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DYNAMICAL EQUATIONS FOR SPINLESS, NEUTRALBOSON SYSTEM
PART I — ON THE MASS-SHELL FORMULATION

By W. GaArczyNsKk1
Institate for Theoretical Physics, University of Wroclaw™
{ Received February 25, 1969 and in final form received December €, 1969)

The S-mairix theory is proposed in terms of observable quantities — i.e., in terms of
matrix elements lying on the mass-shell only. A quantum Markovian process is constructed for
an infinite system of spinless neutral particles and the corresponding dynamical equations are
derived with the use of functionals technique.

1. Introduction

In the present paper we demonstrate an application of our idea of treating quantum theory
as a quantum Markovian process [1]-[4] to a simplest relativistic system of massive, neutral
and spinless bosons. The theory permits generalization to realistic situations without serious
difficulties.

Our theory is in fact the S-matrix type theory [6] and does not make any use of the
concepts of quantum field theory. This remark concerns mostly the first part of the paper
where one deals with scattering amplitudes on the mass-shell only. In the second part one
deals with the extrapolated elements of the S-matrix, off the mass-shell, and the connection
with the conventional field-theoretical approach can be established, although it is not
necessary since the formalism is autonomic.

Let & be the phase-space of a particle with mass m > 0 i.e.,, a three-dimensional
Euclidian space, or its part, formed by momenta p, attainable by the particle. Since there is
no reasonable restriction on the magnitude of P, we assume that & = {p} coincides with
R3. Clearly, to a system of n particles the direct product R®® ... ® R3 correspond.

A dynamical description of a system with an undetermined -nurmber of particles is
given by an infinite family of complex functions

(05 P1 s Pl G5 s Q)5 (M, =0,1,2,...)

denoting the transition probability density amplitudes from the state of m-particles on
the space-like surface o to the state with n-particle on the surface ¢’. Energies of particles
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are py = Vp,f+m2 so the amplitudes are on the mass-shell, [5], [6]. They satisfy several
conditions and among them the quantum Markovian requirement. For that reason we call
this set of amplitudes a quantum Markovian process [10]-[13] for spinless neutral bosons.

2. The postulates

Let (03P4 - Puld’35 415 -, q,) = (0;P,l0"; q,) be a transition amplitude in the
sense that

I(o; Pulo’s q,)1%dq, ... dq,, (1.2)

is the probability of finding n-particles with the momenta @, ..., q, in the intervals
95 q;. + dq,, for all k at the surface o’ if it is known that at ¢ < o’ m-particles with mo-
menta P,, ..., P,, were observed. The sign < means “earlier”.

The following conditions are imposed on the amplitudes:

@ (oPys s Plo’5 94, ..., q,) = (03P s Pimlo’s Qi - qk)

where (jy, --+s j)s (Fy5 -5 k) are permutations of (1,...,m) and (1, ..., n) respectively.
Clearly this is the symmetry principle suitable for bosons.

’

@) (0:Pulo’s @) = (03 @los p,)* 0 <0’
We call this property motion reversal invariance.

() lim (0; P,lo’; q,) = 8, 06(Pps Q)

This is the continuity property. Here d(p,,; q,,) stands for the symmetric §-func-

tion, [7],
Oms @) = 7 " OB1—Got0) - P~ oir)- 2.2)

neSm

(iv) I_Zof k(03 Pulo’s K)(0'5 Bilos @) = 0,1, 0(D3 Ao)-

This is the unitarity property, which, together with the continuity property reflects
the internal completeness and autonomy of the theory of one kind of particles.

) IZO [ dky(o'; p,lo; k) (05 Kylo”'; q,) = (05 Plo”’; q)-
This is the quantum causality condition. We shall consider it as a central dynamical
postulate.
(i) (o5]059,) =0 n>0

(05 ]0";) = L.
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The vacuum stability condition.
(05pl0’;9,) =0 n>1
(o3Pl 0’;q) = (p—9).

The one-particle stability condition.
X m n
(i) (03 Pulo’s @) = (0+a; Ip,,|o" +a; Lq,) exp w(Z Pr— Zlqj)
]-——‘
Py =o(p) = Vpj+m® g} =Vqi+m?

a — is an arbitrary vector, L — any real proper Lorentz transformatlon, LELI(R), m—is
the mass of particles under consideration. Clearly, this is the relativistic invariance postulate.

In the next sections we shall use the old functional technique of handling an infinite:
set of functions which was developed further by Rzewuski [7], [8] and Berezin [9]. Since:
functional methods cannot be considered as highly popular among physicists we quote the
results with all details.

