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- A PERTURBATION TREATMENT OF THE MANY-ELECTRON
PROBLEM II. THIRD ORDER SOLUTIONS FOR THE GROUND STATE
OF HELIUMLIKE SYSTEMS
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Institute of Physics, Nicholas Copernicus University, Torun*
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A perturbation treatment of many-electron systems, proposed before [1], is applied to
the ground state of heliumlike ions H~, He, Li*. For a formulation based on two simple corre-
lation factors energy values up to third order as well as expectation values of some operators up
to second order are presented. Thé influence of poles appearing in the perturbation operator
upon the rate of convergence of the perturbation series is briefly discussed.

1. Introduction

In a previous publication [1] we proposed a perturbat‘ién treatment of many-electron
systems which makes essential use of the pole-less eigenvalue equation of the form introduced
by Hirschfelder [2] and further modified by Jankowski and Woznicki [3]. For an N- electron
system when the wavefunction ¥ is presented in the form

Y = 9P = 4@ T] <p<°‘)(r (1)
i<j

this equation may be written as

HEy@ = E@)y @)
with
N
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where

@
@) = pla-1 %'

It is evident that the properties of H® are determined by the correlation factor #D(ry0).
For certain classes of correlation factors discussed in [3] H® is the demanded pole-less
operator.

In [1] arguments for the use of Eq. (2) as a starting point of a perturbation procedure
as well as some numerical first order results for the ground state of the helium atom were
presented.

The aim of the present paper is to obtain information concerning the convergence
properties of the method. Therefore second- and third-order corrections to the energy for
heliumlike ions were calculated in the case when the very simple correlation factors

‘P(l) = exp (r1y/2) (4a)
‘P(z) = 14rp,/2 ) (4b)

were employed for the construction of the operator H®,

In order to get a non-energetical measure of the accuracy of the first- and second-order
wavefunctions matrix elements of some one- and two-electron operators are also presented.
1t should be mentioned that operator H® is non-Hermitian [2], but it may be separated to
a Hermitian zero-order Hamiltonian and a non-Hermitian perturbation operator. Our
results may also be treated as a numerical test of the applicability of the perturbation
method in that case.

Our calculations may also be of some importance from another point of view. It seems
that they allow to obtain further insight into the problem of the influence of the electron-
-electron poles on the convergence of the perturbation series. We have already drawn on
the ground of another perturbation scheme [4] some conclusions concerning that subject
which is the matter of several opinions.

2. Details of the method
In the present perturbation scheme operator H® may be written in the form
H® = H,+ V@ (5)

where H) is the sum of one-electron Hamiltonians H;. The operator ¥ is in the case of
two-electron atomic problems given by the expression

V@ = 0@(ry,) +1@)(ry5) %12— ([7 1— i;z)’ ©6)
12

Taking the familiar set of ry, r,, ry, variables Eq. (6) may be rewritten in the form

2 2,2 —r2_2, 9 )
V@ = 0@)(ry) +F @ ryg) [u ai B i ) T] 2.2 0
g I Ty
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with

and

w(2) == N (2) =
T1a 2+ryy

for the factors (4a) and (4b) respectively. The functions %@ and the eigenvalues of Eq. (2)
may be expanded in the following way

7@ = ot 1P+ 1P + ... (82)
E@ — E, +g(“)+e +s(2“)... (8b)
The zéro-order solutions are of the form |

%o =exp [—Z(r,+r)], and Ey= —Z%=g¢,.
The sums )
i . i
E@ =D, and y@ ="
k=0 k=0
are called the i-th order energy and i-th order eigenfunction respectively. The functions
%@ and {? are solutions of the well known equations
(H —e 1+ (V « —s(“))xo =0 (%a)
(Hy 202+ (79— = Pz, (9b)
of the perturbatmn theory
We will seek the approx1mat10n to x(“) and x(“) as expansions of the form
20 = Z ﬁz(r1+fz) (’1_’2) "ri2 €Xp ["Z(’1+’2)] (10)
< myn,l
i.e. in the familiar Hylleraas basis. The coefficients are obtained as solutions of sets of linear
equations received after the transformation of (9a-9b) to algebraic form in the Hylleraas
basis. All the integrals were calculated by means of analytical expressions. In the case of
Eq. (9b) the x{? function obtained from (9a) was used. It should be mentioned that the
commonly used Hylleraas variation-perturbation procedure is not applicable in our case
because ¥ is not Hermitian in the ordinary sense. To get an estimate of the convergence
of the approximate solution of (9) in the basis just mentioned, expansions of different
length were used in our calculations. The energy corrections and expectation values obtained
indicate that the convergence is good and our results for the 35 function basis set represent
the true value to, at least, five decimal places.

