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It is shown that a small decrease in vibrational frequency in the excited state of molecule
‘intensifies all energy changes in the exciton system resulting fromarbitrary linear vibronic
coupling, what is the case for most organic crystals. The situation is reversed in the case of a small
increase in vibrational frequency. The temperature dependence of the probability of exciton
transfer, without any correlation with phonons, is given. Also expressions for the center of grawty
of the exciton optical transition band and its width are obtained.

1. Introduction

A vibrational structure of Frenkel excitons in molecular crystals results from the
coupling of the motion of nuclei with an exciton. It is well known that the potential energy
for vibrations changes from one electronic state to another. This change of potential energy
leads to vibronic coupling. In the last few years there have been many studies dealing with
the spectral consequences resulting from such coupling [1-8]. An excellent review of this
problem in dimeric systems is given in Ref. [9]. However, only in a few works [6,7] has the
change of the vibrational frequency after excitation, i. e.; quadratic vibronic coupling,
been investigated. In others, only the change of the equilibrium configuration of the excited
molecule has been taken into account (linear vibronic coupling). The quadratic vibronic
coupling in dimeric systems has been investigated in Refs [10, 11].

As is known, the linear vibronic coupling leads to the reduction of the matrix elements
of the electronic resonance interaction between molecules. In the case of dimeric systems
this is expressed by the multiplication of the electronic matrix elements by the Franck-
Condon integrals [2,9] (weak coupling case), and in the case of molecular crystals by the
Debye-Waller-type factor, being the multiplier of the electronic matrix elements. The
latter factor, in fact, is similar to the Huang-Rhys factor [12] in the theory of multiphonon
processes on F-centers in ionic crystals.

Other effects resulting from the linear vibronic coupling are the asymmetrical compres-
sion of the exciton band [3,7] resulting from the one-phonon processes, the uniform shift
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of the whole exciton band towards the lower energies [7], and the dynamical interaction
between excitons, which is attractive, provided that the vibrational quantum coupled to the:
exciton is larger than the unperturbed exciton bandwidth [13].

The square width of the exciton line in an optical transition increases proportionally
with: the linear coupling constant and with temperature [8, 14]. Moreover the intensity of
the pure exciton line decreases rapidly with an increase of coupling constant and temperature.
The shape of the vibrational structure of the exciton transition depends on the ratio of
vibronic coupling parameter and the electronic resonance interaction. In the strong coupling
case [15] it consists of several very sharp lines, whereas in the weak coupling case it is similar-
to the isolated molecule spectrum. These predictions are in good qualitative agreement with
experimental data [16]. For dimeric system the full experimental verification of the theory-
is given in Ref. [17].

In molecular crystals the change of the equilibrium configuration of a molecule is.
usually greater than the vibrational frequency changes after excitation, and this was the:
reason why the quadratic term, in normal vibrational coordinates, of the interaction Hamil-~
tonian between excitons and intramolecular vibrations is neglected. In Ref. [7] it was shown,.
however, that the vibrational frequency change dw = w,—w (», and w are the frequencies
in the exited and ground states, respectively) may increase or decrease the red-shift of the:
whole exciton band which results from the linear vibronic coupling. The direction of this.
change depends on sgn Aw.

In this study we investigate more systematically all energy changes in the exciton system.
produced by the frequency change in the case of arbitrary linear vibronic coupling. In.
Section II the Hamiltonian of our problem is transformed into a more convenient form,
which diagonalize Hamiltonians of crystal sites. In Section III the Dyson equation for the:
exciton subsystem including zero-and one-phonon processes is obtained. Zero- and one-
-phonon processes are defined in such way, that in our approximation the motion of an exciton.
from one molecule to another is correlated only with one phonon or none at all. Inside
-a given molecule all multiphonon processes may occur. A brief discussion is given in Sec-
tion IV. Finally, the formulae for the center of gravity and width of the exciton optical transi--
tion band are given in Section V. These formulae are applicable for the weak coupling theory
of molecular crystals.

