VIBRATIONAL ISOTOPE EFFECT IN γ SYSTEM OF ¹⁵N¹⁶O MOLECULE

BY H. CISAK, J. DANIELAK AND M. RYTEL

Experimental Physics Laboratory, Higher School of Pedagogy, Rzeszów*

(Received March 7, 1969)

Part of the γ system electronic spectrum of $^{15}N^{16}O$ and $^{14}N^{16}O$ molecules was obtained with a medium-resolution quartz spectrograph. The isotopic displacements and vibrational constants were obtained for upper and lower states, respectively, from band heads measurements.

15N16O	¹⁴ N ¹⁶ O
$\omega_e' = 2331.0 \pm 1.09 \text{ cm}^{-1}$ $\omega_e' x_e' = 15.77 \pm 0.39 \text{ cm}^{-1}$ $\omega_e'' = 1868.84 \pm 0.58 \text{ cm}^{-1}$ $\omega_e'' x_e'' = 13.47 \pm 0.06 \text{ cm}^{-1}$	$\omega'_e = 2376.08 \pm 1.48 \text{ cm}^{-1}$ $\omega'_e x'_e = 17.07 \pm 0.53 \text{ cm}^{-1}$ $\omega''_e = 1903.35 \pm 0.82 \text{ cm}^{-1}$ $\omega''_e x''_e = 14.11 \pm 0.08 \text{ cm}^{-1}$

The results were compared with those predicted by the simple isotope theory and were found to be in satisfactory agreement.

Introduction

Earlier, Naudé [1] observed the isotope effect in the γ system of the ¹⁵N¹⁶O molecule and measured the O-O, O-1, O-2 bands to estimate the natural abundances of ¹⁵N₂ and ¹⁸O₂. The determination of the isotopic displacements of band heads and of the approximate vibrational constants for the A² Σ and X² Π states of the ¹⁵N¹⁶O molecule is the subject of the present investigation.

The wavelengths of the respective band heads of the ¹⁴N¹⁶O molecule were also measured because results obtained by various authors differ [2, 3].

Experimental

The light source was an ordinary discharge tube with a quartz window and aluminium electrodes connected to a high-voltage transformer. The tube was filled with an $N_2 + O_2$ mixture (where the nitrogen contained 95% of $^{15}N_2$), at the total pressure of 2 to 5 mm Hg.

^{*} Address: Zakład Fizyki Doświadczalnej WSP, Rzeszów, ul. Reymonta, Polska.

The spectrum was obtained with a medium-resolution quartz Q — 24 spectrograph (VEB Carl Zeiss, Jena). The reciprocal linear dispersion was 5 to 13 Å/mm, giving a measurement error of about 2.5 cm⁻¹. UV-1 ORWO spectral plates were used and the exposure times were from 1 to 5 minutes. Spark iron lines were used as a standard.

Results

Wave numbers were calculated from the determined wavelengths of the different band heads and arranged in a Deslandres table (Table I). From the relevant differences between horizontal and vertical rows in this table 28 and 16 equations were obtained for constants ω_e and $\omega_e x_e$ of the lower and upper states, respectively. Resolving the equations by means of the least squares method, the vibrational constants and their standard deviations were calculated:

$$\begin{split} &\omega_e^\prime = 2331.0 \pm 1.09 \; \mathrm{cm^{-1}} \quad \omega_e^\prime x_e^\prime = 15.77 \pm 0.39 \; \mathrm{cm^{-1}} \\ &\omega_e^{\prime\prime} = 1868.84 \pm 0.58 \; \mathrm{cm^{-1}} \quad \omega_e^{\prime\prime} x_e^{\prime\prime} = 13.47 \pm 0.06 \; \mathrm{cm^{-1}}. \end{split}$$

The terms $\omega'_e y'_e$ and $\omega''_e y''_e$ were neglected because the calculation based on the wave numbers of band heads was not sufficiently exact for their evaluation. The vibrational constants of the ¹⁴N¹⁶O molecule were obtained in the same way:

$$\begin{split} &\omega_e^{\prime} = 2376.08 \pm 1.48 \; \mathrm{cm^{-1}} & \quad \omega_e^{\prime} x_e^{\prime} = 17.07 \pm 0.53 \; \mathrm{cm^{-1}} \\ &\omega_e^{\prime\prime} = 1903.35 \pm 0.82 \; \mathrm{cm^{-1}} & \quad \omega_e^{\prime\prime} x_e^{\prime\prime} = 14.11 \pm 0.08 \; \mathrm{cm^{-1}}. \end{split}$$

In order to verify the isotope relations between the constants, the corresponding ratios were calculated:

(1)
$$\frac{\omega_e^{'i}}{\omega_e'} = 0.981 = \varrho_{\text{obs}} \qquad \text{where } \varrho_{\text{calc}} = \sqrt{\frac{\mu}{\mu^i}} = 0.982$$

