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L.S.Z. STRUCTURE OF THE (3,2) SECTOR OF THE LEE MODEL

By F. S. ULiv

Department of Theoretical Physics, University of Craiova®
(Réceivéd January 20, 1970)

In this letter the Lehman-Symanzik-Zinimennanﬁ structure of the (3,2) sector of the
Lee model is given. It is found that the solutions to two singular integral equations solve the
entire sector.

In a recent series of papers [1], [2,] [3] the L.S.Z. formalism, the Tamm-Dancoff
method, and the dispersional-approach were used as a computational technique for the treat-
ment of the (2,2) sector of the Lee model. Among these methods, the L.S.Z. formalism
allows the most symmetrical treatment. With this in mind, the intention of the present
letter was to show the L.S.Z. structure of a more complex sector, viz., the (3,2) one. We
should mention that the .computational procedure is well known [4] and, therefore, do not
become absorbed with a detailed treatment.

As it is well known in the L.S.Z. formalism all physical quantities may be expressed
by means of the so-called z-functions which represent vacuum expectation values of various
ordered products of the field operators. In the sector considered here there are nine
1-functions, namely

1,(8) = COIP2@NONTO)(7*(0)*10) - 6(2), (1a)

24(t; @) = OV ON)a()NO) (700> - X-@)O(), (1b)

15(t; @, ) = (OIN3())ay(t)ag () N1 (0) (20) 710} - X)) X~He) O(1), (lc)
14(t; ©) = VAN VO N*0)'af(0)10) - X~)O(1), (1d)

15(t5 0, 0') = OIV2)N(@)(N*0)af(0)af0)|0) - X~ (@) X~H)O), (e)

14(t; 0, ") = O V(O)N2(D)ay(0) VO (V2(0) Tad (0)0) - XHw) XY w)O(), (1)
1(t; @3 @, 0) = OV ()Nt ay(t)(V3(0)) ta}(0)af.(0)[0) x
x XY () XY (o) XHew") O12), (1g)
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15(t; ', 05 @) = OIN()a (t)ay () VH(0)(V3(0) T (0) 0) ¢

X X-3w) XHo) X-0")6(0), (1)
%(t3 0, 0’50, 0") = OIN¥2)ay()as () VH0)tat, (0)at..(0)[0)
X X"l(w)X-l(w')X—l(w")X-l(w"’) o), (Li)

where V(), N(z) and () are the Heisenberg field operators “corresponding to ¥, N and &
particles. @(t) is the Heaviside function; X(w) = u(®)/(2w)1/2: u(w) is a cutoff function.
With the Heisenberg field operators being defined as

’OH(t — e"H’OL‘e_iH’, (2)
it is not difficult to see that the following equations of motion hold:
; 4 V() = £ N()A(s = Myt 3
l%_mo t—_'Z_ @A), my = my+Omy, (3a)
. d
(z pri mN) N(t) = gA+*t)V(2), (3b)
.d ,
(i - o) @) = XN OV, 40 = Y X(@axo, (o)
%
These equations have the formal solutions:
I
V(ty) = eme=n)P(1) —i f gimot—1) [6va(t) + %N(t)A (t)] dt, (4a)
129
Nitg) = mV6=IN(1y) —ig [ em=2p() At()de, (4b)
LA .
|
aylts) = () —igX(w) [ ¢ DIN V) (de)
121

If we define the operators “‘in” and “‘out” in the sense of the L.S.Z. formalism, then from
equations (4a, b, ¢) we obtain:

400

out _ _i imot - ﬁ
V( in) = 7(0) Of ¢ [a T + N(t)A(t)] dt, (5a)
+00
N(O::) — N(0)—ig f () A (1) ds, (5b)

in

400
. ( out) — 4,(0) —igX(w) f N () W (3)d. (5¢)
0
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Now, by virtue of Eqs (4.a, b, ¢) the following set of integral equations may be obtained
for the Fourier transforms of the 1-functions:

(W_.zmo—mN)‘tl(W Zi + Z ZXz( ){14(W; w) 9

. 7. M oA ’ '~3 W; B !
(W =g —2m—0) {;jﬁ o } — 2t(7) + £ kZ X2(w) {1§ e Z;} &)

’ %3(17; o, o) 'zz(WB w)""zz(W; o’)
(W =8my —o —o ){%5( Vo, w'>} =0 {i4( Vs )+ 3,7 w')}’ ®
(W —my—2my —) {1225 Z,) a;;} — X H0)0w +28 {14%; Z: ;} *
W'; , I/; 7
1 (AT
k'

L3030, w")} _, {is(W; 03 0) + 173 0;0")

(W =3my =o'~ {fs(W;w',w”;w) E\aa(W; 05 0) 424 W w“”")} - 10

is(W; , (D' 0)" 60"/)
%g(W;(D” wlll ) )

+3 '27( Wio';o", o)+ ‘27( Wiw; o, o)
W30 03 0) W07 00

(W"3mN - —(UI) { } = GX—Z(CO)X_z((DI) [6kk"6k'k"' + 6kkm6k,k,,] +

(11)

From Eqs (6), (7) and (8) we see that in order to determine 17, 12, 13, 14 and 1.5 it is necessary
to solve a_singular integral equation. In order to determine 14, 14, 15 and 14 from Eqs (9),
(10) and (11) another singular integral equation must be solved. The solution may be obtained
by reducing these two equations to the corresponding inhomogenous Hilbert problems [5].
We intend to present this in detail in a forthcoming paper.

