Vol. A37 (1970) ACTA PHYSICA POLONICA Fasc. 5
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The influence of exchange interactions on the bandwidth and mobility of a small polaron
is discussed in a simple cubic lattice for high temperatures (T3> T, =% 0 arsh™ 9/, where 0
is the Einstein temperature and j” is the carsier-lattice interaction parameter). A system of localized
magnetic moments is treated in the constant coupling approximation. Different temperature
dependences (for S > %) of the polaron’s subbandwidths for the two directions of its spin are
obtained, as well as the possibility of a sieep increase in mobility and a change in activation
energy on transition into the paramagnetic region.

1. Introduction

In recent years a number of theoretical and experimental papers (for a review see
[11a]) have been devoted to problems of transport in semiconductor metal oxides. Particular
attention was paid to the examination of electrical and optical properties of mickel oxide,
a typical representative of a large group of antiferromagnetic oxides of transition metals with
small current carrier mobility (4 < 1 em2 V-1s71). In explaining the experimental data,
two models are used: the band model [14] and the hopping model [11, 12, 13, 17, 19], but
often neglecting the exchange interactions in the crystal, despite the fact that the same elec-
trons are responsible for the electrical and the magnetic phenomena in these compounds
(where the ionic bond plays an important role). The hopping mechanism has been proposed
by Verwey [5] to explain the electric conductivity in these compounds, relating in to the
occurrence in the lattice of cations with distinct valences (conductivity by cations) and
moreover assuming perfect localization of carriers, so that the displacement of a carrier
from one site to another can be treated as thermally activated diffusion process.

Little attention has hitherto been paid to the influence of exchange interactions on the
electric conductivity of these compounds. Appel [11], in his discussion of hopping conductiv-
ity, indicates that antiferromagnetic ordering in a crystal modifies the expression for the
mobility by a factor (1 —M?(T)/M?(0)), where M(T)/M{(0) stands for the relative sublattice
magnetization. Within the framework of semiphenomenological theory, Turov and Irkhin [6]
considered the influence of a magnetic ordering on the carrier’s energy spectrum in a crystal
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(without carrier-lattice interaction) and come to the conclusion that exchange interaction
gives rise to a splitting of the conductivity band into two subbands and, consequently,
a change in activation energy to be expected to occur in the Curie (or Néel) point. A similar
result has been obtained by Bulayevsky and Khomsky [3] when considering the energy
spectra of current” (carriers in antiferromagnetic semiconductors (only transfers via anion were
allowed). They showed that due to Pauli’s principle, the electron and hole bands are
considerably narrowed below the transition point, whereas above it they undergo a widening
(decrease in energy gap). The influence of exchange couplings on the conductivity in ferro-
magnetic semiconductors has been discussed by Haas [7, 9], who showed that in the case
of ferromagnetic ordering the carrier mobility has'a minimum in the neighbourhood of the
Curie point and increases above this temperature, presumably corresponding to the resist-
ance maximum measured by Molnar and Methfessel [9] in gadolinium-admixtured europium
selenides (Eu,_, Gd, Se).

In the present paper, the influence of a ferromagnetlc ordering on a polaron’s bandwidth
and mobility is discussed. The same formalism is simultaneously applied for discussing the
interaction of a carrier (in the s-state) with the lattice vibrations as well as with magnetic
moments localized at sites of the simple cubic lattice, these interactions being dealt with in
the effective field approximation. -

2. Hamiltonian and wave function

Let us consider an extra electron (or hole) in an ideal ionic lattice localized at the j-th
site in a state described by a wave function of the atomic (or Wannier) type.

Let us further assume that the motion of the electron (or hole) in the lattice is so slow
that it produces a stable polarization by distorting the lattice in its nearest neighbourhood.
The polarization now reacts on the carrier, lowering its energy. The quasi-particle arising by
this dynamic interaction of the electron and lattice is termed a polaron. We restrict our consi-
derations to the case when the extent of lattice distortion induced by extra carrier is smaller
than the lattice constant @ (small polaron).

