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PHASE SPACE VOLUME ELEMENT IN INVARIANT VARIABLES

By J. KrosiNski
Physics Department, University of Lédz*
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The paper gives explicit formulas for phase space volume element expressed in Lorentz-
-invariant variables frequently used in investigations of high energy interactions.

1. Introduction

In the experimental investigations and the theoretical description of high energy
interactions Lorentz-invariant quantities such as invariant mass squared (IMS) and four-
-momentum transfer squared (MTS) are used. Often, the amplitude of a process when expres-
sed in these variables posseses a simple form and physical meaning. But in order to obtain
(having the amplitude) any distribution or cross-section it is necessary to have an expression
for the phase space volume element (PSVE) for the given process. -

The aim of this paper is to give explicit formulas for the n-particle PSVE in terms of
IMS and MTS variables. N. Byers and C. N. Yang [1] received general expressions for
PSVE in terms of scalar products of the four-momenta of the particles in the final state,
which are linearly connected with IMS variables. Partially integrated PSVE for study of
the IMS distributions in the four and the five particle final states were given by P. Nyborg
et al. [2]. Results of Ref. [1] and Ref. [2] can be easily reformulated with MTS and IMS as
independent variables in reaction processes.

The results received are based on the following property of an N-particle, relativistically
invariant, phase space volume [1]:

kinematically allowed regions in 4/N-dimensional phase space, for reaction

142 —>3+4+ ... +N 1)
and for decays

1->2+434+4+ ... +N @)
or

3> 14244+ ... +N 3)
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are different subregions of the same N-particle phase space, which under conditions

p1+pa=p3tpat ... +pys  Pr=m? 4

(p;—: = =P, Pj — four-momentum of j-th particle) reduces to a (3N —10)-dimensional
restricted phase space.
The subregions are received by settlng physmal limits on . the chosen variables. For
example, for reaction (1):
= (p3+pe)? > (mgtmy)®, M= (p1—ps)? < (my—ms)® ©)
Thus, having expressions for PSVE for the decay processes expressed in terms of
IMS variables we can easily receive formulas for PSVE for the reaction processes in terms
of IMS and MTS variables. For this purpose it is necessary to choose the proper correspond-
ence between particles in the decay processes and the reaction process (or, what is the same,
between IMS in the decay and IMS and MTS in the reaction), and set limits of the type (5).
In section II we write the general expression for the PSVE for the decay processes
in terms of IMS variables. In section III we give explicit formulas for the PSVE for the
reaction processes in IMS and MTS variables frequently used in mutiperipheral models.

2. General formula for the PSVE for the (N —1I)-particle decay

As we have stated in the Introduction,. for studying the PSVE for the (N—2)-particle
final state in the reaction process we must have an expression for the PSVE for the (N—1)-
particle decay. In both cases this is an N-particle problem with the (3N —10)-dimensional

restricted phase space.
Let us consider the decay process of particle ‘0 with the mass m; on the (N —1)-par-

ticles.

0142434 ... +(N-1). (6)
For process (6) PSVE in IMS variables reads [1], [2]:

9 9 3N—10
3N—10 - 72| 4| 2
d, TN,decay 2N_1mg[( _A]_)( _Az)-n ( _AN-—4)]% 1I=Il d,uz (7)

where the meaning of the symbols is as follows:
|4|? — S-matrix elements squared and summed with proper weights, over internal
quantum numbers,
Als — determinants of 4X 4 matrices formed out of scalar products of four momenta
of particles involved [1],
u? — 3N —10 two particle, three particle, etc. independent IMS’s which can be formed
for subsystems of particles in final state (6).

Byers and Yang determinants A4;, when expressed by IMS’s properly chosen, are quadratic
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functions of these variables. For our selection of IMS’s each 4, has the form (below in (8)
we abandon index 7):
A = [M2Q2+N2P*+ M?R*+N*R?+-P2Q%] —
—~2[M2QR +N?PR+MNR*+MPQ*+NP?Q] +
+2[MNPQ + MNPR -+ MNQR + MPQR +NPQR] —
—2[M2Qm+N2Pn-+M?Rm-+N2Rn+MQ%q-+NP?p + MR? +NR?r+
+P20q+PQ%)] -
—2[MNPin+MNQn-+MPRp +NQRq+PQRr]+
+2[MNR(m-+n —2r) + MPQ(m-+p —2q) + NQP(n +q —2p) +
+QRM(g+r—2m)+PRN(p+r—2)]+
+QRM(q+r—2m)+PRN(p+r—2n)] +
+[M2m2 + N2n2 1 P2p%+ Q22+ R22] +
+2[MNmn + MPmp +NQng-+PRpr+QRqr] +
+2[MQ(mq +mn +qn+mp+qr —pr) +
+NP(np +nm+pm-+pr-+nqg—qr)+
+MR(mr+mp+1p-+mn+rq —ng)+
+NR(nr+nq+rq-+nm+rp —mp) -+
+PQ(pg+pr+gr+pm-+qn—mn)| —
—2[Mm(mp +mn+gr-+2np —pr —nq) +
+Nn(nm+nq-+pr—pm —qr42mq) +
+Pp(pn+pr-+ng —mn —qr+2mr) +
+Qq(gn +qr-+mp —mn —pr+2nr)+
+Rr(1p+rq +mn —mp —nq+2pq)] +
- [m2n2+ m2p? + n2g®+pPr+ 4] —
—2[m®np +mnq+mp?r +nq? +pqr?] +
+2[mnpq +mnpr-+mngr+mpqr+npqr|
with the following assignemnt of IMS’s u? to A;s:
M; = M?+2,...,N—1 , Ni= Miz,...,i-l—l’
Pi=M}y n-1» Q=M it
R; = MZi14a0 m;= M3, >
n;=M2s, N-12 Pi= Mg

9 .3
q;=M11, r;=1m

G
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where, by definition,
M2, o= (pi+p;+ ... +py2.

