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THE ELECTRODYNAMICS OF THE FERROMAGNETIC FERMI
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In this paper a simple model of band ferromagnetism is discussed. The model is based
on the assumption that Fermi surfaces for both spins are spherical, but the quasiparticles interact..
The applied method is a modification of Landau’s phenomenological approach. We calculate the

_quasistatic and quasihomogeneous reactions of the system, with the provision that the induced
magnetic field is parallel to the axis of magnetization. Some of our results are valid for an arbitrary
‘band structure and for an arbitrary form of Fermi surfaces.

1. Introduction

We shall analyze here a simple model of band ferromagnetism. It will be assumed that
we have a single band and that the Fermi surfaces are spherical for both spins. The effective
interaction between quasiparticles on the Fermi surface depends only on the angle between
the momenta of the quasiparticles. A model such as this was considered by Dzyaloshinskii
[1,2], Kondratenko, [3], and this author [4, 5]. The method appliedin [1-5] consists in a general-
ization of the theory of normal Fermiliquids developed by Landau [6]. The main formulae
for the ferromagnetic Fermi liquid can be written as follows (see [1-4])

- N, = pyf6m* , 4 @
INY_ 1 pa s

o) = o, [Bat + A~ 2Cmy] 2)
AN =N 1 me a1 (N |
In = 2y xg)? [A3(B+ A —2Caxp)| )
Com et To2ll, ®

. ~ 3/2 . ..2 yg : ’

m A LS .

() aermrat ()" () = 0

* Address: Instytut Matematyki i Fizyki Teoretycznej Politechiliki Wroclawskiej, Wroclaw, Pl. Grun-
waldzki 9, Polska. - : 5
(575)



576 .

Here, p, and m, denote the Fermi momentum and the effective mass of electrons with spin
ol = +1), respectlvely, N, the number of electrons with spin «, and N = N, +Ng,
(¢ = —a). Moreover, u is the chemical potential uzis Bohr’s magneton, H is the external
magnetic field, yy the longitudinal susceptibility for constant NV, and #, = (mgpp)*. All
derivatives with respect to u are taken at constant H, and vice versa.

We have also

AC
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)— Sl = AB-C* @
where £2f are partial wave projections of l th order for the amplitude representing dimension-
less effective interaction of quasiparticles f, “ﬂ(pp )- The partial wave amplitudes are defined as

f “ﬂ(ﬁﬁ') = Z (2l +1) fa‘fsz(pp ) ®)

where p = pj/|p|, with p belng the momentum vector.

The dimensionless effective interaction is connected with the proper vertex function
of two-particle interaction, defined i in [7, 81, in the form given earlier in [4]. It should be
mentioned that all formulae (1-6) are written in a ““system of units” such that #, the Boltz-
mann constant and the volume of the system are equal to unity. For the paramagnetic
systems the Landau parameters f% and f%%--f~% appearing in (2-6) can be determined
from experimental data. We have only four relations (2-5) for five parameters 4, B, C,
my,-m3, Moreover, in the equation (6) for both effective masses there appear three un-
known parameters f%. This shows that for ferromagnetic systems, in contrast with para-
magnetic systems, some of these parameters remain undertemined from thermostatic me-
asurements. If we want to determine all these parameters we must compute the reaction of
our systems on the electromagnetic field. Our approach will be very similar to the pheno-
menological one, developed by Landau [9] and Silin [10] and systematized by Pines and
Noziéres [11] (see also [7], [8]). It should be emphasized that for the ferromagnetic system
the effective interaction of quasiparticles cannot be represented by the sum of spin-direct
and spin-exchange terms. The parameters fﬁ‘,’? fulfil the following inequalities:

Det (8,+f%) >0, 1+f%>0, f11>0. )

Since there are too many amplitudes in (2-6) we shall not consider the problem of
induction of spin waves by the external electromagnetic field. If we neglect this
restriction we obtain some formulae with new, spin-transverse Landau amplitudes.
The condition that the field does not induce spin waves is equivalent to saying that the
external magnetic field is parallel to the axis of magnetization. The spin-waves can
be investigated by means of the method developed in the paper [12]. The results
of our present paper can be probably obtained also from the microscopic approach. The
proof that results obtained in microscopic and phenomenological ways are equivalent was
given for the paramagnetic system in [7]. It may be pointed out that this proof can be applied
for the ferromagnetic systems at least as regards induced charges and currents. In this case
the proof does not require any modification. The modification is necessary if we want to
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identify the induced spin currents. As a conclusion we obtain that the results for field-induced
charges and currents are in accordance with the microscopic approach. For spin currents
such accordance is also very probable.

