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EFFECT OF ORDINARY SCATTERING ON THE RESISTIVITY OF
DILUTE MAGNETIC ALLOYS
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The ordinary and exchange scattering of conduction electrons by magnetic impurities is
investigated by using the Nagaoka-Hamman scheme. The solution for the f-matrix, correct in
whole temperature range, is found. The resistivity of dilute alloys is calculated.

1. Introduction

It is well known that the scattering amplitude of conduction electrons in the presence
of a magnetic impurity exhibits a logarithmic divergence at zero temperature. This anomaly
has been the object of a considerable number of studies. Most of them are concerned with
the exchange scattering only. Recently Kondo [1] has considered the effect of ordinary
scattering on the resistivity, but his result is valid at temperatures greater than critical only,
and says nothing about the important region around and below Tg.

Our approach is similar to that which had been used by Hamman [2]. He showed that the
equations of motion for the thermodynamic Green’s functions can be reduced to a single
integral equation for the one-electron ¢-matrix. Such reduction is also possible when ordinary
scattering is taken into account. We do it in Section 2. In Section 3., following Zittartz
and Miiller—Hartman [3] we have solved exactly an integral equation obtained in this
manner. In Section 4 an approximation is made and resistivity is calculated.

2. Green’s functions

We start with the Hamiltonian of free electrons interacting with a single magnetic
impurity at the origin of the coordinates

H= Z euCiuCit 7 Z Ci:Cs — Z s+ SChChs @.1)

ki Kk’

(summation over repeated spin indices is assumed).
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The necessary Green’s functions are
Guaelr—7) = — 5 <TCwl2) G()> 22
and
Igp(v—7) = — —;— {TCre(7)0sy * SCHT)D.. , 2.3)

The equations of motion for their Fourier components can be written, after Nagaoka’s
decoupling [4], as

(r=60)Cuae(?) = duae + 2 Y Cul®— 2 3 T @49
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(2.5)
where
zZ =i, = z2n+1 7
ﬂ 2
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' 1
Egs (2.4) and (2.5) have a formal solution which may be written as’
Opere 1 t(2) ‘
Gra(2) = z—a;' N (z__a—k)(z:;k—) ’ (27)
where ‘
oz) = v I2I'(z) o o
I=VFE ) ( 1 VF(2) +2IG(z) + I? f’" f%g)) (28)
Fl@) = z—lek’ (2.92)
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To obtain an integral equation for #(z) we must express G(z) and I(z) as functionals of .
Using Eqs (2.6a), (2.9a) and (2.9b) we have

o) = R +7. {T0TE. iy, (2.10)
where .
R() = Fo {-F(—“z"_)—;)@} - % Fo)- 2.11)
In a similar way from E(is (2.6b) and (2.9c) we get o
ro=-29 {————F (@) X&) (1 yria) t(zwn)}
42 - V R+ [V +S(S+1)] F(z) 2.12)

Now if we substitute (2.11) and (2.12) in to Eq. (2.8) then we find after simple algebraic
computations,

VALFE)+2IF o {M t(ioon )}

10n

t(z) (2.13)

1—2VF(2) +2IR(z) — L,F%(z) + 21 F {M t(iw,.)}’

where
L =I12SS+1)-IV—- Ve,

This integral equation becomes identical to Hamman’s when V' = 0.

3. Solution of integral equation

"To solve Eq. (2.13) we follow a method of Zittartz and Miiller-Hartman. First of all
we introduce a density of states function g(2), analytical in a neighbourhood of the real axis
and mormalized to unity at &= 0: Then Eq. (2.92) becomes

(o]
Fe) = % f @) g4, S RN

zZ—@
.00

Now we can define the retarded and advanced t‘matrlces and ¢, as given by (2.13) with
F(2) replaced by F,(z)-and F. (z) respectlvely These- matnces obey two integral equations
that can be brought down to the form

1F 20ig(a)ra = 5 (32)
where LT
X(2) = 1 =VIF(2) =F ()] + 2IR(2) —L,F () Fo(2) +2Ix(2) - 3.3
and

D, (2) = 1 -2V F, ,(2) +2IR(z) L, F, ,’a(z) +2Ig, ,(2). . (3.4)



572

Functions x(z) and ¢, ,(2) include summation over ®,, which can be expressed as a contour
integral bent round to the real axis yielding