Let us now proced to the study of scattering processes. Because of the static character
of N and V particles, the only processes allowed here are:

3N+260 — 3N+20,
VA2N+6O — V-+2N+ 6,
3N+260 — V+2N+0,

i.e. two elastic scattering processes and a production process. The corresponding S-matrix
elements may be written as follows:

S; === (OIN 3 (out) az, (out) az, (out) ak (in) ak (in) (V3 (in)1]0), (12)
Sy = l<0|V(out) N2 (out) ag,(out) af; (in) (N2 (in) 7 (in)|0), (13)
<0V (out) N2 (out) az,(out) (N3 (in)taf; (in) afy(in)|0). (14)
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By means of the reduction technique, Eqs (3) and (5) lead, after some algebraic manipula-
tions to the following expressions for the S-matrix elements:

1 - 3
1= 7 (OgeyOnuki + Ona;Onty) — - i 0(e0; + 03 —00f ~03)g2 X (15)
X X(wl)X(wz)X(wﬂX(wz)["s(W Wy w1) +"6(W Wa5 w2)+ (15)

-+ 16(W5 013 0) +15(W; 03 wl)]W—3mN+w1+w,

. N N 2 R ‘
Sy = Opep; —ig2 X ?(wy) 6(w; — 1) [41 (W) + - E X (w)15(W; 0, ;) +
%

2
W=m,+2mpy-+w,

2 5 A : 1 l ’ A AN
+ Z X¥w)15(W; w, 0;) + 75 Z Z XY ) X¥ ") 1(W; 0, 03 @', wl)]
% Y

(16)
. 3 ’ ’ 1 ’ ’
Sy = —mig ]/; * 8(mN +w1+ws—w; —my) {7 [2(X (c01) O, + X (03) Oppg) +
+8X(001) X(w1) X(e3) ; X¥w) Go(W; 0, 03 02) +35(W; 01, 03 03))] +
+2gX(w1) X(w2) X(wy) (1(W; 02) +14(W; wi))}, . a7
: ’ W=2mpy+m,+w,

Finally, we present a short discussion on the bound states. If the coupling constant g
is sufficiently strong, then, in the sector considered in this note, there may exist a bound
state. The general expression for such a state is

1By = Vl Z Z ol ) (VO at 00at 010> + 7 > = " BBV HO) (V0)a0)0) +

+ I/I? yINH0) (73(0)) 10, 18)
where

alk, K) = == OIN*(0)ax(0)ax(0) B, (19)

V_
Z

Bk) = F <017(0)V*(0)ax(0)|B), (20)

are to be determined. Some simple mampulafclons yield for them the equations:

' gV3 . X(@)B(E) + X(@)hE)

<0I V*0)N(0)|B), (1)
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b= 5 — (l/6 Y Xeati )+ 252 0) )

Eg—my—2mn—w

y = D, KB, (24)

Ep —2m —mn
where Ej is the bound state energy. Its location may be found by solving the equation

[14(Ep)] = 0. (25)
According to Eqgs (22) and (24),

©)B() +X()B(E)
1By = 2V22 Z }: s (N*(0))taf (0)af,(0) 0> +

—3my—o —o’

Z X(w)B(k)

—2my—m

752 = 3 A IHORO 00 +¢)2 — NHO(O)0), (26

and the associated creation operator is

Z Z X()B(E) +X (o' )ﬂ(k) (N3(0)ta}(0)a (0) +

Eg —3my—0—w’

Z X(w
s Z BV HOWHO)a}0) 1€ )2 pF g NO(FO). @D

2V22

The yet undetermined function f(k) satisfies the following integral equation:

X' J

—3my—w—o’

(k) - [Z(EB—mO—sz —w) —3g? Z 7
-

— 2gyX(0) +3¢7X(0) Y. e PO (28)
-

It should be noted that this equation has the same structure as the integral equation which
determines 1, and 7, in terms of 7. This is an expected result, since the coefficients «, b
and 7 of the bound state are expressible in terms of the first five 7-functions.

The conclusion is that an exhaustive solution of the (3,2) sector consist in solving two
singular integral equations or, equivalently, the corresponding Hilbert problems.

It is a pleasure for the author to thank Professor O. Gherman for helpful discussions
and Mr. L. Méder for a critical reading of the manuscript.
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