2. The kinetic equation

The main difference between the kinetic equations for paramagnetic and ferromagnetic
systems consists in the explicit spin dependence in the latter case. Moreover, the strong magne-
tic field connected with the magnetization of the system should be taken into account.
Hence, the kinetic equation can be obtained in a manner very similar to that used in [7-11]
for paramagnetic systems. The effective Hamiltonian for the quasiparticle with momentum
E at position & can be written as

h(k, ®) = E (k— % A4, :E) +ep—up(o rot A) (10)
where [4, cg] is the electromagnetic four-potential and

Eop(Fe, %) = OasEiat [ PH Fici o oI, ) 11)

(@n)® )3

Here, Ej, denotes the excitation energy of the quasiparticle with the momentum & and
spin &, whereas F ;‘;ﬁ,’c’,"’ gives the effective interaction between quasiparticles, and n;‘, (, x)
is the variation of the equilibrium occupation numbers for quasiparticles. The corresponding
Bolizmann equation has the form

onle, @) 2\ [ ( on on ok
o Z[{ax } ‘{'9797}]““

on(k, w))
It collisions

where {,}, [,] denote the respective anticommutators and commutators, and n,, (K, ) is
the occupation number, 7, (K, %) = 0,,0(u —Ep,) +ngk, @), with O representing He-
aviside’s step function. If rot A 11 Oz, then A(k, ) is spin-diagonal, provided that »’ has
the same property. This assumption can be proved because the interaction F*"® is spin-
-conserving and, in particular, F%#" ~ 0,- Substituting spin- -diagonal n into (12) we find
that {4, B} = 24B and [h, n] = O.‘Choosmg n.(k, ) = 0(Eq, —u) &,(k, ) and neglecting
the terms smaller than linear with respect to induced fields we obtain from (12)

+i[h, n]+ ( =0 (12)

9 - o - ¥ -
ag;“ +(ViaVx)gat % [(Vie XBo)Vilge = eEVig+upa(Vi,V) B+1(g2) (13)
Here, V,,,= (Y, Ep,) g, where “F.S.” is a subscript denoting that the given quantity is
taken on the Fermi surface, By = [0, 0, H+4nM] and B is the z-th component of the
vector of magnetic induction JB. It should be noted that B = [0, 0, B] and M = pg(N; —Nj).



578

Also 8(EQ, —p) gk, ®) = n_(J, x) denotes the variation of the occupation number from
the local equilibrium values and is determined by

il 1
gk, ) = galle, X)+ o ; f A3k F i 0(EQ s — p) g, ), (14)

whereas I(g,) is the collision integral. We have also Fj, =F, and the relation between
£ (feke') and F, is given by
[& = apmgF920® (15)

It can be verified using (13) that the current of particles with spin « is expressed by

Ie(a) = @)— f BH V(B 1)Ealk, ). (16)

It can be shown that this quantity fulfils the continuity equation, provided that the collision
integral is spin-conserving. All previous considerations of this chapter are valid for an ar-
bitrary band structure and Fermi surface. Without loss of generality we can assume that E,
B and g,, g, are monochromatic, i. e. E=E,, exp i(q® —wt), etc. Passing to the assumed
simple model when V,_= V_f we can rewrite (13) for monochromatic quantities in the
form

— wmege+ (kq)ga+iwam % +ieEk—aapB(kq) = —im;l(gs) (17)
where @, = eByJcm and the subscripts “‘gw” near E, B, g, g, are omitted for simplicity.
The variable ¢ denotes the azimuthal angle in the momentum space. The magnetic induction
B is connected with E by the Maxwell equation. We have B = ¢(q X E) with B//Oz. The
functions g, and g, can be expanded into spherical harmonics in momentum space. Assum-
ing that r(k)/p s =2, 1% y.(k), where r denotes g or g, we find using (8), (14) and (15)

gt = (L+f%F) g+ Hleoz%,) &5 (18)
Hence,
8% = [(1+F 5% g7 — [E ozl ) gl it (19)
where
W= 1+ DA+ —(fa?
If we define

ON, 1 [ 8alk)
{m} =m)—sf e (Fex— ) {ga(m} (20)

then, by virtue of (8), (14) and (15), we find
ON, = (L+f2) ON,+ f8(x,]oz) ONg @1

or

ON, = [(L+15) ON,— [ (w,x,) SN wi™* 22)
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In the formulae written above 8N, denotes the variation of the number of particles with
spin &. Taking into account the discussion of the collision integral performed by Silin [10]
(also ¢f. [11]) it can be written as

ml(g,) = _mlz;)zmlganzm(ﬁ)lfaz], Ta > 0 (23)

Our proof of the kinetic equation is valid only for the system with short-range forces. It
can be easily verified that the kinetic equation is valid also for a system where forces have the
long-range Coulomb component. In this case F, denotes the screened quasiparticle inter-

action and the electric field E contains the contrlbutlon from.the electric polarization of the
system (cf. [10] and [11]).

