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ON THE CHANGE IN THE FORCE CONSTANTS OF THE IMPURITY
ATOMS
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The change in the force constants of the light impurity atoms located at one-dimensional
lattice sites is investigated using the pseudoharmonic approximation. A finite change in force
constants of impurity atoms and a decrease in frequency of the local modes is obtained for high.
and low temperature limits. It is assumed that the bare potential of the impurity atoms is the same:
as that of the host atoms. It is shown that at a sufficiently high temperature the lattice becomes.
unstable at the impurity lattice site when the impurity mass m < 0.28 M.

Introduction

The introduction of a light impurity atom into a crystal lattice may give rise to additional
frequencies of local modes which are greater than the maximum frequency of lattice vibra-
tion (cf. e. g., [1]). There are indications from many experimental papers on the spectra of
inelastically scattered neutrons [2-5] that the emergy of local modes in a crystal differs
from the theoretical values valculated for the case of isotopic impurity. This effect is con-
nected with the change in the force constants of the impurity atom.

The present paper discusses the behaviour of a light impurity atom located in a lattice
site and the change in its force constants due to strong anharmonicity. It is well known that
the amplitude of the impurity atom is greater than the amplitude of host atoms and therefore
anharmonic effects appear much earlier in the case of the former.

A method permitting higher-order anharmonic effects to be taken into account, has
been developed by Plakida and Siklés [6-8]. The present paper is limited to the case of
pseudoharmonic approximation in which the force constants are temperature-dependent-
and are calculated by means of the self-consistent potential method. The considerations of
vibration damping and additional renormalization of phonon energy coming from the decay
of phonons would lead to some changes in the values of the parameters obtained here: these
factors, will be, however, not considered.

The discussion will be limited to a one-dimensional chain containing a single impurity
atom of a mass lower than the host atoms and having the same bare potential as the latter.

* Address: Instytut Fizyki Jadrowej w Krakowie,. Radzikowskiego 152, Polska.
19



20

Interactions of nearest neighbours only are taken iato account. The consideration of an-
harmonicity leads to renormalization of energy of lccal modes, to a change in interatomic
distances in the neighbourhood of the impurity atoni and to the instability of the impurity
atom in a certain temperature range.

1. Pseudoharmonic approximation

The pseudoharmonic approximation takes into account the renormalization of phonon
energy in the self-consistent field of all other phonons. This approximation corresponds to
the first-order perturbation theory for the mass operator in which, however, the contribution
of anaharmonic terms of all orders are taken into account. In contrast to the harmonic
approximation, the force constants in this approximation are second-order derivatives of
self-consistent potential which can be obtained by averaging the bare potential with the
function e~*/2 over the region of mean' displacements of atoms from their equilibrium posi-
tions.

The frequency spectrum of atomic vibrations in a one-dimensional lattice containing
impurity atoms is given by poles of the Green’s function G,,(w) which in the pseudo-
harmonic approximation can be found by solving the followmg system of equations [6-8].

Z {mezanm _an}Gmn’(w) = 6nn’ (]-‘]')
9¢(R —RY) . .
F, | PRAR o where n 2 -
- Z E,. where n =m
(R, —R}) = (®(Ry—Rnm)) = V—_ [ dve ® ORI-RA+x){n—w)®  (L3)
(Uuntinmy = L f £ {—2Im Guy(w+in)} (L5)
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where M, is the mass of the m-th atom, F,,, is the force constant, and ( (u, —u,,)?) is the
mean square relative displacement.

The system of equations (1.1) through (1.5) is self-consistent, the calculation of the
potential (1.3) requires the knowledge of the mean square displacement (1.4) and (1.5)
which is dependent on the lattice spectrum (1.1) which in turn depends on the force const-
ants (1.2).

To facilitate the calculations the author has accepted the Morse potential [9] as bare
interaction potential.