(2)
$$\frac{\omega_e^{\prime\prime i}}{\omega_e^{\prime\prime}} = 0.982 = \varrho_{\text{obs}} \qquad \text{where } \varrho_{\text{calc}} = \sqrt{\frac{\mu}{\mu^i}} = 0.982$$

(3)
$$\frac{\omega_e^{'i} x_e^{'i}}{\omega_e' x_e'} = 0.924 = \varrho_{\text{obs}}^2 \qquad \text{where } \varrho_{\text{calc}}^2 = \frac{\mu}{\mu^i} = 0.964$$

(4)
$$\frac{\omega_{e}^{''i} x_{e}^{''i}}{\omega_{e}^{'} x_{e}^{''}} = 0.955 = \varrho_{\text{obs}}^{2} \qquad \text{where } \varrho_{\text{calc}}^{2} = \frac{\mu}{\mu^{i}} 0.964.$$

The omission of the relatively large constant $\omega'_e y'_e$ (which is 0.28 cm⁻¹ for the ¹⁴N¹⁶O molecule [4] probably explains the fact that ratio (3) is less exactly equal to ϱ^2_{calc} .

Considering that the vibrational constants were determined with the use of the mean values of the band heads and not the relevant zero-lines, the agreement between the constants for the ground state and the corresponding results in the infrared [5–7] is satisfactory.

The mean observed isotopic displacement for every band was compared with that

Deslandres table of the ¹⁵N¹⁶O bands for wavenumbers band heads of ⁹P₁₂ P₂ P₁ and Q₁ branches with horizontal and vertical differences

2			34027.99	2268.50 2268.50 36291.18 36311.53 (36417.53) (36431.86)
9	ຕາ ຕາ	2298.8 2299.9	35705.82 35723.81 1780.7 35825.71 35842.67	
ß	35113.16 35131.18 1706.1 35233.82 35250.89	2300.8 2300.6 2301.0 2296.9	37414.04 37431.83 <i>1708.2</i> 37534.84 <i>1709.7</i> 37549.79	
4	36846.22 36865.24 1733.0 36967.75 1733.7 36983.61			
က	38606.25 38627.58 1760.0 38728.59 1760.8 38728.59 38746.60			
2	40393.95 1787.7 40415.34 1788.7 40517.06 1788.5 40535.13			4567.5 4568.2 4566.7 4567.6 44961.47 44983.57 45083.78
1	4. 4. 4. 4.	2296.9	(44505.40)	
0	44048.92 44073.19 1840.5 44173.47 1838.9 44193.60	2298.9 2299.9 2297.5 2296.9	46347.78 46373.15 46471.01 46490.46	
v''	0		1	2

() blended lines, not used in calculations.

calculated from the formula

$$\begin{split} v^i - v &= \omega_e' \left(v' + \frac{1}{2} \right) \left(\varrho - 1 \right) - \omega_e' \, x_e' \left(v' + \frac{1}{2} \right)^2 \left(\varrho^2 - 1 \right) \, - \\ &- \left[\omega_e'' \left(v'' + \frac{1}{2} \right) \left(\varrho - 1 \right) - \omega_e'' \, x_e'' \left(v'' + \frac{1}{2} \right)^2 \left(\varrho^2 - 1 \right) \right] \end{split}$$

where determined vibrational constants of the $^{14}\mathrm{N}^{16}\mathrm{O}$ molecule and ϱ_{calc} were used (Table II). The agreement between calculated and observed isotope shifts is a proof of the correctness of the present vibrational numbering of the bands.

Isotopic displacements for γ system bands of $^{15}\mathrm{N}^{16}\mathrm{O}$

TABLE II

Band	Isotopic Displacement		
	Observed cm ⁻¹	Calculated cm ⁻¹	
0-0	4.1	4.2	
0-1	30.7	29.0	
0-2	61.8	61.1	
0-3	92.7	92.6	
0-4	121.8	122.9	
0-5	151.8	152.2	
0-6	180.4	180.6	
1-0	46.8	45.8	
1-5	109.3	110.7	
1-7	161.4	166.4	
$^{2-2}$	21.5	20.9	
2-7	123.2	126.0	

REFERENCES

- [1] S. M. Naudé, Phys. Rev., 36, 333 (1930).
- [2] M. Ogawa, Science of Light, 3, 90 (1955).
- [3] A. G. Gaydon, Proc. Phys. Soc. (GB), 56, 95 (1944).
- [4] G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand Co., Princeton 1950.
- [5] J. L. Griggs, Jr., K. N. Rao, J. Molecular Spectr., 22, 383 (1967).
- [6] W. H. Fletcher, G. M. Begun, J. Chem. Phys., 27, 579 (1957).
- [7] M. D. Olman, M. D. McNelis, C. D. Hause, J. Molecular Spectr., 14, 62 (1964).