3. The quasistatic reaction

The equation (17) cannot be effectively solved unless we restrict ourselves to the conside-
ration of suitably simplified quasiparticle interaction. In the simplified interaction all
Legendre amplitudes f2f vanish for [ > [y, where [, is some small integer. Such systems
will not be considered here. On the other hand, the equation (17) can be solved in two
particular cases: ’ '

‘i) when qV'> || (the quasistatic field),

ii) when |w|> ¢V (the quasihomogeneous field).

Let us consider the case i) and the longitudinal electric field. Then B = 0 and the solution
of the equation (17) for @ = 0 can be chosen as follows: gl = —ieg/q with E = &q.
It can be easily seen that this solution is determined uniquely by the condition g”(p +27)
= g(¢). Assuming that g ~ g®+g®, where g is of order (w/qv), we obtain from (17)
. 9g!
—omag® +(kq)g" +imo, —QT;- =0 (24)
where, according to (19) and the solution for g(¥,
©) ieg .
gcz = ~ GAB=C¥ [1+fe %% — (7] %q) (25)
(cf. (7)) The collision integral was neglected in (24). This is possible in the “‘collisionless
region’ when qv> Max( Y or o] > Max (v7"). It is clear that for the quasistatic field

only the first condltmn is important. Taklng into account (23) we find that (kq) in (24)
can be considered as (¢ ¢) —i0. This is connected with the causality condition. The sym-
metry of our problem allows us to put g, = 0 without loss of generality. Then (kq) in (24)
can be replaced by p,(g, sin @ cos ¢ +g, cos ¥). It can be verified that the unique solution
of (24) which is g@-periodic with the period 27 can be expressed by
(]
W= — Jomaga_ [exp (—27iq.p, cos Hmw)—1]-1 X
c
o421

X‘f dy’ exp{;iz
c

?

[gx sin B(sin p—sin ¢') +gs cos H(p— <P')]} . (26)
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Substituting this quantity into (16) we obtain the induced current of electrons with spin a,
Analogously, the induced charges can be obtained by means of (20) and (22). One should
remember that in (26) g, cos ¥ has the meaning of g, cos & —i#, n = +0. The solution (26)
resembles to some extent that obtained by Rodriguez, [13], [14], for the problem of the cyclo-
tron resonance in metals. Our solution is more complicated, e. g., under the integral there
appears cos ¥ instead of 1 (see [14]). The solution (26) has a singularity for ¢, tending to
zero. This singularity disappears if the relaxation times 7, are finite (in our case all 7,
tend to infinity) and has a simple physical meaning. The inegrals in (16) and (20), if we sub-
stitute (26) in them, can be computed only in a numerical way, provided that g, # 0. If
g, = 0, then

(0) (0)

—()_ __ OMgg _ OMags |. 1
&e qpa(cos 9—1in) Paq [mé(COS N+P (COS 19)] (27)

and in 8NN, only the first term in the square bracket is effective. Substituting g{»+g{" into
(20) we find-

— ife  x2 w o ——
0N, = — h 2—;‘2 {1+ D 0 1+ ;3—Cx;/x¢]}. (28)
Applying Eq. (22) and taking into account that 4mid(Ne)/g& = e(qw) —1, where &(qw)
denotes the dielectric constant, we find
4gre? [ON ie2w —
On the other hand,

{ie€\ JI(N;—DN; !
o) = (47) PO+ o (ot ang- oy,
(30)