2. Hamiltonian of the system

We assume for simplicity that an exciton couples with only one intramolecular vibra-
tion. This assumption does not change our final results. We neglect the lattice vibrations and.
dispersion of intramolecular phonons. Furthermore, we assume the two-level model of the.
crystal, 7. e., the ground state and only one electronically excited state of the molecule are:
taken into account (thus configuration interaction effects are neglected [18]). The potential
energy for the vibration which couples with the exciton is, for the ground state of the n-th
molecule,

EyQ,) =30*Q; (2.1ay



835

and for the excited state,
E\(Q) = & +1Q,+}0i0; (2.1b)

‘where w; and o are the frequencies of vibration in the excited and ground state, respectively,
Q,, is the normal coordinate of vibration, [ is the relative change in the equilibrium configura-
tion of the molecule, and g, is the “‘vertical” electronic excitation energy which consists
of the electronic excitation energy in the isolated molecule and the energy of van der Waals
interaction between molecules. The subscript n labels the unit cells of the crystal and the
position of the molecule in a given unit cell. We assume that the harmonic approximation
holds for the vibrations under consideration. Under these assumptions the Hamiltonian of
the exciton-phonon system, written in the second quantization language, has the following
form [3, 7, 13]:

n n

n,m

+ 2] Ay A, [e(By +B,) +B(B, +B,)% (2.2)
where
@ = Yo
2_ 9
ar w1 —w

v is the linear coupling constant [13], 4;F and A, are the creation and annihilation operators
of the exciton on the n-th molecule, respectively, and B;f and B, are the phonon operators.
Vrgm is the electronic element of the resonance interaction between the n-th and m-th
molecules.

In order to transform (2.2) into a more convenient form for subsequent investigations
we perform the canonical transformation which diagonalizes the site Hamiltonians. The
non-diagonal term will be therefore proportional to the electronic matrix element V,?,m and
we shall treat it as perturbation, i. e. we shall consider weak coupling theory of molecular
crystals. We put ‘

A, =eSae™™S, B, = eSbe™*S (2.4)
where ' s

S = N ata, [(B3-b7 +e(b,~b})] @.5)

% and g are to be determined. Taking into account the idempotent character of a;a,
we obtain from (2.4) and (2.5)

By=— % @;f an(1 — %) + byl +a; an(ch 2 —1)] +

+b,fa; a, sh 2% (2.6)
and

An = @, eXp [—x(bﬁ _b;l—2) —%Q(bn _b:)]' ‘ (2°7)
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Puiting
4 2 _ 2
e =1 +— ﬂ 1+C, Clas wlwzw (2'83)
e 2y . 2y N
il e g (o Tl prwey (2.85)
we obtain
e S D latan
s Z [80" Tre ™ 32 (V1+e 1)] an a® +
+o Z L+(/T+c-1) aFa,) b b, +
S VRt exp (b b} —b,, 155 +s0(b, —bF —b,+b3)] (2.9)

n,m

or going from the operators b;} and b, to the operators P, and Q, , (momentum and vibrational
coordinate of the n-th molecule)

. 1 : %1
H= Z soa:an + 9 z (P721+w20121) + ﬂ—}__cg— Z [ a,,(P,Z,+wzQ ) +

n

- X VRt ay exp [20(P,0, — PuQ,) +ing (Py—P,)] (2,10
where -
O 0~
0 = €0 — 7, +— 5 . | (2.11a)
e Lo
Q= (;) ' , (2.11b)

The Hamlltoman 2. 10) is the startlng point for further considerations. .
The ﬁrst term of (2.10) describes the. free exciton localised on the n-th molecule We

see that its energy is renormalized. It is a potential well of depth —92w3/w}+ (o, —w)/2
This gives the temperature independent red-shift of the whole exciton band. For ¢ <0
this shift is larger than in the case of pure linear vibronic coupling. The adverse situation
occurs for ¢ > 0. This result is in agreement with Ref. [7]. This potential well results from
the molecular distortion which accompanies the exciton. The greater the energy of vibration
in the excited state is, the smaller the effective distortion accompanying the exciton. The
third term of (2.10), in the approximation which includes only zero- and one-phonon. proc-
esses, gives an additional correction to the potential well, 7 (w,;—) (7 is the average number
of phonons), making the shift of the whole exciton band temperature-deﬁendent. We see
that the resulting shift for y = 0 is $(2n+1) (0w, —w), what forc < 1 gives the same value
as that obtained in Ref. [7] after disregarding two-phonon processes.

