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Preface
The 11th Workshop on Quantum Chaos and Localisation Phenomena was

held in Warsaw, Poland, on May 25–26, 2023, at the Institute of Physics of the
Polish Academy of Sciences. Although the end of the COVID-19 coronavirus
pandemic was announced, due to its long-lasting effects and existing threats,
the meeting was again fully virtual and took place on the ZOOM platform. The
Workshop was organized by the Institute of Physics of the Polish Academy of
Sciences, the Center for Theoretical Physics of the Polish Academy of Sciences,
and the Foundation “Pro-Physica”. The first of these biennial workshops was
organized in 2003. Selected articles from the invited lectures, starting from the
second Workshop, were published in Acta Physica Polonica A [1–9]. The main
objectives of the Workshops are to assess achievements and formulate directions
for new research on quantum chaos and localisation phenomena.
The Workshop gathered 30 officially registered participants from Afghanistan,

China, the Czech Republic, France, Germany, Israel, Poland, Sweden, the United
Kingdom, and the USA, representing experimental and theoretical physicists.
Additionally, about 20 participants, mainly Ph.D. students and doctors, had the
opportunity to join the Workshop via the ZOOM platform. The lectures were
also attended by non-registered researchers and Ph.D. students of the Institute
of Physics and the Center for Theoretical Physics on the Institute’s YouTube
channel. During the meeting, 18 invited lectures and 3 posters were presented.
The presentations focused on the following topics: quantum chaos and non-linear
classical systems, quantum and microwave graphs and billiards, localisation phe-
nomena, topological effects, and physics of low-dimensional systems. In talks and
poster presentations, theoretical and experimental problems from various fields
of solid state, atomic and molecular, mathematical and statistical physics were
discussed. It is noteworthy to mention that although most of the lectures were
devoted to the theory of quantum chaos and many-body systems, there were also
very interesting new topics, such as topological effects, chiral ensembles, and —
for the first time — applications of chaotic systems to modelling metamateri-
als. The meeting was held online, so scientific discussions that traditionally took
place during coffee breaks and social events, this time took place between lectures
and during visits to the “rooms” where the posters were displayed.
On behalf of the organizers, we would like to express our gratitude to all the

speakers and the authors of poster presentations for their contribution to the
success of the Workshop.
We present Proceedings of the 11th Workshop on Quantum Chaos and Lo-

calisation Phenomena, in which 11 invited articles of the Workshop participants
are published.
The workshop organizers acknowledge the financial support of the Ministry

of Education and Science under the program “Doskonała nauka II” under the
contract KONF/SN/00702023/01.

Szymon Bauch
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We demonstrate the ability to control the scattering properties of a two-dimensional wave-chaotic mi-
crowave billiard through the use of tunable metasurfaces located on the interior walls of the billiard.
The complex reflection coefficient of the metasurfaces can be varied by applying a DC voltage bias
to varactor diodes on the mushroom-shaped resonant patches, and this proves to be very effective at
perturbing the eigenmodes of the cavity. Placing multiple metasurfaces inside the cavity allows us to
engineer desired scattering conditions, such as coherent perfect absorption, by actively manipulating
the poles and zeros of the scattering matrix through the application of multiple voltage biases. We
demonstrate the ability to create on-demand coherent perfect absorption conditions at a specific fre-
quency, and document the near-null of output power as a function of four independent parameters
tuned through the coherent perfect absorption point. A remarkably low output-to-input power ratio
Pout/Pin = 3.71× 10−8 is achieved near the coherent perfect absorption point at 8.54 GHz.

topics: coherent perfect absorption (CPA), tunable metasurfaces, scattering zeros and poles

1. Introduction

We consider bounded complex scattering envi-
ronments, coupled to the outside world through
a finite number of scattering channels. Examples
include enclosed three-dimensional spaces such as
rooms, cabins in a ship or aircraft, or larger en-
closed spaces such as warehouses. Other examples
include two-dimensional microwave billiards and
one-dimensional cable graphs with multiple prop-
agation paths between any two points in the bil-
liard or nodes of the graph. Scattering channels
can be coupled to the system through antennas,
probes, apertures on the walls of the enclosure, or
any means by which wave energy can leave the en-
closure and propagate outside it. We assume that
these systems are reverberant in the sense that the
waves propagate across the length and breadth of
the system multiple times before significantly de-
caying in amplitude. Such systems are character-
ized by a scattering (S) matrix that relates the
set of in-going wave excitations on the channels
to the corresponding set of out-going waves on the
same channels. Because the scattering environment
is complicated and typically lossy, the S-matrix

is sub-unitary and has complex matrix elements
that are rapid and irregular functions of wave
frequency.

The question arises how to control or tame the
complex scattering environment so that it can be
harnessed to perform specific and useful tasks. Ex-
ample tasks include establishing and maintaining a
robust communication link between two points in-
side the enclosure, or transferring wave energy to
a specific object inside the enclosure with high ef-
ficiency and minimal interference. It is our belief
that active and tunable metasurfaces can be used
to alter the scattering properties of complex struc-
tures, thus creating new opportunities to manipu-
late complex waves. Active metasurfaces have the
property that they can alter the reflection coeffi-
cient of one portion of the boundary of a scatter-
ing environment [1, 2]. This establishes a degree of
control of the walls of the enclosure, creating the
opportunity to alter the waves everywhere in the
enclosure, due to its reverberant nature.

