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INFLUENCE OF COULOMB CORRELATIONS ON THE TYPE OF
ORDERING AND ON THE EXISTENCE OF LOCALIZED MAGNETIC
MOMENTS
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A problem of correlations of localized electrons affecting a character of mutual interactions
of a localized pair of magnetic moments is considered in the Anderson’s model. The method of
a treatment of correlations of electrons in localized states, proposed by Hewson, was generalized
for the case of an occurrence of interactions between localized moments. It is found that the
possibility exists of both parallel and antiparallel orientations of localized moments in dilute
alloys; with that, the parallel coupling is preferred.

1. Introduction

In recent times, a vast amount of work has been devoted to both experimental and
theoretical research [1-17] on alloys consisting of non-magnetic metals with impurities of
metals of the 3d group. As proved by the results, in well defined circumstances the impurity
atoms preserve their spin magnetic moment related with the electrons in the strongly localized
3d states. This moment is termed the localized magnetic moment (L.M.M.). Its existence
implies a number of interesting experimental effects, such as:

1. A change in character of the temperature dependence of the alloy’s susceptibility
to the Curie-Weiss one [1];

2. A temperature-dependence of the effective magnetic field at the impurity nucleus
in the Méssbauer effect [2];

3. The appearence of a minimum of the electric resistivity at low temperatures (the
Kondo effect) [3];

4. The occurrence of a localized spin density distribution in the neighbourhood of the
impurity, as shown by neutron scattering experiments [4];

5. The possibility of a partial compensation of the impurity resistance by applying an
external magnetic field [17].

All the experimental results can be predicted and explained on the basis of one of the
existing theoretical models [5-9], among which Anderson’s model is physically most valid
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as regards the treatment of 3d group impurities. Within the framework of this model, the
difference in character of the localized electron d states of the impurity as well as of the
non-magnetic matrix bands in taken into accouni,

Our previous knowledge of the interactions and orderings of the L.M.M. is relatively
scarce. In the present paper we shall use the Anderson model to discuss the effect of correla-
tion of localized electron on the occurrence and interaction of pairs of localized moments.
Preliminary results have been published recently [18].

2. Hamiltonian of the system

In Anderson’s model [9], the assumption is made that the electrons of non-magnetic
components of an alloy partially fill a single band ; therefore, the Hamiltonian of the unper-
turbed matrix in the second quantization representation takes the following form:

H, = kZ Skacl:.;cka 1)

&, is the kinetic energy of an electron in the |ko) state, and G, C,, are creation and annihila-
tion operators of an electron in this state, respectively.

In our further considerations we shall use, as parameter of the theory, the position of
the Fermi level only, and therefore we need not take into account the form of the band or
recur to the many-band model. Instead, we make the standard assumption with respect
to the occurrence of interaction with the band as well as mutual interaction between two
impurity atoms. In addition, we assume that a free impurity atom is well described by a Hamil-
tonian of the form:

H= Z Eqcieist+Unyyny 2

with E, denoting the kinetic energy of an electron in the d state of the i-th impurity, C;,, C};
annihilation and creation operators of an electron in this state respectively, and n;; = CF, C,-,
the occupation number operator;

U=e flfz(r)l“‘ Iﬂ( )|® drdr’ ®

is the Coulomb interaction energy of the electrons in the states |do) and |d—oc). The
value of U, evaluated from spectral data for free atoms, is very large and exceeds 10 eV [9].
When an impurity atom is introduced into the alloy, there appear interactions between elec-
trons of the band and electrons of the impurity; due to the different symmetry and small
overlap of the 3d wave functions with the states of the band. We take into account only
couplings of the form:

z kcwcko -+ c.c.
Vi = [ FEO0Of(Dd7T 4)
where V{(r) is the potential perturbing the band electrons and the impurity electrons, resulting

by deformation of the periodical lattice potential and atomic shells of the impurity. The
interaction (4) is due to the overlap of one d function with one band function. In the Coulomb
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and exchange interactions there can however occur expressions relating with the overlapping
of two localized functions with two band functions. Therefore such interactions can be
predicted to be by one order of magnitude smaller than V. From the experimental results,
Vy=1eV [9]. ‘

When a pair of impurity atoms is introduced into the alloy, there appears, moreover,
a bilinear coupling between the impurity electrons:

H.=V.ctec. +cc 1 #J : ®)