- As y is usually greater than ¢ in molecular crystals, in further considerations we com-
pletely disregard two-phonon processes, and we shall look for the influence of the frequency
change on zero- and one-phonon processes -only.
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3. Derivation of the Dyson equation for the exciton subsystem

We shall deal with the Hamiltonian (2.10) by the méthod of retarded time-dependent
thermodynamic Green’s functions, defined by the following expression [19]:

Cap(t—t) = KAW)IBE)YY = —iO@—r') [A(), BE)]> GRY)
A(t) = e Hi4eHt (3.1a)

where (...) means averaging over the equilibrium density matrix of the system with Hamil-
tonian H, and A(¢) and B(t') are the arbitrary operators in the Heisenberg pictuze.
Such Green’s functions satisfy the following equation of motion

: E (A1BYYs = 514, B>+, H]IB)s (32)
where
. o A .
«ABYYE = o f EIG 45(t —1). S @2

We shall investigate further the exciton subsystem. The phonon subsystem is weakly
perturbed by the interactions with excntons, as its perturbation is proportional to the average
number of excitons f, and as usually g3 kT at room temperatures, we have f.< 1. So .we
neglect henceforth the renormalization of phonon frequencies and in all formulae we shall
average the phonon operators over the free-phonon Hamiltonian (second term in Eq. (2.10)).

We shall seek the Dyson equation for the Green’s function ™" = {a,la;;>>z, as
its poles give the elementary excitations of the exciton subsystem [19]. Its equation of motion
reads:

B (Canlayya = = bam + D (ol PR 020 las by (Canlaidyi
+ D o Ri (BOI-P,0,) +ind (PP )Iays 63

Regarding only zero- and one-phonon processes we decouple the higher order Green’s
functions which have emerged in Eq. (3.3) in a similar way as in the theory of anharmonic
crystals [20]. We put:

" KBt Qdlatyy = (PadQd Kooty (3.40)
Kay, exp [2i%(P,Q,—P,Q,) +ixg'(P,—P,)]la;>>g (3.4b)
nn1> << |a+>>E I Z%Q < nnl> <<a'ﬂl(Pii _Pr;,)la’r-n'->>E”

where

Dy = Lexp [2i(P,Q,—P,Q,) +ixg'(P,—P,)I> (3.4c)
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and averaging is carried over the ensemble of harmonic oscillators. Inserting (3.4a) to
(3.4c) into equation (3.3) we obtain

(E—¢;) {Lanlam>>E = 717; Ouym + Z Vs Do [ anlaiy> +

niFEn
+ig’ {{an(Pn—Pn)lam Y>E], (3.5)
where
203 3 o~
n = (exp fo—1)"L (3.b)

The last term in (3.5) describes the transfer of exciton energy in a crystal with the inclu-
sion of zero- and one-phonon processes. We see that the matrix elements of the resonance
interaction V%, are renormalized by the factor ¢(D,, > which we shall hereafter call the
Debye-Walléer factor (it is similar to the Huang-Rhys parameter in the theory of F-centers
in ionic crystals). This renormalized matrix element gives us the probability of transfer
of an exciton from one molecule to another without any explicit correlation with a phonon.

In order to obtain the closed chain of equations for Green functions we write the equation
of motion for the function <{a,P, |a;>>k:

(E—ts) (CanPrulatyds = 2% (P, —i? (onQulatys —

i (1+c)%=—1
' 2

<<a’txan1anQn1|a;>>E =
B é V’?3”=z<a’”z‘D ”;nzP ”xla’$>>_

—2% Z Vr?n, {<<ana’;t,an.Dnln.P n;la;>>E_<<anaf;,amen,n.P n1|a$>>}~ (36)
. nyFEN

According to Refs [19] and [20] we may put
Lt a,@,Q, a5 5 ~ a7 a, 3<L0,Qula > 5 <0 a,){(a,Qulaidp ~ 0 (3.7a)
as {afa,y <1,
30,40, D Prlathdd & 0,,,<K0, Dy, Pl DD
= 8, i%0" Dy, Y (Pa =P, )P, Y<K 0 ) (3.7b)

In Eq. (3.7b) only zero-phonon processes were included, as this terms is multiplied in
Eq. (3.6) by % <1 (% is. of order of magnitude smaller than ¢, see below).
We have also

