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DYNAMICAL EQUATIONS FOR SPINLESS, NEUTRAL BOSON SYSTEM,
PART II — OFF THE MASS-SHELL FORMULATION

By W. GarczyNsKi1
Institute for Theoretical Physics, University of Wroclaw*

(Received February 25, 1969 and in final form received December 6, 1969)

Functional description of an infinite system of spinless, neutral particles is given in terms
of quantities extrapolated off the mass-shell. Quantum Markovian property is postulated and
corresponding differential dynamical equations are derived. Finally, the conneciion with the
Rzewuski functional formulation of the quantum field theory is established.

1. Introduction

The present paper is a continuation of our discussion of the quantum causality condition
in the context of a theory of spinless, neutral bosons.

In the previous paper on this subject [1], we have formulated a theory in terms of physi-
cal quantities namely — the scattering amplitudes on the mass-shell. The dynamical equa-
tions describing the time evolution of amplitudes were written there both in differential
and integral forms.

In this part we are going to present the simplest possible extrapolation, of the mass-
-shell of previously obtained results. At the end we discuss the Rzewuski functional formula-
tion of quantum field theory [2], and, in particular, we derive the differential causality condi-
tion widely used in this theory.

Naturally, we use exactly the same notation as in the paper [1] to which we will often
refer as to L.

2. Off mass shell extrapolation

Let us introduce an auxiliary analytic functional S'[0, ¢'; @, f] by means of the follow-
ing equation

S[o, o’; @, f] = e*S'[0, 0’5, f] (1.2)
where
S'[o, 0’5 @, p]
=Y D (mln)*%[dp,[dq,s (0;P,lo"; q,) ela; P €lBs q.]- 2.2)

m=0 n=0
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Let {#'(0;pul0’; ¢,)} be any family of functions depending on the four-vectors P;
and g, which agrees with {¥'(c;P,|0’; q,)} on the mass-shell:’

' (0'3 pmlo'lo qn)
= [0, [ 468" (03 ol 41) ﬁ 8100 —a(p)] fI 8lq8 (g, (3.2)

We assume, obviously, that the extrapolated amphtudesy (05 Pwlo’s q,) are symmetric
in the p; and g, variables.

Now we introduce, a set of functions symmetric in x; and y,, {¥(0; ,,|0"; ¥} as
follows

&L(05 %,10"55,)
= (i)™ (m! n )% @m)y~"tm ) [ap, | dq,, [ (20 (p))] H [20(g)]%x
X P'(03 pul0’s q,) exp {zlx,-pj —i k;lyqu}- (4.2)
One may easily eipfesé the 'amiJlitudes F'(o;p,|0'; q,) by these fuhétioﬁé as follows
S'(03 Pala’s q,)
= U n )% [ d,, [ dy, (o 50" yn>11='711f@j; DI an) 62

where
fps %) = 2n)~" [ dP“ [Zw(P)] 1/2°5[p —o(p)] exp (—ipx) (6.2)

satisfy the Klein-Gordon equation with a mass m.

It is not difficult to see, [2], that we may impose on & (o} %,,|0”; ¥,) a symmetry condi-
tion with respect of exchanging the x; and y, variables without affecting the & (o3 Pnlo, q,)
amphtudes Namely, if we assume a crossing property,

S5 ooy Tjy oo 075 s Yo o0) =L(05 ooty Yy n 675 ey Ky ve) (7.2y
then
FL(05 s Djs o0 ey Gy ) =F(05 0oy =Gy 2|05 s —pj,..;). - (8.2)
For this reason we shall assume that -
P(05 %,|0"3 ) =F(0, 0'; %, 7,) 0.2
S0, 0'3 %15 ey %) =F (0, "5 Hpaypenes gy '(10 2}

for any permutation mES,.
According to (1.2), (2.2) and (5.2) we have now

e - - Slo, 05 a‘aﬂ] .
-=e«ﬁ.z Z gt f i f A (0, xm,yn)e[ocf,xm]e[ﬁf*,yn]»v« (1
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where
(@f) (x) = [dpa(p) f(p; »)
6 () = [dg B@) f*: ). (12.2)