In absence of external fields, the Hamiltonian of the system can be written in the fol-
lowing form:

H =Hp+H i 2.1
where 5, describes the unperturbed system and consists of the terms:
) %p=.W0+WL+‘%”,+WH+.#eph, (2.2)
where
p? 1
Ko = 2— ‘+U(’l'— j) (2.3)

is the sum of the operators of kinetic energy of the carrier and its potential energy in the field
of the j-th ion. The second term of Eq. (2 2):

Z (P+wg0) (2.4)
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describes the lattice vibrations (in the harmonic approximation), and q is the phonon wave
vector. The next term of (2.2):

Hy= -2 Z S; (S (2.5)

is the operator describing the system of magnetic moments localized at lattice sites in the
effective field approximation. In Eq. (2.5), summation extends over nearest neighbours;
I is the exchange integral; S; — the spin operator of a spin localized at the i-th site. The
interaction of localized spins is treated in the effective field approximation; thus, Eq. (2.5)
can be rewritten in the form

Hy= — 2 ) S, (2.52)

where z stands for the coordination” number, and 1 = I {Sf> .#} is the exchange inter-
action energy between the carrier’s spin and a spin localized at a site, which is now occupied
by the carrier. In our further considerations this site will be termed the carrier’s own site. To
simplify the calculations we mneglect contributions to the energy #y from the transversal
components of the spin operators and we preserve only the Tsing part of the interaction.
Thus, the fourth term in Eq. (2.2) takes the form:

Hy = —As°SE, (2.6)
where A is Hund’s integral; s* and S% stand for operators of the z — components of the car-
rier’s spin and the spin localized at the j-th site, respectively. The last term in Eq. (2.2)

describes the interaction between the carrier and lattice in the linear approximation with
respect to the phonon coordinates Q,[12]; it takes the form;

2 .
Heph = — —I/W‘ g 7Qq sin (q "R+ %) P 27

where #° — number of unit calls in the system, and y is the interaction parameter.
The Hamiltonian describing the perturbation consists of two terms:

Hine =1+ H oy, (2.8)
where
#H, =Y, Ur—R) (2.8a)
i(+#7)
is the periodical lattice potential resulting from all ions expcet the carrier’s own ion, and
Hyg= —Za] Jir68 S s (2.9

The expression (2.9) represents the interaction of the carrier localized at the j-th site with
the localized magnetic moments of neighbours belonging to the first coordination sphere,
J; 15 is an exchange integral of the s-d type. It should be kept in mind that 4 > |/ 4l
The wave function of the unperturbed system can be written as the product of the follow-
ing functions:
a) the wave function of the carrier localized at site R;

i> =g¢@—R) 2.10)
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b) the eigenfunction of the z-component of the carrier spin operator

0 1
lo> = (1) or (0) (0 = +1) (2.11)
¢) the function describing the system of localized magnetic moments
g > =lny, oony > = ]'I[ Iy >, 2.12)

where n; is the eigenvalue of the operator of the z-component of the spin localized at the I-th
site,

d) the unperturbed phonon wave function [{N,} >.

We consider the case of strong coupling between the carrier and the lattice vibrations
and therefore have to include the Hamiltonian # ., (2.7) into the zeroth approximation Ha-
miltonian, so that now the oscillator wave function of the crystal |{IV,} > has to fulfil the
relation [15, 19]:

%LI{Nq} > +<j|‘#eph|j> I{Nq} > = qu{Nq} >,

which can be further decomposed into a set of single-particle equations of the form:

(2 @roton —q/% (s

By way of the simple canonical. trans.formation Q;= 0, ——Qé, we obtain an equation of the
oscillator with displaced coordinate in the'form:

D P42 Q) Xy = D] (eq—eNq)) Xy, (2.14)

]