1] 1j7i6¢ ~i10
Vy=[feWOfOF - ij=12

‘exchange as well as Coulomb interactions are neglected as for (4)). Considering the terms
(1)~(5), we obtain the Hamiltonian of the system in the following form [16]:

- + #
H =73 gcte, + 2 Egctijo+Unyyny  +Ungyna +
ko ic

=+ 2 I/ikcij;cl;c <+ VmC]-_';Cg,, -+ c.c. (6)

kic

3. Criterion for the occurrence and ordering of mutually interacting localized magnetic
moments

In our further considerations we intend to use the Green function method [13] and,
particularly, shall recur to relations between Fourier transforms of Green’s functions and
values of the correlation function (B(t) A(t)) of two appropriate operators A(t), B(t') acting
on variables of the system. On the base of the Green function theory, one obtains that

B AW = —i f <<A<t);B(t')>>z;:;§<fl<z);B(t')>>w+,-, Sinle=) doy o
where § = 1/kT =
and
A3 B(t'))Dw = 517—{ f KA(@); B@E')y) e—iw(r—z?)d(t_—t’) (7a)

is the Fourier transform of the double-time Green function

KA®); Bty = —10@—t)<[4(®), BED (7b)
Oit—t)y=1 for t>1¢
0 for <t
taking
¢ =B cp=A4 1t =0F 8)
and carrying out the calculations for the ground state of the system (f —> o), we obtain

for the average occupation numbers of the localized state of the i-th impurity as well as for
the energy of the impurity electron system the following expressions, respectively,
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o = [ tufo)do o)
& 7 i .
E =73, [ woi(w)dw (10)
where
0is (@) = —1 lim [Gg(w +1e) — Gii(w —ie)] (11)
-0
(w) = (b} i) Dor (11a)

Using (10) we can calculate the difference in energy between the antiparallel and parallel
ordered L.M.M., given by the relation:

AE = Ef a1 Z f w(@w —Qw)dw (12)

where g, and of2 denote the spectral densities of the states |ig) for the parallel and anti-
parallel L.M.M., respectively.

In order to discuss the properties of the system described by the Hamiltonian (6)
we thus have to find the function Gf(w). This function can be obtained from the following
set of equations of motion:

(o0 — Eg) {Lcios C_z!:f>>w = % + U L eiolti-o3 cf[,)) il Z Vir {Lcra3 C;‘l;>>w+ Via LLejos c;‘:)')}w (13a)
k

(00 —&8) <Ko TPV = Vii {Ciss Dt Vi {KCjos €0 1#] (13b)
(0 —Ey) tjos ci5pY0 = U Lnjojos ¢50Da+ Z Vit {Lcras ¢hpY + Vji{tios €Y (13¢)

(0 —EO_U) {eioti-o3 c;"t-1>>w = m—a + Z Vi {LeroMti—o; Cw>>w

+ ; Vit (= oCicCi=o3 ChYYo+ kZ Vit {ChmoCioCi— 03 CiopPort+

+ Vi {LejoMiza3 ChpYot Vi LG otistiza3 €ibyPwt Vij {Gi—oCiolit-o3 CrpPar (13d)

Before proceeding to discuss the set of equations (13), we shall make some simplifying
assumptions Namely, we shall neglect functions of the type < oCicCivas CPPs
<< —a> >> L cw‘cz+ o3 >> and << —oCis z—o" cw>> for 7.

The f1rst and second of these prov1de non-zero contributions only for transitions of the
system to unperturbed states, in which the levels |io) and |i —&) are simultaneously occupied,
increasing the energy of the system by the value U. Transitions of this type under the
influence of the perturbation ¥V, ((U have, however, a very small probability. The third
and the fourth function does not affect the occurrence of non-interacting L.M.M. [10]. We
apply the Hartree-Fock approximation for the Green functions the form {{c;o%;_ o3 €iEDD0
LEjolti—g3 €50V a0d (Lo _g3 CiEDD,, when i # j using the following relations
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L holig DV = M L Cpo GENo
<< iolli—a5 Cw>> = n’z o<< jo o cw>>w
<<C ’an.j-a; Cio'>>w ~ o'<< ;a’ a>>co (14)

where n,;_, stands for the average occupations number of electrons in the localized states.
The functlon e g3 €YY is obtained from the equations of motion. After performing
the simplifications spemﬁed by (14) the equations (13c), (13d) take the following form