The majority of work on active metasurfaces con-
cerns single-pass reflection or transmission interac-
tions between the waves and the metasurface, or in-
volves metasurface antennas that launch the waves
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but do not interact with them again [3]. Here we
are concerned with the more challenging situation
in which the same waves interact with the same ac-
tive metasurface multiple times during their prop-
agation. Efforts to control the wave properties of
enclosures active and tunable metasurfaces are rel-
atively few in number. Gros et al. [4] showed that
three programmable metasurfaces on the walls of
a regular six-sided enclosure could be used to ef-
fectively stir cavity modes to create a set of un-
correlated cavity configurations. Frazier et al. [5]
placed a 240-element tunable binary metasurface
inside a 1 m3 reverberant three-dimensional sys-
tem, but taking up only 1.5% of the surface area,
and demonstrated the ability to create “cold spots”
(minima in transmission S21) between two arbitrary
points inside the enclosure. That work showed that
coherent perfect absorption (CPA) could also be
achieved through variation of the metasurface pixel
states, as long as the system was already near the
CPA condition at the baseline [5]. Earlier, one-port
perfect absorption was demonstrated in a reverber-
ant environment using a programmable metasur-
face [6]. Wavefront shaping with a large number of
scattering channels and the creation of CPA states
have also been demonstrated in three-dimensional
enclosures [7, 8]. The 240-pixel metasurface exper-
iment also utilized a machine learning algorithm
that could find the pixel settings on the metasurface
required to generate the desired transmission S21

spectrum as a function of frequency over a substan-
tial bandwidth [9]. Most recently, an elegant formal-
ism has been created to model the effects of tunable
metasurfaces in reverberant environments [10].

The ultimate goal of our experiment is to demon-
strate control over all of the scattering parameters
of a given microwave billiard system. Often, the
functional properties of a cavity are designed into
the shape and structure of the cavity, usually in-
cluding symmetries to help meet the design goals.
In our experiments, by contrast, we use a chaotic
cavity, which represents the most general wave scat-
tering setting possible, containing no geometrical or
hidden symmetries. To gain control over the system,
we instead place active metasurfaces inside the cav-
ity, which effectively allow electronic manipulation
of the boundary conditions of the cavity. Scatter-
ing environments encountered in the real world are
usually very complex and lack any symmetries. By
demonstrating control over this complex and low-
symmetry system, we are moving one step closer to
actively controlling the scattering environments of
arbitrary real-life systems.

2. Experimental setup

A quasi-two-dimensional wave chaotic quarter
bow-tie billiard is loaded with three tunable non-
linear metasurfaces. The billiard has a height of
7.9 mm and an area of 0.115 m2. Therefore, as

Fig. 1. Quarter bow-tie billiard with three tunable
metasurfaces (MS1-3) along the interior walls of the
cavity. Panel (a) is a schematic of the quarter bow-
tie billiard with the three metasurfaces inside, and
the lid lifted off the base. Two antennas are con-
nected to the billiard through the lid and are at-
tached to coaxial transmission lines, representing
the scattering channels, and these are connected to
the VNA. Panel (b) is a perspective photograph of
the interior of the base of the cavity, with the lid
removed, showing the three metasurfaces.

long as the cavity is excited at frequencies below
approximately 19 GHz, the system supports only
one propagating mode, with the electric field po-
larized in the vertical direction. This billiard has
been used before to demonstrate the crossover from
Gaussian Orthogonal to Gaussian Unitary ensemble
statistics, in both level spacings [11] and eigenfunc-
tions [12, 13], and more recently has been loaded
with microwave diodes to act as a reservoir com-
puter [14]. The metasurfaces used in this work were
fabricated by the Johns Hopkins University Ap-
plied Physics Laboratory [15] and were designed to
be used for reflection amplitude variation between
11–18 GHz and reflection phase variation between
14–16 GHz. The metasurfaces are a linear array of
18 varactor-loaded mushroom-shaped resonant el-
ements, where each element is sub-wavelength in
size [16]. The PCB material of the metasurfaces is
Rogers 5880 and the diode part number is MACOM
MAVR-011020-1411. Each metasurface is 1.8 mm
thick, 7.9 mm high, and 185 mm long, and is flex-
ible enough to conformally attach to a curved in-
terior wall. The diodes on a given metasurface can
be tuned simultaneously with a globally applied DC
voltage bias to the metasurface through thin insu-
lated wires that exit the cavity underneath the lid.
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As the applied voltage bias increases from 0 to 15 V,
the capacitance of the varactor diodes varies from
0.24 to 0.03 pF, thus increasing the resonant fre-
quency of the patches. Note that as the voltage
varies, the reflection magnitude and phase of the
metasurface changes, in general. Thus, the tuned
perturbation has a complex effect on the modes of
the cavity. The metasurfaces are placed along three
different walls of the billiard and are connected to a
Keithley 2230G-30-1 triple channel programmable
DC power supply, as shown in Fig. 1. Each of the
three metasurfaces cover approximately 12% of the
perimeter of the billiard. The quality factor of the
billiard with the 3 metasurfaces present is approxi-
mately 250 at 9 GHz.