Qg sin (q ‘R; + %) ;)} Xn, = eaXn,  (213)

where &, stands for the energy eigenvalue determined by Eq. (2.13), and

A g’ =]/% 'yw;lsin (q ‘R; + %) . (2.15)

Consequently the interaction of the carrier with the lattice modifies the lattice wave function
by changing its argument, making it depend on the site coordinate, and changes the energy
of the system by the amount

1 T g .
Ey= — Z ez(,’)(q) = Z g sin? (q ‘R; + %) 5 (2.16)
a a

which simultaneously defines lowering of the carrier energy level resulting from interaction
with the lattice (formation of the polaron). Finally, the lattice part of the wave function of
the system takes the form:

VY>> = HX%:,{ T <oq—Q£:">}= 1%, {l/ T Q&(Rf)}, 217

where
Xn(a) = 2NN In%)~%e~=12H(a)

and Hy(a) is a Hermite polynomial of order N.
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3. The bandwidth

To determine the bandwidth, we shall resort to a modified tight binding method [14, 15,
19]. The modification consists in using, instead of the product of the atomic (orbital) wave
function ¢(r —R;) and the oscillator wave function XNq[Q ] (independent of the lattice site
coordinate R)), the product of ¢(r —R;) and X} 9 [Qq(R )], the latter now depending on the
site index due to Eq. (2.17). The wave functmn of the polaron with wave vector k can be

written as follows:

Yo = 2 € i, 0, {n, (N} > 3.1)

Solving the Schrédinger equation:
Hyy, = By, | (3.2)
and restricting our considerations to the case of the simple cubic lattice we obtain
E = E(o', {n}, (N$}) = Eo(o’, (g}, (N} +
+Ey(o', {ng}, {NQD) +
+2M; ;5 (0" {nh, {NGY) D) cos kya, (3.3)

r=X,Y,8
where Eq(o’, {n;}, {N§}) is the energy of the unperturbed system and E,(o’, {7}, {NGY)
the diagonal (with respect to site indices) matrix element of the perturbation operator.
We shall further take into consideration only the matrix element M; ;, ;, which determines

the bandwidth I'(¢") by way of the relation:
I'(0") = 22| <M, ,1+o(°' {nl}9 {N, (])})>Av|7 (3.4)

where averaging extends over the lattice states {N,} and {n;} at fixed o’. The matrix element
appearing in (3.4) is of the form:

M ;1 o0, g}, (NGB = (0, {ng}) KNGHIING, (3.4a)
where
(s () = Z<]+6 0, (W} el J, 0’5 {1 (3.5)

{m},0

i s gy > = 1 >0’ > l{nf} >

Inserting the explicite form of 5, , into Eq. (3.5), we obtain:

(o, {m}) = Z Z Z <j+0l41j> <olo”> npl{m}> —
-2 Z h3 <J+5|J,+.s|]> <o1s°10"> i }SE olmyy —

{m} 6 o
% > Z} G+ Ol 5l {Colslo™y n} ISt s [{npy +

+<ols*lo"y (1S om0} (3.6)

In the transformation (2.9), previous to insertion into Eq. (3.5), the definitions S;" = S} +
+iS¥ and st = §*4+is¥ as well as commutation relations for s%, S and %, S% have been
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used. We shall average the Eq. (3.6) over states of the system of localized spins with the weight
factor

flmy) = H eF~s¥om, (3.7)
where
25
F= —In Y} e %%n;
n=0

in determining the parameter 4, we use the constant coupling approximation (see Appendix).
On averaging we obtain:

A, i) ay = M—2z] 3, {ols*|0">A(S, T) —
» 1 ! /
— 5 & Y KolsTlo"4y(S, T)+<olsHo'y4y(S, T}, (3.8)

where
J=+0 60 M =G+l

Assuming the z-axis as the quantization direction, we can calculate the matrix ele-
ments of (3.8). They amount to:

Ay(S, T) = 2, Zf(nl)<{nl} AT

{n1}{ni}

M(T) (S+1)sh(SzA8) —Ssh((S+1)z4p)