(w —EO U) << ]09 w>> = Z k<<cka’c >>w+ << Cigs €, a>> (15)

Ni—g

(w —Eo U)<<cwnz—aacw>>w = “'_“ +nt— Z Vik<<ckﬂ; c$>>w+ﬁi—dni<<cfﬂ; ci’!;))w‘ (16)
k

The preceding method of dealing with the double-particle Green functions is essentially
superior to the Hartree-Fock method used in the papers of Anderson and Alexander [16] as
well as Moriya [14] in that leads to exact eigenstates of the unperturbed Hamiltonian in the
limit V5, Vs —0. The use of the H—F approximation for the correlation function {c;n;_. oL
strongly raises the tendency towards the occurrence of L. M. M. by overrating the Coulomb
interaction energy of electrons simultaneously occupying the two spin states |ic) and
li —6) of the impurity (see also: [10, 11, 15]). The splitting of the form ({g;m;_,3 ¢id>
= 1;_ {{C;s3 €YD used in the H—F method means that we treat an electron in the |io)
state as being in an average Coulomb field of an electron in the |i —0) state; this amounts
to neglecting the fact that the motion of impurity electrons is correlated.

In our further discussion, using the set of Eqs (16) as well as (9) —(12) we shall draw cer-
tain important qualitative conclusions. For simplicity, we shall confine our considerations to
terms of the order 1/U at most; moreover we omit the indirect coupling of electrons in the
localized states via the conduction electrons (see also [16]).

Finally, we obtain for Gj(w) and g;(w) the following expressions

croti9 — o - - :
[w-—Eo— (A— Uﬁf )] +iA(l —7—0) a7

=1 s .
[w—Eo—(l s )(1 al5i c,)] + A1 —Fig)? (18)

where

= PZ Vil (19)

A=Tim 1m ST _ Vi ore(w). (20)
-0+ T w—sk‘,‘ia ! o
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Making use of Anderson’s assumption [9] according to which A and A are slow-varying func-
tions of the energy, or g,(w) = const in the vicinity of the Fermi level we obtain

172
e 1_ﬁi—0‘|£an_1 Ep—Ey—(1—1ni-o) (l— Uﬁ,—a) N ﬁ:' @1)
@ Al —ni—0) 21

Njg = -

Using the relations (21) and (9), we can now find systems of self-consistent equations for
Obtalmng the’ occupatlon numbers of the localized states for parallel ordermg i. e. for
Ny, = Ny, = n, as well as for antiparallel ordering i. e. for ny, = n,_, = m,

V% 1
. 1—71,_0 tan—l EF_Eo‘—‘(l —‘n-o') (l—' Un_d') + i (22)
o=y ALl —n_g) 2 |
: EF-E--(l;m Je i— Vi T
T l—-n_q tan- 0 Vi Umg . (23)
S AQ —m—,) 21 .

Using the relations (22) and (23) we shall now determine the criterion for the occurrence
of L. M. M. for a definite ordering and then, using (12), we shall discuss the problem of
stability of the ordering in the region in which L. M."M. occurs for both parallel and anti-
parallel coupling. Thus, the curve bounding that range of values of the parameters of the
model in which L. M. M. occurs can be obtained from the following conditions:

1. On the curve itself L. M. M. defining as n, —n, or m,—m, is still equal to zero i. e.

= m, = m, =, (24)

2. In the region of occurrerice of L. M. M., solutions of the form n, # n, or my # m,
must appear i. e. '

ont omt

S L oL

ant ~ 1 or am‘ S 1 (25)
(equality takes place on the bounding curve itself [16]). Defining dimensionless parameters
of the theory as follows:

BE b _Th
Y Y= *T U4

(26)

we obtain from (24) and (24) parametric equations for x, y and z values on the bounding
curve for parallel and antiparallel L. MM coupling, respectively,

e (e {1+ [t (2?15 i))”]} (1;”‘)2 7a)

o (3nc—‘1)n‘ X Zp
Yp = tan (1—n,)2 T -n, N (h)
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%ap = (1 —2n))7 {1 + [tan (?{z :;}))273} + ( il ) (28a)

ne

(377'0_1)77 e Xap EI_P. (28b)