D(R) = D, {(e~2®®R=r) _1)2 13} (1.6)
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where D, is the depth of the potential well, ry the mean distance between atoms at 0°K,

1
and o the width of the well.
0
The self-consistent Morse potential calculated by means of Eq. (1.3) has the following
form

Pum(R) = 0 {e—2ao(R —70) e2a¢,(un —t)> _ Qe—aR—1) ¢ <(u" " >} (L.7)

2. One-dimensional lattice containing no impurity atoms

We shall consider a linear chain with interaction of nearest neighbours. By making
use of Eqs. (1.1) through (1.7) and the fact that the Green’s function depends only on the
difference of the indices (m-n), we obtain the following system of equations (¢f. [7, 8]):

02(0) = w?(0) sin? kzi 2.1)
03(0) = %9) 2.2)
FO) = Oa,ge_"""2 (2.3)

wk( @)

- B o .
10 = ((tn—tn—1) 2NF( N6} Z ©(6) cth (2.4)
where [, is the mean distance between nearest nelghbours which is determmed from the
condition that the first derivative of the self-consistent potential (1. 3) should vanish. We then.
obtain for zero external pressure
3
e agup (2.5),
The system of equations (2.1) through (2.4) permits the mean square displacement
ug to be found as a function of temperature and thus enables us to calcualate the temper-
ature dependence of the force constant (2.3), the spectrum (2.1) and the interatomic distance .
The Fourier transform of the Green’s function of this system has a simple form (cf. [7,8])

— i ikly(m—n) 1 — _1 — —____.. 1
gmn(w) = NM ; e 0)2——(,0’%(—@) = NM ; Ccos klo(m n) ) _wk(@). (2.6)

by =ry+

3. One-dimensional lattice containing an impurity atom

Suppose that on atom located at a site n = 0 is replaced by another atom of a smaller
mass. We shall assume that the interaction of the impurity atom with other atoms has the
form of Morse potential (1.7). The mean distance between the impurity and the nearest
neighbour is (like in the case of an ideal lattice)

l=ry+ —2— ayu? 3.1)
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where u2 = ((uy—u;)?) is the mean square displacement of the impurity atom with respect
to its neighbour.

The force constant between the impurity atom and its neighnour is the second deriva-
tive of the self-consistent potential (1.7) calculated at the position I Eq. (3.1)

f(@) = Dyage=* (3.2)

The difference in the values of the mean vibration amplitude of the impurity atom and
the mean vibration amplitude of the host atoms results from the mass difference and different
distances between the atoms (I # [;). This leads to another value of the force constant
between the impurity atom and its nearest neighbour (see Eq. 3.2).

In principle it is possible to find f(@) by solving the system of equations (1.1) throug
(1.4), it is, however, much simpler to find its relative change

_f(6)—F(0)

We therefore divide Eq. (3.2) by Eq. (2.3) and obtain
14 9(6) = e~ien—i} (3.4)

Eq. (3.4) is a transcendental equation with respect to y(0). To solve this equation it
is necessary to find the explicit form of the dependence of the mean square relative displace-

ment of the impurity atom u2 on ().
The temperature-dependent deformation of the lattice is given by

3
I=ly=— Dag In (1+(0)) (3.5)
where (@) is the solution of Eq. (3.4).

4. Mean square displacement of impurity atom vibration

Our problem is to find the Green’s function for a lattice containing an impurity atom
and to express it in terms of the Green’s functions of the host crystal (2.6).

The equation for the Green’s function in the case of a lattice containing impurity atoms
in pseudoharmonic approximation can be written according to Eq. (1.1) in matrix form

L-G=1 4.1
For crystals with no impurities we have
g=1 4.2)
where
LY, = Mw?§,,—F, (4.3)

n nm

and g,,, stands for the Green’s function (2.6).
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The elements of the L matrix can be written in the form
an = L?zm _anm (44‘)

where
anm = eszanm— Fn_m _fnm)

m
de=1— —is th defect.
ana & MIS € 1mass erec

Assuming that the introduced impurity changes the force constants of the nearest
neighbours only, we can write the perturbation matrix in the form
Ay+2yF, —yF, —yF, Q,
—yF, yF, 0, O, ..
yF, 0, ... (4.5)
0, 0, 0, O ‘