= TP MO) S+ ch((S+1)zAB)ch —(Sz4p) (39)
Ay(S, T') = Z Zf(nl) B ISE I
28 28
= (3] e )1 3] =MD [n(2S —n + 1)] %, (3.10a)
n=0 n=0
A4S, T) = 23 2,./m) ISy >
= (228 o~ 21 § e_z’w(”"'l)[(QS——n) (n+1)]%. (3.10b)
n=0 =0

After simple calculations, performing summation over ¢ in Eq. (3.8), we obtain:
(A0 {n})>g0 = M—§2J4,(S, T) [A(o', +1) =4(c’, —1)] -
—32J{4y(S, T) [L—A(o', —1)]+4,(S, T) 1 —4(o’, +D)]}- (3.11)
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The values of 4; (S, T) (i = 1,2, 3) for the cases S= 1, 1 and 2 are presented in Table I

and are shown in Fig. 1;

1 for x +y
A(x, y) = :
(&) {0 for x # . 3.12)
TABLE I
A
;\\ AyS, T) Ay(S, T) A3(S, T)
1 1
5 (ezlﬁ+ 11— 5 (e—zlﬁ_i_ 1)t (ez’w—]— 1)t
. L2 J/2(1-+ e27) J/2(14-e—=%)
2ch @)+l 2 ch (zAf)+1 2 ch (zAB)+1
5 1+ 2e-2264- 3e—222P|- 4e~3%46 Z(ez’*ﬁ-l— e~2370) Vﬁ— (I+e =) 12(14 e~3=26) + ‘/66‘?’*’(1—# e3P)
2 ch(zAf) - e~2eM =322 1 2 ch (zAf)+ 224 ¢=3:2811 | 2 ch (zAf)+ e 25404 e=322B1 ]

The factor determining the overlapping of the oscillator wave functions, occurring in (3.4a)
can be rewritten, according to Holstein [12], as follows:

. . 1 1
(NGHINGy = H{l — (N(Ha) i+ ) Vs,q €08 [5' q(R;.s+R)) + %]} X

XA(N(J+6) N(J)) + {]/ 85‘)/5’6 COS q(Rj.,_,s—I-Rj) - %:I X

: [é (Ngm + ';‘ + %)] }A(N3j+6),. N§ £1), (3.13)
where
y2
Y09 2 Ry sin? —‘1 R, (3.14)

g o +1 for q-R>0
7 ]1—1for ¢-R <0,

Ry= R, ;—R;.

7

The expression (3.13) describe only processes without change of the phonon distribution
and two-phonon processes. In calculating the bandwidth, we make use of the diagonal
matrix element (without changing the phonon distributions in both states) whereas the non-
diagonal element is neglected as small, following Holstein [12] (see also [1la]). Therefore
in Eq. (3.13) we take into consideration only the first term, which we write in the form:

e 142N
NG TIINGy = exp {— zq: (—Z/—q) 76,«1}- i)
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Fig. '1. Temperature-dependence of the parameters 4;(S) and ;. (S) for S= 4, 1,2 (i=1, 2, 3) and B,(}),
By(3)

The expression (3.15) has to be averaged previous to insertion into (3.4). One obtains:

AN = Y oG INGy =expd - T 0T L 516
q

{Ng}

where

2(Nq) = exp (—Nofhay) [NZ exp (—NgBhog)]™ (3.17)
q

Ny = (ePtog —1)1, B = _k—lT .
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Inserting (3.11) and (3.10) into (3.4), we finally obtain the expression for the bandwidth:

I'(o') =22 {M + -;—zf [4y(S, T)+Ay(S, T)A(', —1)—
- -;—Z][A1 (S’ T) ~A3(Sa I)]A(U’a +1)'|"

+ -;—zJ[Az(S, T) +As (S, T)]} exp {— ; %%’}'cth 5—*‘2“-’2} (3.18)