Yap = tan (1—ng)2 l—n, 1

The regions of occurrence of localized magaetic moments as well as the bounding curves
for both ordering and for interaction parameters z = 0.05; 0.10; 0.15 are given in Figs 1-3.
These diagrams permit certain interesting conclusions concerning the influence of the bi-
linear interaction ¥, on the region of occurrence and ordering of L. M. M. As seen, the
parallel ordering can generally occur in narrower region of values of the parameters x, y
as well as for values of x = E}’—ZEE closer to zero. In other words, the parallel orientation
of L. M. M. occurs when an unperturbed level of an impurity atom Ej lies nearer the Fermi
level. The most interesting result seems to consist in an increasing splitting of regions of
occurrence of L. M. M. for parallel and antiparallel orderings when the interaction Vi,
increase. Such splitting allows us to go over from alloys with no L. M. M. via alloys with
parallel-ordered moments to antiparallel systems by gradual emptying of the conduction

Sl

i
|

’ ; -

_ A

Fig. 1. Critical boundaries for the existence of magnetic solutions for z = 0.05. The dotted curve corresponds
to non interacting impurity (z = 0). In the region above full line there appear localized magnetic moments
coupled parallelly, similarly the broken line determines the domain of existence for antiparallel configuration
of localized magnetic moments
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band. Increasing or decreasing of an occupation of the conduction band of the non-magnetic
matrix can be attained by introducing to the matrix metals with larger or smaller number of
valence electrons, respectively. As shown in Figs 1-3, a change in ordering or disappe-.
arence of L. M. M. can be also obtained by varying the interaction parameter z, which
depends on the concentration of magnetic impurities. The graphs of the occupation numbers
(Figs 4-6) in the points A (0.75, 3.0), B (1.25, 3.0), C (1.75, 3.0) show how the localized

moment varies with decreasing filling of the band for parallel and antiparallel ordering. As

n'l‘ ml
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06 06
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04 04
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01 0.1
0 07 02 0.3 04 05 06 07 08 0910 0 0020304050507 08 0910
| " AR .
N 1

Fig. 4a. Plotof ny (n,)and n  (ny) for values of x= 0.75, y = 3.0, z= 0.1. The point 4 in Fig. 2. The
curves are computed from Eq. (22). b. Plot my versus m and m , versus my for x, y, z parameters as in

Fig. 4a
nf my
10 — 10
09t 09t
0.8 08}
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a : b

Fig. 5a. The dependence of ny onn | andn onny for x= 1.0, y=3.0,z= 0.1. The poinf B in Fig. 2.
b. Plot of my (m,) and m , (my). Parameters x, y, z are the same as for Fig. 5a
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seen, in the point 4, L. M. M. disappears for both orderings (. e. only the non-magnetic-
solution ny = n, occurs); in the point B, L. M. M. appears for the ferromagnetic case
(we have n, =0, 71, n, = 0.18 i. e. M = My (n,—n,) = 0.53 M) and, in ‘the point C,
the magnetic solution n, # n, occurs for both orderings. The occurrence crlterlon thus
enables us to draw a number of qualitative conclusions as regards orderlng in the region
of parameters where the ranges of occurrence of L. M. M. for both orderings do not overlap;
on the other hand in the range of overlapping (the shaded area in Figs 1-3), one has to
calculate the difference in energy for parallel and antiparallel coupling.

nT m'f‘
10 10 :
09 09
08 08
07 07
o6t 06
ost 05
04 04
03 03
02} 02
o1} 01
0. 07 02 03 04 05 06.07 66 0970 0 07 0203 04050607 08 0910
Ay my
a i b

Flg 6a. Calculated curves for ny versus'n , and m | versus ny for values of x= 1.75, y = 3.0, z= 0.1.
The point C in Fig. 2. b. Plot m; (m ;) and m, (m). The x, y, z parameters are the same as in Fig. 6a

Denoting this difference by AE = E, —E,,, we obtaln from (12):

V2 )]2+A2(1 — M)

)] +42(1 —m,)?

| Fe—Fo—my (1—

2 +
[E0+(1 — 1) (;.— m”

4E= S 1-m)ea
i

V2

Ne

)]s

| o, o= (1m0 (=2 ra

Via

4 2
-+ ;t— (]. —-n,) ln

[E0+ (1—n,) (z—

[(E +A+ 7 ) (6 —mg) + A(noht— o —mgm_ ) + Ig_z (lla— —-1)] (29)

n—g
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where 1, and m, are the solutions of the sets of Eqs (22) and (23), respectively. In the strongly
magnetic case n,—n, ~ my,—m,~1