From a detailed inspection of (7) and (8) it is seen that the denominator in (7) as a whole
is a polynomial od second order only in variables Py, Qn-g and all R]s. In all other variables
it is a polynomial of higher degree. Another property possessed by each 4, is a symmetry
property [2]. Namely, they are symmetric under simultaneous exchange:

1. MH'N;APQ—»Q; R,roR,r; me<sn; P> q andfor
2. NoP; Qo R; Mym<s M, m; pen; ger.

Allowed regions in (3N —10)-dimensional phase space are given by inequalities
4;,<0,i=1,..,N—4. '

The partial PSVE’s are received after integration over some variables. The limits of
integration are received as the roots of equation A(uf) = 0, if the integrated variable is
any one of the R]s, P, or Qp,. In this case the A’s have the form ax+2bx+-c; (x = ud).
In all other cases the lower limit of integration is received as the largest value of all smaller
roots and the upper limit of integration is the smallest value of all larger roots of all quadratic
equations (8) in which the integrated variable appears. Equality of the limits of the integra-
tion (lower and upper) gives the allowed regions in phase space for the remaining variables
present in the given 4,. ‘

Partially integrated phase space, when |4|2 do not depend, for example, on one varia-
ble, is easily obtained when the denonantor is quadratic in this variable. For example, if it
is R;-th variable then [3]:

73| 4|2
SN-11 = '
d3N=Ugy decay 2N=L[A(M;, Ny, )% *
3N—11
I du?
i=1

. | 9

[(=4i) . (= Ai)(=Lisa) .. (—An-2)]% i’

with the following boundaries on the remaining variables in the i-th determinant:
Gy, My, Ny myy1,9) = 05 G(Q,, M, Nis iy 13 ) = 0
where:
Ma, b, ¢) = a?+b24c2 —2ab —2bc —2ac
G(x, y, 2, a, b, ¢) = 2y +y2x +22a+ a2z +b% +c2b +
+axzc+xab+yzb+yac—xy(z+a+b+c) —
—za(x+y+b+c) —be(x+y+z+a). (10)

It should be emphasized (what is commonly known) that also in this method, analitical
expressions for partly integrated phase space can be received only to certain degree, after
which numerical calculations are necessary.
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3. General expression for PSVE for (N—2)-particle final state in reaction prb’éess

Having PSVE (7) for process (6) we can now, by virtue of the property of phase space
cited in the Introduction, write an analogous expression for the process (1). For this aim
it is necessary to choose the correspondence between particles in the decay process (6) and
the reaction process (1). By “‘choice of the correspondence“ we mean the assignment to
each particle in process (6) a particle from reaction (1). Then, variables M, 2 g in for-
mula (7) go over into the IMS and MTS variables. Out of many possible correspondences
we quote here one which gives variables useful for the study of multiperipheral models.
Namely, this correspondence is the following: ’

(O 1234 ...‘N—-l) — particles in process (6)

i 1n
2 1345...N

— particles in process (1)

153,45

Fig. 1. Parametrization of phase space for correspondence (11) in invariant variables used in multiperipheral
models

Then the received set of variables u? is as follows (see Fig. 1) — set of two-particle IMS:
Mgy = g0 M3y = 5455 s Sn_1,n05
— set of momentum transfer MTS —z,; between groups of particles:
My = tig =ty = (p1—P9)%  Miag = 13 = tys5 -
— set of many-particle IMS:

SN—2,N—1,N> SN—3,N—2,N—1,N> ***

— total energy (in CMS) squared

S34,.,N = S- (12)



746

The i-th Byers and Yang determinant is then

M; = siys,. N5 Ni=tii1,i405  Pi= Si42i43,..,N3
Qi = tiys,itas Ry=sip0,ip85
M. = t.,4 =+ 2 my =1 =m2'

i i+1,i+2° 17 s = e

— . — 2.,
T = Sit4,i45,..,N> 'N—4 = N3
e m2 - = m2 _. . 13
Dy = My 35 q; = My 95 ;= my. (13)

The above choice is equivalent to some other ones due to symmetry properties of the
Byers and Yang determinant.
The production PSVE can be obtained from the decay PSVE by proper normalization

1], e.g.,

d3N bl IOTN, decay

3N—10 —
PN = GG s, i, mp 4
and the differential cross-section (for correspondence (11)) is
3n—4
a2 T1 du?
dn—%, = =1 (15)

21(2m)*=44(s, mE, mE)[(—Ay)(—4y) ... (—An-g)]%

where n = N—2 and As are Byers and Yang determinants (8) expressed by w?-varia-
bles (12), (13).

Partially integrated phase space or the differential cross-section can be obtained by
integration by means of a procedure analogous to that used in Sec. II.

When the matrix element squared does not depend on any single variable (statistical
process), then by step by step integration we arrive at the well-known expression for the
total cross-section [4] for production of n particles:

=1

ouls) = 24(27)3"=%A(s, m&, m3) Lu(s, my, my, ..., my) (16)
with the following recurrence formula:
(Vs —my)®
Ln(s, mg, my, s my) = % [A(s, %, mR)]%Ly—1(%, mg, ..., myn—1)da
(m+ms+...+my-1)?
Ly(x, mg, my) = 71{ [A(x, m3, m)]%. 17)

The asymptotical cross-section (for s — o0) can be also very easily received [5]. The
general formula for differential cross-section (15) is also very convenient for analysis [6].
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