&l
b‘
I
+
=
=

9 wee

where 1, = Mw?. Taking into account Egs. (4.1), (4.2) and (4.4) we find the Green’s
function for the crystal containing the impurity:

G=(1-g-80)* g (4.6)

In the following we shall be interested only in the Green’s functions corresponding
to the sites [00], [01] and [11]. It is therefore possible to discuss the solution of Eq. (4.6) only
for a 3-rd order matrix which describes the impurity atom and its neighbours. We introduce
a unitary matrix.

10 0
0= — -
T=|" V2 |2 (4.7)
1 1
"2

and make the following transformation
T7- G- T =17 (1—g- 80y T+ T7-g- ] 9

The matrix M(w?) = TT-(1—g- 6L) - T will have a quasidiagonal form. The condition
of vanishing determinant of this matrix defines the poles of the Green function (4.6), i.e.
the characteristic frequencies of the vibration spectrum of our lattice. Taking into account
the properties of the corresponding determinant we obtain:

M (@?)

' 0
2) — :
det M(w?) = det 0 M,(@?)

i = det M(w?) - det M,(w?) =0 (4.9)
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where
det M(w?) = 14y —Mw?[(e+7)go+7(e —1) g0l
det M,(@?) = 1—yF[g —giil (4.10)

In the derivation of (4.10) we have made use of the properties of the Green’s function
for a one-dimensional lattice (see Ref. [11]):

1
800 —810 = oF (Mw?gge—1)
. M 2
2810—81n—8&i1i = F w801

1.
2810801 —8oo(8n1 T+ &i1) = F 8o ' (4.11)

Owing to the transformation (4.8) we succeeded in separating two types of vibrations:
vibrations of the s type for which the essential point is the change in the mass; this is a loca-
lized mode in which the main role is played by the impurity atom. The other type, p is
due to the change in the force ‘constants between the impurity and the neighbouring atom.
The impurity does not participate in vibrations of the p-type.

We can readily find the inverse matrix M~*(w?) and then the Green’s function matrix
for the lattice containing the impurity 77+ G+ 7. In order to calculate the mean square
relative displacement of the impurity atom it is necessary to express Im (Ggo+ Gy —2Gy,)
in terms of the 77+ G+ T matrix elements with the help of the identity

Im (Gop+ 613 —2Gy) = Im [Goo+ (Gu"‘ G1) +5 (Gn Gy) —2601] (4.12)

The imaginary parts of the matrix elements of 77+ G - T" are found by decomposing
both the numerator and the denominator of each matrix element, (i.e., the Green functions
(2.6)) into the real and imaginary part. The expression of the type (4.1) obtained in this
way is substituted into the spectral theorem (1.4), (1.5).

Hence we obtain for the mean square relative displacement

— (@)
e 2NF Z Sk Cth{ [Vz(w%)+V2(wi) *

P 1 Wloc ) R(wlzoc)
i W%(w%)+W%(w%):|} * Zom M 120 ‘dVl .
dw

(4.13)

5 \@ = Ofoc)

where
S(w?) = % [1—e— cos kly(1+2y —é)]

14y for 0 <w?<owr
V) =4 . |
l(w ) {(]_—I-'}/) —(8+’)/) ‘I/w—zci‘-a‘)% for w? > wr,
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for 0<w?<om (4.14)

pe
Va(w?) = (sign ) (e+7) 'l/w —

1 ocC
R(wioe) = Ty (wloc+ wL) ( e —1) +

leoc(wloc _wL)

Do . > o 14.15)
————— for o .15
2F leoc(wloc "‘wL) toe r
P, = L (L+ cos kly)

2

Wi(w?) =1+y (1— —i?i) for 0<w?<awr
L

2 (signw
Wy(w?) = —(CfT)

yo o —0? for 0<o?<op (4.16)

It was assumed in the derivation of Eqs (4.14) through (4.16) that the mass of the
impurity atom is smaller than that of the host atoms (m < M) and that the terms of the

order of y — M are negligible. This is a good approximation for small masses of the impurity

atoms and gives also a proper result for m — M since in this case y — 0.