3. Generating functional for the amplitudes

Instead of the infinite family of amplitudes one may introduce a generating functional
in the known way

S[o, 6'; e, p]

=3 3 nto 7 [ dp, [ day(o: palo's el pABi ) 13)

m=0n=0

where the abbreviations are

/dpm =I_Ifdpk
k=1

ela; p,) = Ja(py) 2.3)
k=1

a(p), B(P) — are real and belong to the &, class of Schwartz test functions space, [14].
In the sequel we shall frequently use the following obvious formulae:

é
e [6_119’ yi,,] elg; xn]lq,=o = 1! 8umO(Ym; Xm) (3-3)

J () 803 3,) = /() (4.3)

if f(x,) =f(x,...,x,) is a symmetric function. Using them we may derive the basic
formula

, 9 K :
(G;pm|0' 5 qn) = (m' n!)_Vze ['g‘;, pm:I e l—gﬁ, qn:I S[O‘, o ;“yﬂ]l.x:,s:o' (53)’
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The functional derivatives of analytic functionals are

K .
———— Flp] =lim e YF[p-+ed,] —F[¢]}. 6.3
557 Flp) = lim = {Fly=+20,] ~Fly) (63

One may transform all the postulates onto the 'generating_ functional using (1.3) and
(5.3).

Namely, the property (i) enables us to establish the one to one correspondence between
{(o; p.lo’; q,)} and S[e, o’; @, f). Any non-symmetrical terms in the amplitudes would
be cut off in S[o, ¢’'; &, f]. Thus we have the first postulate

O] {(o;P,\0"; q,)} < S[o, 0’5 &, f] — analytical functional.
From (ii) we obtain simply
(i) (S[o, o';a, B])* = S[d’, 03 B, a.

The condition (i77) reads
lim S[o, '; @, B] = exp (@ f)

a-f = [ dpa(p)B(Dp).
In order to express the unitarity condition we use the following formula which is

valid for any analytical functional

Flu-+v] = exp {u g}—} Flv]. (7.3)
Using (5.3) and the last formula we obtain after simple calculations, (cf. e.g. [7]),
s | ! ) 6 ’
(i0) S [0‘, o, 6_;/] Sta, 0’5 v, Bl},_o = exp () 8.3)
where

S*lo, o'; @, Bl = S*[o, o' B, .

Analogously, the central quantum causality condition becomes

! 6 2 ! 1
(v) 5[0,0;% 6_;/] Sla, 6”3 v, Bl},—o = Slo’, 0”'; @, Bl.
The stability conditions are:

0 , -
e [%’ qn] Sle, o'; @, /3]|a=ﬁ=0 =0, n>0
S[e,06';0,0] =1

(v3)
d S :
_6a(p) e [$, Qn] S[o, ¢'; @, ﬂ]|a=ﬁ=0 =0, n>1

5 8 ,. — s(p—
Saip 3y L 75 % Bllacpo = 8@~
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The Lorentz invariance principle has the form

S‘[o‘, e, fl = S [c+a, o' +a; a,L)> .B(a,L)]

36. o': . Bl = ;e B
S[o, o’; a, Pl S[G,a, V-ZE’ V%]
0o,y (P) = AL7P) exp (1P) ps—aip)
ﬂ(a,L)(p) = ﬂ(L_IP) exp ("WP) lp":w(p) .

4. The matrix notation

Let {M(P,.; q,); m-n=0,1,...} be any set of functions symmetric in the p, and q;
variables. We may attach to it a generating functional M]e, f], which can be considered
as an “‘clement a, B of the functional matrix M = || MTex, B1II

Mo 1 = 3, 33 ntn)™ [ dpy [ daMpo; a)los s @ (0

m=0n
The multiplication by numbers and the addition operations are usual
(M), Bl =4 Mla Bl -
(My M)l B) = Ml B+ Ml 6. 2.4

The functional image of the usual multiplication law for the matrices | M(P,; g is

6\.
(My * M) [2 f) =M1[«, 5—9] - Myfe g (3.49)
Corresponding to this multiplication law the unit matrix 1 [a, f] which satisfies the
relations _
(LedDla, ) = (=D f] = Mo B (@
is

1[a, p] = exp (@ - f). (5.4)
This follows easily from (7.3) and the formula : ‘

F [a%] exp () = exp (u° ) F'[v+ 5%] (6.4)

which holds for any analytical functional F[u].
The inverse matrix M-! and the hermicity conjugation operation are defined as usual
MHe, f] = M*[ﬂa al - (7.4)
M M= M«M=1. (8.4)
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As a particular case we define the row matrix U and the column matrix ¥ as follows:

Ula] = 33 (m})~* J Pu,)ela; p,]

VIBl = 2 ()% [ dg,p(g)elB; q,] ©.4)

u(p,,), v(q,) — symmetric functions.