After rearranging the order of summation in (11.2) we finally get

S[o, o’; a, f] = e i —i”:—n!—f‘dxmy(o, o5 xm)elaf +Bf * 5 %m). (13.2)
o .
Here, af+pf* according to (6.2), is a general solution of the Klein-Gordon equation
(af +Bf*) (%)
— @n)h [dp 0(p) 8(p*—m?) Roo(p))* [alp) ¢« +H(p) ] (142)
= qolx, B; «].
Therefore we may write
S[o, o3, fl = e P[0, o5 qol, pl] (15.2)

where #[0, ¢'; q] is a new generating functional depending of one variable g(x) only,

Lo, 05 q] = Z —:;'— f dx, S (0, 0" 3 x,)€[q s X (16.2)
n=0

Our next task will consist of expressing the basic postulates in terms of this functional.
More exactly, we shall impose upon the generating functional #[o, ¢’; ¢] conditions which
will imply the postulates (i —uvii, I), satisfied by S[o, o"; a, Bl.

3. The postulates on ¥[o, ¢'; q]

Tt is not difficult to verify using (15.2) that the following set of conditions will be ap-
priopriate here:

0] &lo, 0’5 q] — analytic functional

(@) (&lo, 0’5 ql)* =10, 05 ¢7]

(i) lim’y[a, a;ql=1

(iv) o, 0'; q] exp {i —§—A+ i}&”*[o‘, 0’59l =1
o~ oq

for any g,

-

k) b
4 . 7 — A —
v FLlo’, 0; q] exp {z 5q A4 6q}.¢[0, 5ql = &lo’, 0”5 4]
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for each g,
: T [s ,
(vi) dy, [ /@5 32) e | 5537|1005 llemo =0, n>0
k=1
Plo, a0 =1
(vacuum stability), and
[ 2sal(rd) @ 9 s allma = o
6q’q" 5(] p G’G’Q]|4=0— s n>1

(one-particle stability condition).

o, d'; q] =L[o+a, o' +a; Yay]

(vid) Yary®) = gLz —a)].

Here the expression F[q] exp {i 32 A+56—} G[g] means
g q q

i g 4+ 2 Flgiciad ...,

where

N 5
_ql " fd"fya sa@ TE) oy
i4+(x) = (272 [dp 0(p) O(p*—m? exp (ipa).

(1.3

(2.3)

(3.3)

The above set of conditions is the simplest one but is by no means unique. It is possible,
for instance, in the unitarity condition (iv) to replace the right-hand side by any functional

having value one on the mass-shell, [2].

In order to illustrate the method of obtaining these conditions we shall derive the cau-

sality condition (v) which, in this form, is a new one in quantum field theory.

We start from the causality condition on S[g, ¢’]

S[G"G;“’é_ag] Slo, 6”5 0, Bll,_o =S[o’, 0”5 @, B].

Using [I, (7.3)] and the formula (15.2) we may write

“.3)

exp {«x% +9 [ : ] 56 }«9’[6 o; gl exp {eﬁ+qo[e, Al }9[0, "5 qalloi=gi=e=0

)

= exp {“/3+‘10[“9 Bl }?[a 0”3 qlg=o.

(5.3)
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Performing the translation operation exp {ac (Sé-} we obtain
e

] .
exp{ [ (;Z:l 66 }exp{(a—l—@) B+qolx+e, Bl 342 }‘ Lo, 05 1 %[0, 6”5 @3]l qu=gs=0

= exp {ocﬂ+q0[ a,f] —6;},?[0", a"’; ql|g=0. (6.3y

Now we remark that the g-variable enters this formula only in the &+ combination. Hence,

‘we may replace the differentiation operation g, [ac, 6—6@_)] by g, [ac, _6%] where the arrow

indicates that only «’s standing outside on the right should be differentiated. We have
therefore

eXP{qo[w, 6‘1] i }eXP{aﬁﬂo[%ﬂ] i }5’[0 3 1710, 0”3 Gllg;=a,=0

= exp {aﬂ +qola, f] 35} &', 6”5 qlg=0- (7.3)
Using the formula
F [_6_] exp («p) = exp (af) F [ﬁ + -6—] 8.3)
o | <P p 7 .

which is valid for any analytic functional F[a], we extract the factor exp («f) and cancel it
on both sides

8 8 : "
exp {90 [w, B+ W]}em {qo [, A] 3q—2} 1o’ 03 6110, 075 gallai=a,=0

= exp {90[“a Al 6_(21}'9 [0", 6”5 qllg=o. 9:3)

