5] can be used for pro-
ving the LCE tor the free energy as well as for the Green functions (ses e. g. [1]).

The aim of this paper is to give another simple proof of the LCE for Green functions
holding for arbitrary Hamiltonian. We exploit the very important and useful concept of
cumulant averages as it suggested Kubo [4]. In passing we outline Kubo’s proof of LCE for
free energy. i

In §2 we define some basic concepts of cumulants (semiinvariants) related to the
B-ordered products of some operators. We give the proof of an important theorem about
cumulant averages.

In § 3 we recall some well known formulae from the statistical perturbation theory.

In §4 we give a simple proof of the LCE theorem for free energy and for the Green
functions.

2. Green functions and cumulant Green functions

Let A4 be a random variable and {A> its average value. It is very well known in the
probability theory that the cumulants are defined by means of their generating function

K[£] = In (et = Z &y = Cexp £4 -1, @)

where by (4}, we have denoted just the cumulant average.

Because in the many-body theory we deal with random variables 4, depending on
some continuous parameter § (8 = 1/k7, k-Boltzmann constant) and operators representing
these random variables are often S-ordered, we concern ourselves with the generalization
of cumulant averages to this subject.

We consider the functional
B
MIE] =<Texp [ df’ X} AB)ELB) 22)
0 a

i)
where A s are some operators,

_ Tr{e M.}
<--c> —_ _-'W_ 9 (2.3)

Ap) = ePH A etk
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H is the. time-dependent Hamiltonian, &,s are c-numbers, and T’ denotes the f-ordering
operator defined as follows*
T (BIA(B) - Aen(B)) = Ao, (B A, (B,) - Ao, (B,) 24
with
By > By > By

The expansion of the functional M[&] into the functional Volterra series gives

= B B n n
Mg =Y, f dp... f agy Y 3 T4, T e 80 @5)
n=0 "% W 3 o @ j=1 k=1

Thus, M[£] is the generating functional for f-ordered averages which we shall also call the
Green functions®

TTLAE) = Coloas B i B 26

g MIE]. (2.7)
: £=0

Gm(“;p ﬁ13 Tt “m»ﬂm) = 55%(/31) 6$am(ﬂm)

Let us first note that the Green function of the first order (i.e. for m = 1) is simply equal
to the average of an operator A4;. Now we consider another functional

* K[g] = In M[E]. (2.8)

We define the cumulant f-ordered averages, which we shall call also the cumulant Green -
functions [6], and denote by’

<TﬁAaf(ﬂf)>c = Co(tss By o3 %ol 2.9)
g

assuming that the functional K[&] is their generating functional, i.e.

o
Conl0t5 Bs -+ 5 X)) = 880, (BY) -0z, (Bm)

Taking (2.8), (2.9) and (2.10) into account we can write$

B
K[§] =In(Texp [ dB' 2 AuB)éB)>
.0 o

© B B n n
E e f 4. .. f OIS PHTIN § ENCY
n=1 o 0 @ an Jj=1 ) =

B
= (T exp 0f dp' 2 AB)Eel) = e 2.11)

4 For the sake of simplicity we do not consider the case when the operators 4 « are the fermion annihilation
and creation operators. In this case we should insert in many places the factor +1.

5.This definition coincides with the common definition of the statistical causal Green function [1].

¢ Kubo considers (2.11) as a theorem. In our opinion (2.11) should be treated rather as a definition of
B-ordered averages. Kubo’s proof of (2.11) from [4] is in fact a proof of the expansion of a functional into a Vol-
terra series. .

K[|, (2.10)




850

From (2.7), (2.8), (2.10) we obtain relations between Green functions and cumulant Green
functions. The Green function can be explicitly represented only by lower (not higher)
order cumulant Green functions and vice versa. For example

<A B)> = <AB)>.
CT(A 4, (B Ae,(B2))> = <A (B)e <44, (B)c+<T(A,, (B A, (B2))e
(T, (B4, (B2 40 (B2)> = < Ag (B4, (Ba)e <Ay, (Bo)). +
+ <A (B> LT A, (B2) A, (Bo)) Do+ > A (B2)> L T(A 1, (1) A, (Bs))>e +
+ <A, (B> LT (A, (B) A, (Bo)) >+ {T(A, (BD) A (B2) A, (B5)e (2-12)

and so on.
From the second equation in (2.12) we easily see that the cumulant Green function

(T4, ()4, (B2)>, is zero if the random variables 4, (8)), A, (B,) are statisticaly inde-
pendent, that is if

T A (B A, (B2))> = <A (B, B>

In general we have the following theorem?: A cumulant Green function (T(4;4;...)>, is
lero if variables {4, 4; ...} are divided into two or more groups which are statistically
zndependent.