The temperature-dependence of the pre-exponential factor in (3.18) is determined,
according to the carrier spin states, by way of ‘the factors:

@,1(S, T) = Ay(S, T) +45(S, 1), (3.19)
a_y(S, T) = Ay(S, T) —A4y(S, T)-

The temperature-dependence of (3.19) is shown in Fig. 1 for S =1/2, 1 and 2. The ex-
pression (3.18) can now be rewritten as follows:

(o) = 2 {M _ % 2Ja(S, T)} - { _ Z,: P ﬁfiz“ﬂ} (3.20)
Introducing mean values of the quantities dependent on q [17]:
W, = Wg, Vg = Vg sin? % q-R=y (3.21)
we obtain, for z = 6,
I'(¢') = 12|[M —3Jas(S, T)]| exp (—y’ cth —;T) ; (0" = £1). (3.22)

Exchange interaction in the crystal gives rise to a ‘splitting of the conductivity band (for
T < T.) into two subbands for ¢’ = +1 and o’ = —1, respectively. The temperature-
-dependence of the width for these subbands described by Eq. (3.22) for both values o’
and for the following typical values of the parameters [11, 16, 19]

hwo o ’

M=05eV, J=02¢V, 0=—k—=900 K, =8

is shown in Fig. 2, for S = 4, 1, 2. For comparison, the temperature-dependence of the
polaron bandwidth is also presented, however without the exchange interactions. As shown
in Fig. 2, when S = 4, the widths for both subbands are equal to one another and the ex-
change interactions do not affect the shape of their temperature-dependence. At S > 4,
a more important part is played by the exchange interactions, which affect the temperature-
-dependence of the polaron’s subbands, at fixed S, this dependence differs for ¢’ = +1and
¢ = —1 (when T'<T).
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Fig. 2. Temperature-dependence of the widths of the polaron’s subbands for S = % 1,2 (T, = 600°K, ' = 8,
J=02¢eV, M= 0.5eV, 6 = 900°K). The curve I" shows the temperature-dependence of the polaron bandwidth
calculated without taking into account exchange interactions

4. Mobility of polarons
As seen from Eq. (3.20), the bandwidth depends strongly on temperature via the
oscillator overlapping integral (3.16). With increasing temperature, the band narrows and
above a certain temperature T, [12, 13] the polaron loses its Bloch character and the band
description becomes unadequate for it!. The band description loses its validity when the

! The temperature 7} is simultaneously the point in which the diagonal, Ng UL Ng ), and the nondiagonal,
Ng ) =Ng ) 4 1, transitions exchange their roles. For T < T, the main part is played by diagonal transitions
whereas the nondiagonal ones contributing to polaron scattering between states of the band and can be neglected.,
When T ~ T,, the phonon-nondiagonal transitions become most important [12, 13, 1la].
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polaron band width becomes smaller than the uncertainty of the polaron state energy i. e.
I'(¢") <h/7;, where

L= S N WG fuih V) >+, 0, G, (V)

KRy ) (TN
- e

and I'(¢) is determined by Eq. (3.20). Above the temperature T, the hopping mechanism
becomes predominant. The polaron is in principle localized, and its motion becomes
diffusional. Electric conductivity is now due to hopping of the carrier from a site j
to a site j4+4.

The transition probability per unit time is expressed in the well-known form

W, o', {ni}, NG} > j+6, 0, {n), (NG
2 ] j . h ! 7 7 ,
= S5 G+, 0, (i, (NG Hoind J, o, (), (NS O(E~E') @D

where the matrix element is calculated in the basis of localized wave functions with the
factors (2.10), (2.11), (2.12) and (2.17). The argument of the Dirac §-function has the
form:

1 1
E-E' = Z hogNg—Ng) + 5 A(nj =S)o’ — = A(nj—S)o+ AL. 4.2)
q

The second and third terms of (4.2) express the difference in the carrier’s energy levels
depending on its spin direction; whereas the last term represents the change in energy
of the localized spins system connected with the transition from site j to site j+ 6 at well-
-defined spin direction in the initial and final states, with