Using once more the formula [I. (7.3)] we may write

A A = oy B

where
5 _ [ dgelepsa] & f ) 3
55) f k) dgem ) WP )6q ®
) dqole, B 8 f )
aa(p)‘f U5y a0 J PPN 5 o2 (1L3)
Due to the completeness relation we have
idt(x—y) = [dpf*(p; 0 D3 ) (12.3)
85 5 3

A (13.3)
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Utilizing the above facts we may rewrite the formula (9.3) as follows

8 I | 8 Vs "
©xp {‘]o[“» Al Ba} exp {l 30 A+ —(s“q:} exp {%[“9 ﬂ] Fq;}y[ﬁ 205 1] 10, 6”5 ollg=gu=0

= exp {90[“’ Al %} Zlo’, 0”5 qllg=o. (14.3)

Finally, using again the formula [I. (7.3)] we obtain

, . .0 0 "
&', 05 g1 +qol, Bl eXP{z S A+_a }«V[mo 5 95t q0l%; Blllg=g=0 =
q1 9

=Z[d', 0”5 q+qol @, B]]]4=o0- (15.3)
This condition will certainly be satisfied if the following relation holds identically in ¢

’ . . + ., ro
Flo’, 05 q] exp {z 3 4 5 }y[a, o’5q]l =Z[d’,0"; ql. (16.3)

For g = qol«, f] we obtain the mass-shell causality condition.
For the sake of convenience we introduce the abbreviation

5 .8
Pyl — AT — = .
| exp :; 3q A4 5q} (% (17.3)
where brackets serve to distinguish this multiplication prescription from the multiplication
law of functional matrices on the mass-shell, [cf., I. (3.4)].

4. Dynamical equations and Hamiltonian off the mass-shell

Let us start the Hamiltonian on the mass-shell, [¢f., I. (18.5) and I. (8.5)],

Hlo¢'; y; @, f] = ihSHo, '] * 85[0, o'] [@, f] =ihS [o-’, o;, 6] 0510, 0’5 0, f]

90'(y) Sl 0() oo’
(1.4)
Using the definition of ¥[o, ¢’; ¢, (15.2), we obtain
Hlo'; y; e, f]
P 00, 0'; q+qole, Al] |
— ptf .
e lhy[c » 03 q+QO[“, /3]] (*) 60"(}’) =0
= e?H[0'; y; g+qo [, Blllo—0 (24)
where #[0’; y; q] is the off mass-shell Hamiltonian
H1o'sy3 g = Mo, 03 ] (5 212 034 (3.4)

od’(y)
In the same way as in the Chapter 1.5 one may show that # does not depend on ¢ and the
formula holds
0F[a’; q]

Hlo'sy;q] =ihPo'; q] (*) 35°0)

(4.4)
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where
o q] =lim Z[d’, 05 q]. (5.4)
¢’ —+—00
The most natural extrapolations of the dynamical equations L. (19.5) are the following
ones

0o, 0'; ql

ih 8l =0, 0’5 q] (¥)#[o’; ¥; q] (6:4)
—ih 6'?5;2(%;;—q] =H|a; x; q] (*)F|o, "5 q]- (7.4)

They can be obtained from I. (19.5) by the same procedure of extrapolation as e. g.,
Hamiltonian # was derived.

5. Rzewuski’s generating functional

In this section we will show that the theory proposed by Rzewuski [2], [3] is contained
in the present one. The main differences between these formulations follow from the facts
that the Rzewuski theory does not include the causality condition on the mass shell, I. (v),
nor the motion reversal invariance condition. Instead, the Bogoliubov type [4], differential
causality condition is imposed on the off mass-shell extrapolated generating functional
0[q] which in addition, is a non- ¢ depending quantity.