Ky, D, P |at>d g ~ 190" 8,0 KDy (P —Pr) P> 0k g, (BT0)
((a,,'D mx,P N |a’:; >>E = <D nn,> X
X [(€@nPlat >y 5+ g ((Py—Pa) P, YKay Jat >y gl (3.7d)
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Insertion of equations (3.7a) to (3.7d) into equation (3.6) gives

0

(E—e) KanPulaiyye = —32 Py —iw® (KanQunlaidds +

+ § VonilDuny [{KanPrlamydp+ing’ {(Pn—Pn)Py) {anlatyys] —
mFEn o
—2in2p’ § (O — i) V3 Drin > (Pr—Pr) P> <Ll aibD. 3.8)

Analogously we obtain the equation of motion for the Green’s function ¢(¢a atd e
g Yy q . n<m!\“m//E

(B (anQulatdys = 2 (Qu> i anPalaiyys+
’|‘”‘§n VinDn) [{Lan,Quil @iy D 5+ itt0’ {(Pn—Pr) Q< an,laiy) 5] —

o 2i%29' Z;:é (6nnl L 6n.1n2) Vr?n,<Dnn,> <(P n— P, n,) Q;u> <<af|la'$> E L

= u@'ﬂé}ﬂ(ém, AL RCCH AN 3.9

The equations (3.5), (3.8) and (3.9) form a closed set from which the Dyson equation
for ({a,la;;>yg can be derived. In order to resolve this set of equations we go to the
momentum representation of vibrations. We define

Osg = N7% ,2 Cu(@)e™1Q,, - b
@ :

P,=N"% IZ cu(@e ™ 1P, (3.10)
14

where (f, ¢) = n, f labels the position of the unit cell and g labels the position of a molecule
in a given unit cell, q is the quasi-momentum of the phonon, and ¢ labels the branches of
vibrations in the crystal. Introducing the following matrices:

(E)m,n = (E'—£1) 0,
(A),, = (1 =0, VoD,
(L(‘--lc"))nn2 = VoD, Do @)Y —c, o(q)e],
(@) = Kaylan>)p,
(Gogdum = Ka,Poglag g,

(Goum = < Quals 2 (3.11)
_ and inserting the following relations which hold in the harmonic approximation
Py =LK0>=0,

PD =5 @r+l), (PQ= -1, (312
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we obtain

) |
(E—A)G = — +ing N4 ZL*(QO') Gogy - (3.13a)

qo

(BE—A) Gog = —ie? Gaq+ix@'g(zﬁ+1) (1-24)N-%L(qo) G,  (3.13b)

(E—A) G,y = zGuq + L 5 %@ '(1—2%) N-%L(qo) G —xo' N-%:L(q0) G- (3.13¢)

Resolving the set of equations (3.13a) to (3. 130) we finally obtain the following integral
equation for G

1 :
T () W

4w

+(E<Aﬂ@w—A+@}”WﬂG (3.14)

which is the Dyson equation of our problem.

Equation (3.14) can be written in the form

G = Gy+27G,MG (3.15a)
. 11

where G is the Green’s function of excitons ‘‘dressed” in the zero-phonon processes of
interactions, and M is the mass operator describing the one-phonon processes. This
operator includes the interactions between excitons with virtual exchange of one and two
phonons, and the transfer of exciton correlated with one phonon. The solution of equation

(3.15a) is:

1 1
G = E_A—M (3.16)

and the poles of G give the renormalized energies of excitons if only the damping resulting
from Im M(E) is small, i.e. Im M (F) <Re M (E).

The equation (3.14) in the limit % — 0 goes into the equation which had been obtained
by Walasek [8].