4 foo
1 th =5~
1(2) = e f dw {[Fr(w) — Fy(2)] [Fy(w)—

z2—o
—Fo(2)tr(@) — [Fale) — Fo(2)] [Fa(w) — Fy(2)]ta()} (3:5)
and
th'—g—al
Prals) = 41— 7= FH0) —Fra(@)]t(0) — [Fo(0) — Fra(2)Pa(@)}.  (3.6)

The details of further calculation are very similar to those of Ref. [3]. The purpose of it is
to prove, using Eqs (3.3) to (3.6), the following equation, valid in the neighbourhood of
the real axis,

O (D7 (2) = K(2) (3.7)
where

K() = X+(z) X-(2) ~I[S(S+1) =V [F,(z) ~F, (&)} (3.8)

Here superscripts + or — denote functions analytic in the region including the upper or
lower half plane plus neighbourhood of the real axis.
- The solution of Eq. (3.7) is

B (2) = ™ 2B, B (z) = 27,

where Q*(z) and Q~(z) are upper and lower half plane values of one analytic function

(o]

Q@) = 2—; f zd_ww In K{w). (3.9)

— 00

Inserting above solutions in to Eq. (3.2) one obtains

1+[F(2) ~F,(9]1,(z) = X+(z) K—H(z)e™ 7, (3.10a)
1—[F(&) —F,(]t,(e) = X~(2) K~¥(z)e™ ), (3.10D)

where
1) = 2% f i“; In K(). 3.11)

Equations (3.10) are again, in principle, integral (but nonsingular) equations, as unknown
functions #, and ¢, enter the right hand side via y(z). We can omit this difficulty if we restrict
ourselves to the Lorentzian density of states function.
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4. Resistivity

According to the above mentioned statement we assume that

D2
0&) = - ps (4.1)
Then
Fo) = "0 D
F,-’a(Z) = N z+iD s (4"2)
and from Eq. (2.11) we get
() =20 1,80 (L, B
where y(z) is the digamma function.
By use .of the above results Eq. (3.5) is reduced to
7%, .
1) = — 5% ola) (4-2B), (44)
where ’
0o , Po ©+2iD _
A _4:an; fdwth 2 (w+iD)? [tr(w)—ta( o)]
and
[oe]
_ O o> t(w) +1o(—)
B =g [ doth —= — D)
)
Voo \® . .
are constants of order I'? = N and I'respectively. Now we can evaluate the functions

X*(z), they are
X#£(2) = 1+0(2) {? [w (% + —gf—:—) -y (% + —f—;;)] -

—nz[y25(5+1)—fy—n+y(A—zB)]—2nr%}, @.5)

In the case of antiferromagnetic exchange (y = Igo/N < 0) the Kondo temperature Ty
is determined from the relation

X+0) = 0.

In our case it equals

_ 2aD 1+(@=D)2 | -, [F y
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where we have used the well known relations 9(1/2) = —In 4& and p(¥) ~ Inx for x> 1.
The presence of the three last terms in the exponent makes our T different from the result
of Ref. [1].

Our next task is to obtain the explicit férm of the function f(z). We were able to find it in
an approximated way only. When we use Eqs (3.3) and (3.8) dropping terms of order y
we get.

o 1=VF(2)
10 =i gy

Introducing this into (3.10a) we have finally

apsg 1-VF(w)
t(w) = Znigog(w){ "~ 1—VF,(w)
y X+(o)
[X+(w)X—(w) + %y %2(w) (~S(s+ )— _g)]y “.7)

Taking into account that the relaxation time of the conduction electrons is given by
[27(w)]* = ¢ Im t(w),

we find for the resistivity.

3 1n1‘2T2T2 r\Ta .
This becomes identical to Hamman’s result when I" = 0. A comparison with Kondo’s high
temperature approximation can be made when we assume T'> Ty and expand (4.9) into

a powers of 1/ln T Then to the second order we get formula
K

S Y P L
R-W[sm 17+—<S(S+1) 7)0032nln To
(tgn——nl")

which differs somewhat from that of Ref. [1].

. The solution (3.10) can be used as a starting point for the calculation of other measur-
able quantities, e. g., specific heat or thermoelectric power. This last quantity seems to be
very interesting as the giant thermoelectric power of dilute magnetic alloys is, in Kondo s
opinion, a result of a cooperation of ordinary and exchange scattenng
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