Both results are valid only for an electric field directed along the magnetization axis, but for
the static field (w = 0) such restrictions are not important. Then the results can be expressed
in the form 8(N, +aN7) = (—ie&/q) [d(INy+aN7)[du] (@ = 1) and have a simple thermo-
dynamic interpretation. Namely, for the weak static field, depending weakly on space va-
riables (i. e. for ¢ < p,), there appears a new, space-inhomogeneous equilibrium such that
u+ep = const. In this case the reaction of the system can be given by the formula above
because ¢ for longitudinal fields corresponds to i&/g. The formula (29) for @ = 0 can be
also interpreted in terms of compressibility [11]. Hence, the screening length can be also
computed. This quantity, denoted by 4, is equal to s/w,, where w, is the classical plasma
frequency and s2 = (N/m) (Qu/dN). The quantity s can be interpreted as the ‘“‘electron
velocity of sound”. Due to electron-phonon interaction s cannot be measured directly in
metals. It should be noted that (29) with (2) to (5) make it possible in principle, to obtain
the parameters 4, B, C, and both effective masses from experimental data.

Applying the methods developed in [11] (cf. [15]) we can compute the effective electron-
-ion interaction, provided it can be treated as static. This quantity can be also determined as
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a'scattering potential for quasiparticles with the impurity atom [15]. We find that the effective
electron-ion interaction is spin-dependent for ferromagnetics. The considered  quantity is
given by

V= 2022138 — Coryfoe,] [ B+ At —2Coaeg] ™ (1)

where — Ze is the ionic charge. It should be noted that interiq"n‘i‘c eﬁective interaction is
given by '
‘ » AnZZ' e
Vg = o > ZZ(OplON). 32
= elq ) RN | (2)
The formula (32) can be obtained directly from the microscopic approach. Applying here
the methods developed by Heine, Noziéres and Wilkins [15] we obtain

,.//-eff _ [Zk q/2Zk+q/2]%Tka(Q) V(‘I)
g 1-u$(q) |

where Z7 denotes the discontinuity of the occupation numbers on the Fermi surface for
particles with momentum k and spin &, and u, = 4me?/q?, V(q) — —4m Ze?|q? for small g.
Also T,m(q) denotes the proper vertex functlon such that for vanishing interelectron inter-
action 70 = 1, and §°(¢) denotes the proper correlation function of these vertices. These
quantities are determined in detail in the papers [15] and [4]. It should be pointed out

that the formula is also valid for unspherical Fermi surfaces. Tending with ¢ to zero we find
by virtue of the Ward identities (see [4], [15])

) ou \
,V‘eﬂ.‘ Pha 14
Qka = — Zy VUko alu ( ON (34)
where p;m [kl F.S.a depends on the space dlrectlon Usmg (l) to (3) here we find in the

isotropic case after some manlpulatlons the equatlon (31) (the suitable formula, ready for
substitution into (34), is given in [4]). Even in the anisotropic case we have

(—2:%5 f DRSS (B pt) = ~Z(99N“) (ﬁ) (35)

The summation of these formula over o« glves —Z, accordmg to the result for the para-
magnetic systen. B

It can be verified that thé solution of Eqgs. (17) for @ = 0 and the transverse electric
field cannot be g-periodic for arbitrary g and &. The explicit spin-dependence in unimportant
here; we have the same situation fot the paramagnetic system in the strong static magnetic
field.

4. The quasihomogeneous reaction; concluding remarks
Let us consider the system (17) for gv < 7;". Then all terms in (17) containing (kq) are
negligibly small. Taking into account (23) we find

— OMagy+imaw, %—(p- +iBk = im Z [glm Ylm(k)] ( 36)
50
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The solutions of the above equations can be chosen in the form g, = AakA, whereas g, = ;‘ijc
For solutions in this form Ei‘:n vanishes unless I = 1. Hence, using (18) we get

= (1+/2%) A, +fH(x;/x,) A7 (37)

The geometry of our system allows us to choose E in the form E = [E, 0, E}] without
any loss of generality. Substituting g and & in the chosen form into (36) we find

—wmAfi+ieE) p, = im Zﬁ/"’u (38a)
—wm A%+ imo A% = im A%, —iep E | (38Db)
—om, A% —imw A% = im A%z, (38¢c)

where 4, =4, 1_411 = A,. Note that by virtue of (16) we have

1o — tim 1%, — e 43 | (39)
q-0 Pa :
From (37) and (38a), after rather long but relatively simple calculations, we obtain using (39)
a_ 162N,
Iz = ——mww(w) (1+iRjwT ) E) (40)

where
R = 1—f(t;+1), t, = (NGINJY, f = fdim(my m3) ™3,
w(w) = 1+ Z [{(1 —ft,)wT,] —Rlw*ty 71 (41)

and the 7, in our present notation coincides with(z,;. Note that the parameter f'is nonnega-
tive (see (9)) and that in the proof of the formula (40) we have applied (1) and (6). If 7,
= 71 = 7 then w(w) = (1 +i/w7)(1+iR/w7) and the formula (40) can be highly sunphﬁed
We .have then

. 1e2N v
S Z I ~ m(w+ilt) Ey “2)

and obtain a condictivity such as for paramagnetic metal. If 7; # 77 then these quantities as
well as f can be in principle determined by means of (40) from the experimental data. Since
the thermostatic quantities (2) to (5) and the quasistatic measurements allow to determine
A, B, C and both effective masses we can thus obtain together all amplitudes £, I =0, 1.