AE ~

2Vih (—"L + ﬂ) ~TE M (30)

U n, U U n,

pointing to stability of the ferromagnetic ordering. The same analytic result is obtained in
the magnetic case and if 4 —0. Here in the magnetic solutions n,—n, ~ m,—m, ~ 1.
A more detailed discussion of the stability problem of L. M. M. orderings by numerical
methods is shown in Figs 7—12. In our numerical calculations we have taken E, = 2V,
A = 0.5 eV, and the values of variables «, y for which 4 E has been calculated are represented
by circles in the diagrams 1-3. By our analysis of these diagrams, the tendency to parallel
L. M. M. ordering is clearly apparent. We conclude that energy considerations favour ferro-
magnetism in the range in which L. M. M. can occur.

Accordingly, in the majority of cases, parallel L. M. M. ordering is expected to occur in
alloys. On the other hand, antiparallel ordering occurs only for large values of z i. e. for
large concentrations of magnetic impurities (Fig. 3). Moreover, as seen from Figs 1-3, for
a certain region of values of the Fermi energy we can induce the change from parallel to
antiparallel L. M. M. ordering by increasing z (by varying the concentrations of magnetic

0.10

AE

0.05

=-0.05

120 130 140 150

x

Fig. 7. Relative. stability of the parallel and antiparallel configurations of localized magnetic moments. The
curves of the energy difference AE= E; ,—E  versus x were calculated for y = 2.25, z= 0.05 and 0.1
" respectively
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120 .30 140 o - 150

Fig. 8. Plot 4E vs x for y = 3.00. Other parameters are the same as for Fig. 7

0.10-
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0.05 -

=005 |

225 250 ‘ 275 300 325

v

Fig. 9. The dependence of the energy difference AE on the parameter x for y = 3.25, z= 0.15
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AE
0.05 -
0
-0.05
225 250 275 00 | 335
A
Fig. 10. The E as function of y = — =7 for x= 1.25, z= 0.05 and 0.10 1espectively

AE
015

z=015

005 -

a 1 1
300 325 350 y

Fig. 11. The dependence of AE on the parameter y for = 1.50 and remaining parameters as in Fig.1
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impurities). This is immediately apparent on considering the properties of the system in Figs
1-3in the point D(1.3, 2.25). For z = 0.1, parallel ordering shows stability (see also: Fig. 7),
whereas for z = 0.15 only antiparallel L. M. M. coupling can appear.

AE
015 f

0.10

0.05

1 i
125 1.32 135 X

Fig. 12. Plot AE versus y for valués x= 130, z= 0.15

4. Conclusions

In the present paper, the influence of correlation of the motion of electrons localized at
impurity atoms on the character of coupling as well as on the occurrence of L. M. M. has been
investigated on the basis of Anderson’s model. The results indicate that the parallel orderings
is favoured and thus differ essentially from the conclusions derived in the H—F approxima-
tion by Anderson and Alexander [16] as well as Moriya [14] where both orderings have.the
same domein of existence. It is of interest moreover that the possibility exists of transitions
from system with quenched L. M. M. via parallel orderings to antiparallel systems, which
are expected to appear with decreasing filling of the band of non-magnetic matrix of alloy
(lowering of Ep). '

Moreover the calculations show that changes of this type can also be obtained at an
established filling of the conduction band by varying the concentrations of magnetic impuri-
ties. Finally, it would seem useful to compare the results obtained here with the experimental
data. Unfortunately, the existing experimental data are restricted to very low concentrations,
at which the effects of interaction of localized moments at impurity atoms are not important.

Our conclusion that parallel configuration of L. M. M. is energetically favoured leading
to ferromagnetism at low temperatures seems to find a confirmation in the fact that this
ordering is- the only one occurring in alloys PdFe, PtFe.
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The interpretation of coupling in such systems is, however, made more difficult by the
occurrence of the so-called ‘‘giant moment”, that is of L. M. M. of magnitude up to 12up
per 1 atom of the impurity which is related to the polarization of Pd atoms by the impurity.

The authors thanks are due to Dr J. Morkowski for calling this problem to his attention

and for many valuable discussions.
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