The first term of Eq. (4.13) describes a system of vibrations of the s-type, the second
the p-type, while the last one takes into account local s-type modes which are induced at
frequencies greater than the maximum frequency w;. The frequency of local modes is
defined by the equation Vj(w?) =0 and in our approximation is equal

oL

[ty \? (4.17)
(1+y)

Wloc =

for |y| <e.

If the relative change in the force constants exceeds the mass defect then local mode
frequency goes over into continuous spectrum

Substituting Eqs (4.14) through (4.16) as well as the value of the local frequency (4.17)
into the formula for u2 (4.13) we can calculate the mean square displacement for two limiting
cases @>w; or @ —0.

At high temperatures at which w; > @ and cth x ~ 1/x, we can write

72

_ (0]
u?—uf = 7 [Ly(e, ) +s1(e; ¥) +pa(y) —1] (4.18)
while at low temperatures (w; > @ and cth x ~ 1).

=i = 282 (Lo, )+ sule ) +20() 1] (@.19)
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The functions sy, sg, py, pg» Ly, Ly describe the contribution of the s-type, p-type,
and local modes, respectively, and are given in Ref. [12].

They can be easily obtained by replacing the sum over % in Eq. (4.13) by an integral
and taking into account the approximation for the function cth . In the derivation of (4.18)
and (4.19) we have made use of the approximation ug = 2 forw; <@and u = 2 for

Vi nF(O)

0 <Lw;.

The ratio of the vibration amplitudes can be obtained from Eqs (4.18) and (4.19) in
the form

]/ o = Vi, P45 7)) (4.20)

The relative distance between the impurity atom and its nearest neighbour is according to

Eqs (2.5) and (3.6)

-;hl 1+y)
— (4.21)

3 5
ToGo+ D) uo

=1
0

5. Solution of the self-consistent equation
A. High temperatures (o, <0)

. By taking into account the first term of the expansion of cth w—; ~ —2~— in Eq. (2.4)
and making use of Eq. (2.3) we obtain self-consistent equations for a p?ﬁ‘e linear lattice
(¢f Refs [7] and [8])

%3 Yo = €% (5.1)
where

a3
F(0)

2—9
Yo = apup = —

6.2

D
The preceding equation has a solution at 6@ < 6, =2, For temperatures higher
e

than the critical @,, u? is complex and the lattice becomes unstable.
The parameter p, which describes the change in the force constants of the impurity
atom, is the solution of the equation

- Fofgz) In (1+7) = Ly(e, ) +s1(e, V) +po() 1 (5.3)
0

which results from the expressions (3.4) and (4.8).
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Fig. 1 shows the solution of Eq. (5.3) as a function of the temperature for a few values
of the mass defect. The temperature change in the force constant F(@) of the host lattice
has been taken into account in this calculation. It is seen that the relative change in the

-y
7.0

08

06 -

04

1l Lol il

7 2 4 6870 20 406080700 A

Fig. 1. Solution of self-consistent equations (5.3) and (5.8): The dependence of the change y in the force cons-
n VDM
2

)
temperature of unstability of host lattice. Hatched area corresponds to instability region. For o, < @_ (upper
part of the figure) the instability occurs at the site of the impurity; for @ > 0 (bottom part) the hatched area
corresponds to instability of lattice as a whole

stants of the impurity atom on temperature @ (for v, < @), and on 1 = (forw,>0). O is the critical

force constants of the impurity atom increases with increasing temperature. For very light
impurities (¢ > ) the lattice becomes unstable at the position of the impurity atom for
a smaller temperature than the critical temperature of the host lattice. At the critical tempe-

rature @, the change in the force constants is equal to the mass defect y = —e. The value O,
can be found from the following equation
2
a3Oc: 2
—_—_— = — — = 1 - 5'4‘
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For critical values of the mass defect the critical temperatures of the impurity and the
host lattice are the same @,, = 6,. By making use of this condition we can find the numerical
value of &, = 0.72. For ¢ < ¢__ the crystal containing the impurity is stable up to the critical
temperature of the host lattice @,.