——vzil for n;+5—>nj+6 +1

AE = 3 0  for n]'-+(,——>nj+(,

+ 24 for nj s —>n; ,—1

Denoting
B, 0, s ) = <G+, 0, (i} Higdl o s ()

we find

B(', 0, {ni,} {ng}) = MA(o, o) I,I A(nf, ng) —
- —;— J[A(e, =) A, —1)—4 (o, =1)A(o", —1)] Z (nirs—S) I T 4(nf, ny)—
] f
o Z {A(, ~D[1-A(0’, ~D)II@S—nfse)(mi+s+1)]t x
X A(nfro+1,m) I At ny)+
f(F#i+9)
400 VL=, +DES s+t Dnfsol iy ~L,m) TT A ). 43)

To obtain the total probability of the transition, one has to average the expression (4.1)
over the initial states of phonons and localized spins and then to perform a summation over
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all final states, obtaining

Wr=2 2 2 20 2 fm)eNg) W, o', {m}, (NG} -

8,0 N(])} {N(J+5)} {m} {n}}
8, 0, (), NGO, (4.4)

where f(n)) is determined by Eq. (3.10) and (V) by (3.17). Substituting (3.13) and (4.1)
in (4.3) as well as (3.10) and (317) in (4.4), and using the integral representation d(x) in the

+2

form d(x) = lim L exp dt’, we obtain after simple calculations
oo 27TH h

-

2
V(o) = S [1+ 1 (%) By(S, T) 2 o A4S, T)]A(cr’, ~1)x

X f dt’ exp {%’* [11441 (S, 7')(0'+1)] +A(q, t')} +

zz( A ) (5. T) 2 0 A4S, T)] A, +1)x
X f dt’ exp {-’ht— [l AA,(S, T)(G’—l)] +A(q, t’)} +

W T2By(S, T)[1-A(’, —1)]x

x f d’ exp {% [iAAl(s, T)(a'+1)+z,1] +A(g, t’)} +

T o PBYS, TIL-A(, +1)]

X f dt’ exp {lhi [E AA(S, T)(o"—1) ——zA:I +A(q, t')}, (4.5)
where

, 2
A, ¥) = Y DL 0N, 1)+ @, +1) cos g ' +i sin gt
q

and A,(S, T) is determined by Eq. (3.9), and

28
By(S, T) = Z]of (@) (n—9)
28 28
= (X e L (S, (4.60)
n=0 n=0
28
B(S, T) = 3 fin+1) (25 —n) (r+1)

(Z e #ibm)-1 Z e~ (95 _pn) (n+1), (4.6b)

n=0
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28
ByS, T) = Z;, fin—1) n(2S —n+1)

28 28
— (3] o)L 3 o=l Tp (25 _p 1), (4.6¢)
n=0 n=0

The coefficients B;(S, T) for S = %, 1 and 2 are presented in the Table II. Their temper-
ature dependence is shown in Figs 1 and 3.

TABLE II
= _
s\\ By(S, T) ByS, T) By(S, 1)
1 ) el
2 4 2 2
2 ch (zAf) — —

1 _

1+2 ch (228) V2401 V2401
9 4(exMB - e~324B) | e=2228 11 4(14-3228) - 6= (14-¢22) | 6(1+e246)+ A= e—2z7.ﬂ)

2 ch (zAf)+ e 2874324611 | 2 ch (zAf)+-e~2eM ¢34 1 | 2ch (zAf)+ e 238 =324 1

When deriving the expression (4.5), we replaced (n;—S) by <(n;—S) as well as (n;—S)
by (n;—S>», and assumed that (n; =8> = (n;—S> = Ay(S, T). This assumption means
that the magnetic moment direction of the carrier’s own ion is the same before and after
the jump and, moreover, is determined by the magnetization only. This assumption ceases
to be valid in the near neighbourhood of the Curie point. To derive the integrals of Eq. (4.5),

we introduce the transformation [12, 13, 17] ¢’ — 222 Lﬂ h 4 7. The integration contour is now
gr

of the form shown in Fig. 4.
The preceding integrals can now be written in the form of a sum of integrals:
72