4. Discussion

If we go for simplicity to the crystal with one molecule per unit cell, we then obtain

from Eq. (3.16) the following expression for the real part of the exciton energy:

sk — 8k0+ Re Mk(sk), (4!.].)
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where
2P — o2n+4+1 .
€0 = &g — yﬁ)(: + (0)1 w)z( i ) alx Z Vnme—lk(”—m)9
1 g n#tm
Vnm = Vnom <-Dnm>9 . N i , (4’2)

(n+1) (er-g0—€80)? s
Ep—Ek—g,0— QW

(Ek—g,0 —ER,0)* ]
d3
b B[ Er—EL—gq,0 +w 4 i

0 Eh—q,0 —€R0)2
o g P [ s &g. @3)
VB

Re Mi(er) = (#0)? (29)3 (1-2%) P [f q+
B

0,0 —0) (8 —&r—g,0+®)

Here (2 is the volume of the unit cell, P is the symbol of the principal value, and ¥} is the
volume of the first Brillouin zone. The expressions (4.1) to (4.3) can be easily investigated
in the case of a linear crystal with nearest-neibours interactions'. The equation (4.2) gives
us the ““dressed into zero-phonon processes” exciton band, which is red-shifted, its width
being symmetrically reduced by the Debye-Waller factor (D). So the effective mass of an
exciton is increased and temperature dependent. We shall see below that it increases with
temperature ,i.e., the higher the temperature, the bi gger the cloud of phonons accompanying
the exciton.

In order to evaluate (D), we assume that || <1 (|c| ~10|x|) and neglect terms which
are proportional to %", n >2. We have .

(D> = <62ix(P1Q1—P2Q3)+iuel(Pl—P,)> = <ea(A+B)>

where
«=1inp’, A=P —P,,

2
B=— (Pis~PiQy.
The average {exp @A) in the harmonic approximation can be easily calculated and is
<eixg’(1’1—l’2)> - 6_"292(2’7_‘_1). (4.4)
We shall now show that the first correction to (4.4) is of order of magnitude »2. We put

edA+B) — gad}/(q)
V(@) = 1+ [dxB(@)+ [ da, [ doyB(xy) B(xy) +...
0 0 0

B(x) = c-+ABex4 — 3,<P101 PRI+ = 2% (P, 4Py, - @s)

* Excitons in linear crystals can be treated as fermions [21] but the Dyson equation obtamed by us for the
case of three-dlmensmnal crystals, in which excitons were treated as bosons, is also valid for the one- -dimensional
case.
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Thus, the correction proportional to x is the average of the type
@
([ dxe™B(x))
(]

and in the harmonic approximation it vanishes.
Thus, we have

(D) = (@ PPy L (2. 4.6)
From Eqgs (2.8a) and (2.8b) we obtain

9 15
2,2 — 4,2 = 3
x22 =1y [1 7 c(l 3 c)] +0(c?),

1 c?
ey 3
c+ 16 +0(c?),

x=—73

p7,) =y[1—%c (1— %c)] +0(c?), .7
and finally
(D> = Dy [1+% Y@+ (1 - c) + 3L e+ 1>ecz+0(cs)]

Dyy = exp [—y*2n+1)] (4.8)

(we keep terms with ¢? as |c| ~ 10x]). (D) is the expression for the Debye—Waller factor
obtained by Walasek. This expression gives us the temperature dependence of the probability
of exciton transition from one molecule to another, and its inverse is proportional to the
effective mass of an exciton ‘“dressed into zero-phonon processes”. We see that for ¢ > 0
(w; > ) the reduction of the pure electronic transition matrix element by the zero-phonon
processes is smaller than in the case of pure linear vibronic coupling. That is to say that
an increase of the vibrational frequency after electronic excitation of the molecule brings
about a decrease of the effective phonon cloud which accompanies the exciton. The adverse
situation arises for a decrease of vibrational frequency (¢ <0). We see that the direction
of this change is the same as for the red-shift of the whole exciton band.

The first term of Re M,(g,) in Eq. (4.3) describes the asymmetric compression of the
exciton band resulting from the one-phonon processes [3, 7]. Again, this compression is
larger for ¢ < 0, and smaller for ¢ > 0, so the influence of the frequency change on the
one-phonon processes is of the same kind as in the case of the zero-phonon ones. This
term also contains the contribution to the renormalization energy of excitons which originates
from the exciton-exciton interaction via phonon. This interaction is attractive for all excitons
as long as the vibrational quantum coupled with the exciton is larger than the unperturbed
exciton bandwidth. As our formulation is applicable for the weak coupling theory of molecular
crystals this last requirement is fullfilled.