7.0." Pippes <o % 1 5 G0
7 2 4 6870 20 40 6080700 A

7V DM
T (for w,> O).
. 2a,
@c is the critical temperature of instability of host lattice. The local mode frequencies of isotopic impurity are
‘' marked on vertical axis

Fig. 2. Dependence of local mode frequency on temperature (for 0; <0),and on 1=

The frequency of the local mode (Fig. 2) decreases with increasing temperature. The
distance between the impurity and its nearest neighbours Eq. (4.2) is shown in Fig. 3.
It should be pointed out that the ends of the lattice in consideration are free and thus there
are no additional forces counteracting its dilatation.

The amplitude of the impurity atom V@ is about 1.5—3 times as large as the amplitude

N | , D
of host atoms and amounts to about 03 of the interatomic distance .
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Fig. 3. Dependence of the distance between the impurity and its nearest neighbour on temperature & (for v, < @),

7V DeM
2

L2)

and on A= (forw, > ). O, is the critical temperature of instability of the host lattice

B. Low temperatures (w;> 0)
The system of equations (2.1) through (2.4) has in this case the form (¢f. Refs [7, 8])

222 = e (5.5)
where
@ l/MD0
A= T‘o (5.6)
and

2
T 1)
1 (2)
If the parameters of the lattice are such that 4 < Ac = ¢/2 then Eq. (5.5) will have no real
solutions and the lattice will be unstable even for @ = 0°K.
In accordance with Egs. (3.5) and (4.21) the low-temperature behaviour of the impurity
is given by the equation

(.7)

- yi In (1+9) = Lofes 7)+so(es 7)+poly) —L. (5.8)
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where y, is the solution of Eq. (5.5) for a given value of 4. The solution y of this equation
(5.8) is shown in Fig. 1. The impurity remains in this case stable.

When increasing the parameter A the frequency of the local mode (Fig. 2) approaches
its limiting value i.e. the frequency of the local mode of the isotopic impurity. The distance
between the impurity and its nearest neighbour (Fig. 3) decreases with increasing A. At

the temperature of 0°K the amplitude of the impurity atom vibration VU_2 is about 24
times as large as that of the host atoms Vﬂ% and amounts to about T0 = 3 of the inter-

atomic distance .

6. Conclusions

By making use of the pseudoharmonic approximation we have calculated the decrease
in the force constants of the impurity atom for zero external pressure. This change results
mainly from the change in the mean internatomic distance (3.5). The change in the distance
between the impurity and its nearest neighbour is due to the larger amplitude of the impurity.
The change in the force constants gives rise to a change in the frequencies of local modes.

It is shown that a very light impurity (e > &) is unstable in some temperature range.
The amplitude of the impurity atom is always smaller thaa the lattice constant.

The consideration of the decay of phonons would lead to additional changes in the
force constants of the impurity, renormalization of the local mode frequency, vibration
damping and would also affect the stability conditions of the impurity.

In the case of a three-dimensional crystal the change in interatomic distances is much
more difficult and, therefore, we cannot expect that the changes in the force constants and
local mode frequency in real crystals will be as large as in the case of the linear crystal under
consideration. The stability conditions of the impurity will be, however, more severe and
thus more difficult to be satisfied. We should also bear in mind that the bare potential of the
impurity atoms may be different from the bare potential of host atoms.

The author is much indebted to Drs. D. N. Zubarev, N. M. Plakida and V. B. Priezzhev
for many helpful discussion.
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