In order to obtain this theory we assume that

o, o5 q] = L4501 (1.5)

where Q[q] is some analytic functional

o=y 2 f i)l (25)
m=0

and q,, is the restriction of g(x) to the [0, o] interval i.e.,

glx) if o <x <o’
0 outside.

oo (x) =‘ l

Clearly Q[q], where g is not restricted, is a generating functional for the matrix elements
of the conventional S matrix

Qlg] = lim #[o, 0’3 q] (4.5)
'Sla, Bl = e Q[g5). (5.5)

The following conditions on Q[q] are implied by the postulates (i —vii) for #[c, o’; q]

@) Q[q] — analytic functional
(@) (R[q])* = 2*[¢*] always fulfilled
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(i)

(iv)
(®)

(v1)

(vid)

lim Q[qg,,] = 2[0] =1

2(g) (») (Qgh* =1
Qlgoo] (+) LUgoor] = LUyl o <0 <"

0
€ [f* 3&3 qn] Qlgllg=0=0, n>0
0 ) v
< [f* 3;]'3 q.n]fg PL2lgllg=0 =0, n>0

Q(q) = Q[Q(a,z.)]
Yary(®) = gl (x—a)], LELL(R).

In order to derive the differential causality condition from (v) we proceed in the following
way (cf. e. g., [4], § 17);-

We decompose a real g(x) into two parts

(%) = G(—c0,0)(%) +(0,00)(%)

and substitute into the equation (v)

Q[Q] = ‘Q[Q(—oo,a) 1(+) ‘Q[q(a,co)]'

Here, surface ¢ is a plane orthogonal to the time axis.
Consider now the two functions

q'(®) = ¢'(®) + q(x)

(—00,0) (0,00)

7" = q¢"(®) + q»)

(—00,0) -(a,oo)'-.; =

and calculate the expression

0, 4"; 0) = g (+) 2*[¢"].

Because of the general formula

we obtain easily

(lg] (+) ZlaD* = 2[q] (+) Qilq]

0@, q"0) =l 1() " 1.

(—00,0) (—00,0)

(6.5)

(7.5)

®5)

9.5)

(10.5)

11.5)

This formula shows that Q(q’, ¢’’; ) does _ﬁot depend on g in the region of space-time

later than o.

.Therefore, if one chooses

q'(%) = q(x)
q" (%) = q(%) + dq(»)

(12.5)
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‘where 6q(x) is localized in the region earlier than ¢ one obtains

Q(g, g+0g50) = Q[q  1(x) Q*[g + dq]

—OO,G) (_

=Q0g 1 {Q*Iq 1+02*g ]+0(6q>}

(—0o0,0) (—00,0) (—00,0)
= 1+Q[q( }(*) 59*[9_ ]+0(59) (13.5)
where
002
002[g(—w0,0)] = f da ([q)] dq (x). (14.5)
x*<o

The fact of independence of Q(g, ¢+dg; 0) on the behaviour .of g(x) at x> o gives us

Q(g, 3+ 9g; )
—Ld i =0, >0 15.5)
54() g (
i e,
'fdx { []()( [])}6q(x)=0, Y>>0 (16.5)
0q(y) /)
x° <o
for y,> o.
Since dq(x) is an arbitrary variation in the region x, < ¢ we conclude

Clgs v, = (y) { lq] (*) (‘;“(;([z)]) }_0 for a0 < o < 9. (17.5)

In the limit x, — ¢ we obtain a condition «® <y for the above equation to be valid. Due
to Loreniz invariance we have from this equation for any LELL(R)

Clg; y, 2] = Clgp; Ly, L] (18.5)

Since for any pair #, y of vectors such that x —y is space-like there exists a proper Lorentz
transformation L such that (Lx)® < (Ly)?, we finally conclude

)l
saoy 120 (50 ) =0 =20 (o5

where x ~ ¥ means an x—y space-like vector.
This is the demanded differential causality condition, which was, in fact, postulated

by Rzewuski [2].

6. Concluding remarks

From the above brief considerations one sees that the quantum causality condition (v)
is a really powerful one and is mainly responsible for the dynamics of a system. Therefore,
it should be possible to derive from it all the really relevant analytic properties of scattering
amplitudes which are usually postulated, without good justification, in the phenomenological
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S-matrix theories, [5]. Moreover, the present theory may also be regarded as a general rule
of constructing phenomenological models which one gets by restricting the summation over
the number of intermediate particles in the causality and unitarity conditions to one particle,
two particle etc., cases. All such questions deserve special investigations and will be considered
elsewhere.

The author is indebted to Professor J. Rzewuski for introducing him into the functional
formulation of Quantum Field Theory as well as for rendering the proof copy of his book
on this subject.
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