[ _>jt... +_f + fam @4.7)

As proved by Holstein? the last two integrals in (4.7) vanish for ¢ > w,*; we thus consider
only the first right-hand side integral of (4.7). After some simple transformation, Eq. (4.5)
can be rewritten in the form:

Wr(o) = Wi(o')+Wi(a), (4-8)
where the first term of the right hand side stands for the probability of the carrier’s transition

without change of spin direction (spin-diagonal transition); whereas the second term corres-
ponds to a transition with spin flipping. Both terms are of the following forms, respectively:

Wi(o') = zf—i‘f? [1—!——[1—z (]é.) 1(S' T)—i—z AL(S, T)] A(o’, —1)x
XeXP{—2 Z -’-'j;—"cth ﬁhzw“ — g [% AAy(S, T) (a'+1)]} X
q

% See also the discussion of Klinger [13].




796

B,(2)

30

20

1.0

0.0 1 1 1 S 1 ' I
05 06 07 08 09 10Ty,

Fig. 3. Temperature-dependence of the parameters B;(S) for S=4,1,2 (i=1,2,3)
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Fig. 4. Contour for integration over the time in Eq. (4.5)
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+00
p Asq  COS g
y fd’cos{ %AAI(S, T)(g'-l—l)]ﬁ}exp[Z; - ﬂhwz +
J sh( D) )
e ]

Xexp{ Z Vo oy, ’%""’ - ﬁ[ AAL(S, T) (o' —1)]}

q.

xﬁzmos{[ AA(S, T) (o -1)] }exp‘ Z Vo hc(";;’_ai)] (4.90)

W) =

sq hog
4h2 By(S, T)[1— A(O',—l)]exp{ 22 Yoa thﬁw -

_ g [E AALS, TY (o +1) —z).]} %

. +o0
1 , Y Vaq COS WqT
xfdrcos{[EAAl(S,T)(o +1) zl] }exp 122_' i h(ﬁhwq)] i
2

—00

32 / , ho
+ _ZFBz(Sa TY[1-A4(d', +1)] exp{—z Z 7;‘;/? cthéz—q— _
q

_B [%AAI(S, T) (¢’ —1) —l—zﬂ.]} X

2
+00

der cos{[% AAL(S, T (o' 1)—l—zl] }exp Izz Vaq hc(o;;)} (4.9D)

Denoting f(z) = Z 2ysa _ COS 0T , we can (following Klinger [13]%) define a tempera-

Bhwq

q sh i

EROTpT

ture T, for which (0) = 1 and distinguish two cases: f(0) > 1 when > T,,and f(O) <1 when
T < T,. In the present paper, we restrict our considerations to the ﬁrst case only. The
integrals of (4.9) can be derived resorting to the saddle point method, and we get the prin-
cipal contribution to the integral in the neighbourhood of 7 = 0. Simple calculations yield

S oyl 2
Wi(o') = ZV’;’le l/ EfT) {[1+‘ —i—zz (%) By(S, T)+z—]JW— Ay(S, T)] X

X Ao’y =1)+ [” ™ (%)231(& T)~z (J\_J/I) (S, T>] A(@’, +1)e=p4D,  (4.10a)

0 1
LR 3 [arsh ], 6 = h:" ; for /=10, T, = 60'
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Wr(o') = ZZ? 2 E?JT){B:;(S’ T)[1=4(d', =1] exp [— % (AA(S, T) (o' +1) +

B(AALS, T) (¢’ +1) +222)2 ] B
16 E(T)

+By(S, T) [L—A(o", +1)] exp [— % (AAy(S, T) (¢’ ~1) —222) —

AA 1 N A 2 2
B(AA4,(S. 1767 ng) 1) —2z4) ]}e-mn, (4.10b)

+2z2) —

where

4

vea (hog)?