Proof:
if the variables {4, 4;, ...} are divided into two groups, i.e. if
{4}y = {4} +{4"}

which are statistically independent, the generating functional (2.2) is factorized as
8 .
K1 = (Texp [ dp' 31 A(B)(B)>
‘ 8 ' © B
= (Texp [ df' T A )BT exp [ df S A"(B)E" (6
0

g g :
= exp (Texp [ df’ 3 A'(B)E (B) 1>, exp (Texp [ df’ 33 A"(B)E"(F) —1,
0 2a 0

— oKIET. KIE"] (2.13}
Thus we see, that

K[§] = K[&]+K[&"]

and power series of & and & will never mix in the functional if the sets {4’} and {4'}

are unconnected. This implies from (2.9) and (2.10) that any cumulant Green function in
which the variables from two groups appear does vanish identically. In other words the
theorem states that the. variables in each cumulant Green function must be statistically
connected or linked. Otherwise it vanishes.

7 This theorem is, in fact, a theorem from [4] slightly modified for our purposes.
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In this paragraph we recall some fundamental formulae from many-body perturbation

theory. The Hamiltonian is written in the form

H=Hy+7,

3.1)

where H, is the unperturbed Hamiltonian and ¥ is the perturbation. For perturbative calcu-

lations it is convenient to write

e = P o(f)
where

o(f) = e - ¢=PH,
This last quantity satisfies the equation »

do(p) _ _j
5= "B,

where
V(B) = oo FHo
and the initial condition

o(0) = 1.

The iterative solution of the equation (3.4) with the condition (3.5) is

n ﬂ~
o(f) = Z‘ — dm f ag.m(T1 7gy) = 1~ d 7% .

i=1

The logarithm of the trace of e multiplied by — % gives us the free energy®.

‘Therefore
== %111 Tre FH = — % ln{ Tr e=PHog () - LLs e—ﬁH } = Fo+Fy,
where
FO = — —];]IlTI' e—ﬁHo,
B
1
Fi=— B In <a(B))o

E= Ty o=FH,

After substituting (3.6) into (3.9) we get perturbation series for the free energy.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)
(3.9)

(3.10)

8 Our considerations can be applied as well to the great canonical ensemble. It is enough to substitute

H— H—uN and to include in the trace calculations the summation over particle numbers.
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Let us now see what form does the functional M[¢] take in perturbation theory. Similarly
to the above we write -

B :
MIE) =T exp [ dp' 2 AdB) £B)>

B
Tr {e=#H Texp [ f dp’ § A4(B') EB)]}
Tr {e~PH}
"
Tr {e~PHeo(f) T exp | f dp’ %: AoB)E(B)1}

Tr e=FH,
Tr {e‘ﬁHoo‘(ﬂ)} Tr e—FH,

B
(o(B) T exp Of dap’ ;Aa(ﬂ')fu(ﬂ'»o
= <ﬂ°‘(l3)>o
(T {o(p) exp of dp’ §1a<ﬂ')e¢<ﬁ')}>o

= B ’ (31D

A, = g o= FHs, (3.12)
Differentiating the r.h.s. of (3.11)(or the log of the r.h.s. of (3.11)) with respect to &,, putting

&, = 0 and substituting (3.6) into the results we obtain perturbation expressions for Green
functions (cumulant Green functions).

where

4. The proof of the LCE Theorem

Let us note that {o(5))¢(3.6), (3.10)) is very similar to (2.2). We can say the same about
the numerator of (3.11) when we write it as

B . .
(Texp{— of dB'(V(B') — D23 ALB)ELB)P o (4.1)

The more difference consists in replacing perturbed averages {...> by unperturbed ones {...>.
Having unperturbed averages of f-ordered exponentials we can apply to all of them the
considerations of §2.% Analogously to the perturbed f-ordered cumulant averages {...»,
defined there we now shall have unperturbed ones {...),.
Namely, from (3.9), (3.11) and (2.11) we can write:
I) for the free energy
B 8

R=rr= - 2O [an. [apca.. g
n=1 0 0

1 %—(Texp{ L f dﬁ’V(ﬂ’)} —1>0c (4.2)

0

9 Here as the operators A, from §2 we must take both .Za’s and P’s.
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and 2) for the functional K[£]

4 ~
K[ = Texp {~ 6/' df' (V(B) — 25 AuB)E(B)} — 1o —<0(B) —13q,

= 2 fapie. [ancr TI06) - ¥ Aepn—o®-1u. 63
n=1 : 0 0 j= a

From (4.2), (4.3) and (2.10) we see that we have expressed the free energy and the cumulant
Green functions by the unperturbed f-ordered cumulant averages only. The latter in turn
correspond to linked graphs in the case of the free energy and to strongly linked graphs
in the case of Green function, as we can see from the definition of linked graphs and from
the theorem of § 2. Therefore we have proved that the free energy (the cumulant Green
function) is expressed by linked (strongly linked) graphs only. Having proved the LCE
for cumulant Green functions we get the proof of LCE theorem for ordinary Green functions
(2.6) using (2.12). By taking into account the limit § — oo we obtain the LCE for correspond-
ing quantities related to the ground state.

5. Conclusions

We have proved the LCE theorem for the Green functions using the concept of cumu-
lant averages. The proof is quite general and we had not assumed anywhere any concrete
form of the Hamiltonian. The proof which is done for temperature 7 holds in the case
T =0 (ground state) as well.
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