The last term in Eq. (4.3) gives a small renormalization of the exciton energy and the
additional shift of the whole exciton band towards the longer wavelengths for ¢ <0 and
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a blue-shift for ¢ > 0. This renormalization originates from the exciton-exciton interactions
with the virtual exchange of two phonons. This interaction is again attractive if the frequency
of vibration in the excited state of the molecule is smaller than in the ground state. Thus
the attractive forces between excitons are stronger for ¢ <0.

Hence the condensation of excitons proposed by Blatt et al. [22] seems to be doubtful.
We think that this kind of condensation may be produced by the strong repulsion (of a kine-
matical nature) between excitons under conditions of high exciton concentration, which

may be achieved by laser light (cf. [23]). _

We conclude that a small decrease in the vibrational frequency after electronic excitation
of molecules forming a molecular crystal leads to the intensification of all energetic changes
- in the Frenkel exciton system. A small increase in the vibrational frequency leads to opposite
changes.

5. Integral properties of the exciton optical trasition band

It is worthwhile to calculate such integral properties of the exciton optical transition
band as'its center of gravity and width. To do this we must calculate the first and second
moments of transition. In the case of the linear vibronic coupling the center of gravity of
the optical transition is located at the energy of the free exciton with zero momentum,
and its width is proportional to the coupling constant and increases with temperature [14].

We want to see how these conclusions are altered by the quadratic vibronic coupling.

We consider the absorption of light in a thin crystal, such that we can neglect the
retardation effect. Then the absorption coefficient u(E) is given by the spectral density of
the Green’s function of the exciton subsystem [24]. In dipole approximation we have

+o0 s
WE) = ¢ 3 (e ugeer) [ <AOAF O™ dr (5.1)

where g, is the dipole transition moment between the ground and the excited state under
consideration, €, is the vector of light polarization, q is the momentum of the absorbed
light, and ¢ is a constant. As |q| <€ 1, we henceforth assume q=0.

The first and the second moments of the transition are defined as follows:

+o
M, = [ EwE)dE

+oo
M, = [ E2u(E)dE. (5.2)

Inserting Eqs (5.1) into (5.2) we obtain (we neglect the multiplicative factor which is of
no interest to us)
) 400 400

My = [ dE [ diEeiE(Aqo(t) A=0(0)

-2 A 45000 || = WU F1 0y 63)

t=
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and similarly
My, = ([[4,-0 Hl, HI4]_o> (5.3b)

H is the Hamiltonian of the exciton-phonon system. If we want to calculate (5.3a) and (5.3b)
in the zero-phonon approximation for the weak coupling theory of molecular crystals we
must insert into these expressions the equations (2.7) and use the Hamiltonian given by Eq.
(2.9). After some algebraic computations we obtain:

i -—-o?

E = M, = ¢, +x%%0 + Z Vhot 22 (25+1) +0(c, (5.4a)
(0 —w?)?

(AE)E = M,— M} = x%20(1 —2%) (2n+1)+ @n+1)2+0(c%)  (5.4b)

8w?
where ¢ is given by Eq. (3.5a), and 7 is the average number of phonons coupled to an
exciton.

We see that the center of gravity of the exciton optical transition is no longer located
at the energy of the free, zero-momentum exciton, but in the case of the decrease in the
vibrational frequency after electronic excitation of the molecule, it is red-shifted and tempera-
ture dependent. We see also, that the linear coupling constant y is now renormalized in the
same way as in the equation (4.3). This renormalization does not occur in the strong-coupling
theory of molecular crystals [25]. So, in the case of a small decrease in the vibrational frequency
in the excited state, the estimation of the linear vibronic coupling parameter, i.e., the distor-
tion of molecule, from the width of the exciton optical transition band may lead to an
overestimated value.

The breakdown of the T%? dependence of the width in the high temperature limit
and the temperature dependence of the center of gravity should give us information of the
existence of the quadratic vibronic coupling.

Formulae (5.4a) and (5.4b) go for ®; =  into the formulae which have been obtained
by Merriefield [14].

The problem of the detailed structure of the exciton optical transition band and the
problem of the influence of the one-phonon processes on the exciton transition probabilities
will be treated in the future studies.

The Author expresses his gratitude to K. Walasek, M. Sc., who made his paper available
prior to publication, and to Professor A. Witkowski for reading the manuscript and
critical remarks.
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