E(T)=ﬁ§q: e
sh (_T)

ha,

for temperature 7' > = g_ , 8(T) ~ —i— E(T).

The polaron mobility can be derived by means of the well-known relation of Einstein

o) = 5 Y Tgw Ehe,
q

lela®

wo') = S0 Wr(o) (4.11)

which can be rewritten on averaging over the initial states of the carrier spin:

ps =Y plo)u(o) = Zp(o)%(o) (4.12)

leI

where

p(o’) = e %% |2ch (zAB).

Substituting (4.10a) and (4.10b) via (4.8) in (4.12), we finally come to an expression describ-
ing the mobility of a polaron with spin in a crystal exhibiting ferromagnetic ordering as
a function of the value of the spin S localized at a site and of the temperature:

Us = u {1 + lzz(J/_M)zBl(S, T) +2(J]M)A(S, T) th (z4B) +

(AA(S, T)+z)2 1, 0
+ UMy e [ 4(hog)? hﬁ]

X [Bz(s, T) exp ( ﬁAAl(S )+ = zz.ﬁ)

+By(S, T) exp ( — o BAA(S, T) — %zﬂﬁ)]}; (T'> 1), @*.13)

where

_lela® zVm o /T 6 f
B= ﬁzwoM = —sh o7 P —2y"th — T (4.14)
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is the polaron mobility obtained without taking into account the exchange interactions in
the crystal [13]. The temperature-dependence of the mobilities pg and u, given respectively
by (4.13) and (4.14), as well as ugfu for S =1 and 2, T, = 600°K, 0 = 900°K, " = 10,

Ms
cm?
V-s
1.0 |
o1t
0.01 + ! -
10 20 30
_@ 1000 oK
e T

Fig. 5. Mobilities ug and u as functions of 10%/T plotted from Eqs (4.13) and (4.14), respectively (values of
parameters are printed after Eq. (4.14))

A=10eV, JJM =04, a =4 A, are represented in Figs 5 and 6, respectively. As seen
from Fig. 5, in the Curie point a steep increase of the polaron mobility is observed, as well
as a change in the activation energy. In the region of magnetic ordering the activation energy
is larger than in the paramagnetic phase.
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05 06 07 08 09 10 7,

Fig. 6. Relative mobility of the polaron as a function of 7T, (for T, = 600°K) plotted from Eq. (4.13)

APPENDIX
To determine the temperature-dependences of A,(S, T) and B,(S, T)/(i = 1, 2, 3), one

has first to obtain the temperature-dependence of A. From the condition of self-consistence
in the constant coupling approximation [8]:

28 +n T
2SBs(SzAp) = Z-1 Z Z m exp [C’(S) - nnt1)+(E-1) Zﬁm], (A))
n=0 m=—n
where
28 +n

7= Z Z exp [C(S) % n(n+1)+(z—1)zﬁm],

n=0 m=—n
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Bg(x) is Brillouin function. The parameter C(S) = |I|f, appearing in Eq. (A.1) can be cal-
culated for all values of the spin S, from the following relation:

§ @n+1) exp [C(S)n(n+1)] [22S(S+1) —(z —L)n(n-+1)] = 0. (A.2)

n=0

The analytic form of A(T) can be determined only for the special case S = % and z = 6,
where we have:

38 = arch {[1+ (1+ [1+ exp (—20 (%)TC/T)]z)%J X
% [2 (1+exp< _ac (%)TC/T))]—I}. (A3)

For S > 1, Eqs (A.1) and (A.2) have to be solved numerically. The values of the parameters
amount to C(}) = 0.549306; C(1) = 0.169505; C(3) = 0.086257; C(2) = 0.052877. The
temperature-dependence of zAf and z4 is shown in Figs 7a and b, respectively.
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