The second- and third-order energy corrections were calculated by means of the well
“known formulas.

e = (1ol V0> (112)
e = (ol V@ —e@ )@, (11b)

& = (ol V@ —e@| 75— ol 239> (11c)
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Bearing in mind Eq. (1) the eigenfunctions of the Schrédinger equation may be written
in the form
Y= 790® = >y (12a)
7 7
where
g/,(a) - xz(w)qs(w).

The functions x® have been modified to satisfy the normalization conditions

HEIPE) =0 (132)
KPP +2CPE Py = 0 (13b)

necessary in order to obtain a normalized total wavefunction (5).
All our calculations were performed on the GIER computer. In order to avoid the loss.
of accuracy the integrals
o0

- 2z
ut —2Zu, (n—l)! e = 27
fl-l—ozu” o = kzl(_l)kﬂm +(=1)ra=n"1lea E, (7)

0

appearing in the expressions containing integrals with the perturbation operator V@, were
calculated with double precision.

3. Numerical results and discussion

Energy corrections up to the third order obtained by means of Eq. (11), as well as first-,
second-, and third-order energies defined above are presented in Table I for the case of
the first three members of the helium isoelectronic series. Our calculations were performed
for factors of the form (4a—4b) when expansions of the form (10) with 35 terms were used.
The results are compared with the ones obtained by means of the so called hydrogenic
scheme in which the whole interelectronic interaction potential was taken as a perturba-
tion [5]. Also the results of the scheme with correlated zero-order functions (CZOF) formula-
ted in [4] are given. The CZOF-scheme is another possible formulation of a pole-less per-
turbation method. "

The results obtained for both correlation factors in the case of all Z-values indicate
that a perturbation procedure may be used with success to approximate the solutions of
the pole-less equation (2) with a non-Hermitian operator H®, When second- and third-order
energies are considered the results obtained for the simple exponential factor oW are
identical with the ones of the hydrogenic formulation. One may therefore come to conclusion
that Z-dependence of the perturbation operator is similar here to the hydrogenic scheme.
For the linear correlation factor ¢(® the convergence is inferior for all members of the
isoelectronic series. The Z-dependence of the perturbation operator is also different, although
the main character is similar i.e. the perturbation decreases when Z increases. This diminution
of the second-order energy correction, which for the previous formulation had a constant
value is especially rapid.

In Table II, zero-, first- and second-order expectation values obtained when the cor-
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relation factor @® has been used are presented and compared with their counterparts of
the hydrogenic scheme. Although zero-order results of our method are for all Z values
better than in the hydrogenic scheme, beginning with the first-order expectation values,
nearly all results of the later scheme are closer to the “‘exact’ ones than in our procedure.
The only exception is for the case of the (1) operator for which the results of the standard
method are rather bad. A common feature of all results in the Table is the decrease of the
relative error when Z increases.

4. Conclusions

All the calculations in the case of ground state of the members of the isoelectronic
series presented here confirm the ability of the perturbation method to approximate with
success the eigenvalues and eigenfunctions of the non-Hermitian equation (2). The con-
vergence of our treatment is comparable to that of the standard hydrogenic scheme. It
should be mentioned that the factors considered here have been chosen only for the reason
of their simplicity. Keeping in mind, that the convergence of our method depends on the
choice of the correlation factor it seems to be tempting to look for other factors which
accelerate the convergence and thus to obtain an effective method for treating many-electron
systems. Our results confirm the conclusions of our previous paper [4] as to what concerns
the influence of the Coulomb poles of the perturbation operator on the rate of convergence
of the perturbation series. Comparison of the present results obtained with a pole-less
perturbation operator 7@ with those of the hydrogenic scheme, for which electron-electron
poles are present in the perturbation, indicate that the presence of poles is not the reason
for the relatively slow convergence of the perturbation method.
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