Let us solve the system of equations described by (37) and (38b, ¢). With the help of
(1), (6) and (39) we can write after performing some long calculations

Ii= ;f?zjf\i—) [ +ifore—Z(w) (1+iom)] EL (43)

Pk \
¥ mw?Ulw)w(e)

— (1 +ilor,) [(1-ft) (o) +iRZ(w) 0T, —ftl} E L (44)

@ {(A+1jwrs) [1—ft(1—Z(w)) +iR[wTg] —-
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where
Z(w) = R2w?|w*w(w)

Ulw) = w(w) —Z(w) [ ] (1+ijwr,)2—-1+R2+(2f]R) 2 (it Jot,) —(w]w)?]  (45)

and the remaining symbols are defined in (41). Taking into account the symmetry of our
problem we can write the conductivity tensor in the form

O'zz == .I:zlE“, O-xx == ny == Ix/E )
= —o" =LJE, [, =2 I (46)
@

where we have used Onsager’s reciprocal relations. The remaining components of the
conductivity tensor vanish. It should be emphasized that the assumption 7; = 77 does not
simplify (43) and (44) markedly. On the other hand, the results (40), (43) and (44) are valid
for the longitudinal as well as transversal fields. If w > 7, (i. e. in the collisionless region),
then

o = zw2/4mo, 0™ = 0% = (iw}dno) [1 —(0 /o),
= —0* = (0wy/4nw?) [1—(o /o)™ (47)

were ,, denotes the classical plasma frequency. In this limit the conductivity tensor does
not depend on Landau parameters.

Our present considerations resemble the earlier ones of Lifshitz, Azbel and Kaganov [16].
In contrast with this paper we consider only spherical Fermi surfaces; hence, e. g., open
orbits are beyond the scope of our investigation. On the other hand, we consider interacting
quasiparticles, whereas in [16] they are free. All our investigations in this paper, with the
exception of the problem of effective potentials, are restricted to such a simple case. It can
be shown that the static reaction on the longitudinal field can be expressed in the form (29)
and (30) for @ = 0, independently of the details of the band structure. For the proof of the
above statement let us remark that the solution of the equation (13) for the monochromatic £
with @ = 0 can be expressed by g = —ie&/q, (E = &¢). The relation reciprocal to (14)
can be written according to [11] as follows: B

i) = Bl ~ v f a5/ D 5By ) 2o ) 48)
where D is defined by
. 1 e '
Dkk' 3 ki - W Z f a@*K'F ﬂyé(E,‘}uﬁ—y)D,yﬁk, (49)
v

and plays the role of the forward scattering amplitude of quasiparticles [11]. The function D
is connected with the function f, appearing in the microscopic approach by the formula in
the form (15). Substituting into (48) the static solution for g and using (20) we find after
some manipulations ' ‘
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N ie€\ 1 1
5{N1—Ni} e T @ )3 JESWECRE
X 11— == f A3k Dy 0(EYs— ) | . (50)
[ @n)? ; ST ]

Taking into account the identities for correlation functions introduced in [7] and discussed
in [4] we find that the formula (50) can be expressed.as O(NV;+alNV;) = (—ie&/q) (N, +
+0N7)/&p. With this formula we have our proof. It should be noted that the identities for
correlation functions mentioned above are proved without any use of the translational
invariance of the system. Oh the other hand, the indices of Brillouin zones can be included
qulte formally into (48) to (50) and, hence, our proof is general

In our considerations the effects of electron- phonon interaction are not 1ncluded These
effect should be investigated because the phonon renormahzatlons are very 1mportant for
ferromagnets. The inclusion of the electron- phonon interaction into the considered scheme
is'a necessary step in achieving further progress. It should be pointed out that our
results are valid also for systems with eleetron-phonon interaction provided that the
frequency w is much greater than the Debye frequency (i. e. as usual ~ 10 sec™?).
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