Multiplying U by M and M by V we obtain

@i =v| 2| e gy,
= 2, (0% [ dauf 3} [apu(p.) M(pas q)3el6; a. (104)

M=V)[a] =M [06, ‘5%] V[0]|g=o

= 2: (m1)~% [ dpn :gof QM (Prs G)V(gn) el Pl (14
Using this matrix notation one may express the basic postulates in a compact form as
follows
@) Slo, o'] — the functional matrix
#@) SHo, 0'] = S[o’, o]
(#i1) lim Sfo, 0] =1

(iv) Slo, 6] * St[e, 6’1 =1
(v) S[d’, o] * S, 0"'] = S[0’, 6], ¢ <o <"
(v1) Qo] = S[o, ¢'] = Q[o],
Vi lo] = S[o, 6'] = V; [o].
Here the vacuum functional Q[o] is
Qlose] =1 for any a(p) €S, 12.4)
and the one-particle functional ¥, [o]
Vilosal + [ dpo(o; p)a(p) (13.4)
@i) S, o'l =5, pylo+a, o’ +a '-
g(a,z.)[o', o, Bl = 5[0', o'; “(n,L))rﬁ(a,L))]'
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5. The differential equations for generating Sfunctional

The unitarity condition (iv) and the property (iz) enables us to extend the causality

condition
S[G’, 6] * S[U, G,’] - S[a” o_l’] 6' < o, < G” (1‘5)
to any intermediate surface o. Indeed, if e.g., the surface o is earliear than ¢’ then we have
S[o’, 6] * S[a, "] = S[¢’, o] * S[o, o'] * S[e’, 0”'] = S[d’, a"’] (2.5)

since according to (ii) first terms compensate each other. Similarly, the equation (1.5) is
valid when ¢ > ¢”.
Let us assume that the limit

lim S[¢’, 0] = S[— o, 6] = S[o] (3.5

¢’ »—00

exists. We have from (i7) and (1.5)

St[o] = S1[6] = S[o, — 9]

S+[a’] * S[e”’] = S[d’, 0”]. (4.5)
This representation will be useful in the discussion of functional differential equations

which follow from the causality condition (1.5).
Differentiation of (1.5) over ¢’(x) yields

8S[d’, 0] _ 5[, o]

3@ o) * St[d’, o] * S’[¢’, 0”']. (5.5)
Similarly
6‘8[0’9 6"] o o ) 65[03 6"]
—_—_—60'" (y) = S[O" s 0 ] * S+[U, [ ] * —60'—”(_}’)—. (6.5)
It follows from (4.5) that the matrices
L 65, d] ,
Ao’ x] = ) * St[d', o] (7.5)
. o . 08[o, 0”']
o] = S+ bt Ll |
.?[o‘ 9}'] S [0',0. ]* 60”()’) (8‘5)
do not depend on ¢. In fact we have simply the expressions
b — _ 05t ,
Alo’'; x] = 3@ * STo’] 9.5)
, i 4 Sl0”]
ZLlo";y] = St e 10.5
(0391 = S} * ot (10.5)
Equations (5.5) and (6.5) take the form
65[0'9 0”] — ’, ;o
@ A'[o'; %] * S[d’, 0”'] (11.5)
01, "] _ g1, 0] + Llo""s ). (12.5)

60'”(}')
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From the unitarity condition (iv) we obtain

H[o"s 2] +A o' ;4] = 0

ZLle"; y]+ZL+o"; y] = 0. (13.5)
From time reversal invariance (ii) we derive

05*o, o'l 8S[d’, o]

So()  — do(a) (14.5)
or equivalently
(—=AJo; 2] * S[o, ')t = S[o’, 6] + Z|o; «]. (15.5)
Using (i7) and the antihermicity -property (13.5) of #" we get
Slo’; o] * A[o; 2] = S[o’; 0] * L[o; x| (16.5)
for any o, ¢'.
Passing to o’ - ¢ we conclude using (i7i) that
H'[o; «] =Y[o; x]. (17.5)
Let us denote by‘H [d; x] the he-rmitianvmav‘trix
_ Hlo; x] = ihA[o; ). (18.5)
We shall call this matrix — Hamiltonian on the mass-shell.
We then may write the equation of motion
ih % = Slo, o'] * H[¢'; x]. (19.5)

The second equation follows easily by the hermitian conjugation operation. These differential
equations may be considered as a base of a theory formulated directly for observable quanti-
ties, i.e., scattering amplitudes on the mass-shell.

It is well known at present [8] that it is possible to formulate a theory in the language
of a generating functional depending on only one instead of two variables «, # on which
S[o, o] depends. However, in this case unphysical off mass-shell extrapolations of scattering
amplitudes are present inherently. .

The second part of this paper is devoted to a discussion of the role of the causality
condition written for off mass-shell amplitudes.
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