An Agilent Technologies model N5242A or
Keysight model N5242B microwave vector network
analyzer (VNA) is connected to two ports of the
billiard through coaxial cables that support a sin-
gle mode of propagation, and the 2 × 2 complex
scattering matrix (S) is measured over a chosen fre-
quency range. Through the variation of the reflec-
tion coefficient of the metasurfaces, we can manip-
ulate the poles and zeros of the scattering matrix
to create conditions for coherent perfect absorption
(CPA), among other things. CPA occurs when the
zero of the scattering matrix is brought to the real
frequency axis [17, 18]. When the system is excited
with the S-matrix eigenvector, which corresponds
to zero eigenvalue, all of the injected energy is ab-
sorbed inside the scattering system and none is re-
flected or transmitted through any of the scattering
channels. The perfect absorption condition requires
this very specific type of coherent eigenvector ex-
citation of the billiard, and any deviation causes
significant reflection and/or transmission.

CPA requires that the system contain non-zero
loss, either in a distributed or localized manner,
or both. Waves sent into the system reverberate
in such a way as to be completely absorbed, and
in addition, so that no energy emerges from any
of the ports of the system, either in transmission
or reflection. This condition is achieved by excit-
ing all of the ports simultaneously at the (single)
CPA frequency, but with appropriate relative am-
plitudes and phases on the incident waves on all
of the ports. With these precise coherent excitation
conditions, one can achieve the above-stated out-
comes. However, if any of the excitation conditions
are modified, the CPA condition is lost — this situa-
tion is explored experimentally in detail below. For
an arbitrary scattering system, it is very difficult
to find coherent excitation conditions for CPA by
analytical or numerical methods. We rely on mea-
surements of the scattering matrix and our ability
to strongly modify the scattering properties of the
cavity using the embedded metasurfaces to estab-
lish the CPA conditions. In fact, our approach is so
successful that CPA conditions can be established
at almost any frequency in the bandwidth of the
operation of our experiment.

To establish CPA experimentally, we first choose
the frequency range of interest and measure the
scattering matrix with the VNA, and with each suc-
cessive measurement the applied voltage bias of a
particular metasurface is increased, usually with a
step size of 0.01 V. During a set of measurements,
the other metasurfaces in the cavity are held at a
fixed applied voltage bias. From this set of mea-
sured S-matrices, the complex Wigner–Smith time
delay [19] is calculated as a function of frequency at
the various applied biases to the metasurface. The
conditions for CPA are found by identifying para-
metric settings where the magnitude of the complex
time delay diverges.

Once the conditions for a CPA state are found,
the scattering matrix is diagonalized to determine
the eigenvalue λS = 0 + i0 and the corresponding
eigenvector |ψCPA〉. For our system, the scattering
matrix has two eigenvalues λS and eigenvectors |ψ〉
whose elements are two complex numbers represent-
ing the amplitudes of the waves injected at the two
ports, but we can determine which one is the CPA
excitation by finding the one that has an identically
zero eigenvalue. From the CPA eigenvector, the rel-
ative amplitude and phase of the required excitation
that must be simultaneously injected into the two
ports is determined. With this information, the 2-
port dual source mode of the VNA is used to inject
the CPA eigenvector into the billiard to verify that
the conditions for coherent perfect absorption are
achieved. For S-parameter measurements, the VNA
is calibrated up to the antennas on the billiard. But
when the 2-port dual source mode is activated, the
calibration is no longer valid. This causes the nec-
essary parameters determining the CPA excitation
to be slightly different than those for the calibrated
S-parameter measurement. During the CPA injec-
tion, we measure the ratio of the outgoing power
Pout,j to the incident power Pin,j on each port j as
a function of several parameters near the CPA con-
dition. To do this, the receivers on each VNA port
are used to measure both the power that goes into
the cavity and the power that comes back out.

3. Complex Wigner–Smith time delay

The Wigner–Smith time delay τW is a rough
measure of how long a wave lingers in a scattering
system before leaving. In unitary systems, the
time delay is a real quantity, but for subunitary
systems it becomes complex valued [8, 19, 20]. The
Wigner–Smith time delay is defined as

τW = − i

M

∂

∂f
log (det(S)) , (1)

where i is the imaginary number, M is the number
of ports connected to the system, f is the frequency,
and S is the scattering matrix. Experimentally,
the frequency derivative in the Wigner–Smith
time delay is calculated using a central difference
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formula. It is known that the determinant of S can
be written as a Weierstrass factorization extending
over the complex frequency plane as [2, 21–28]

det(S(f)) ∝
N∏
n=1

f + iη − zn
f + iη − εn

, (2)

where N is the total number of modes of the closed
system, η is the uniform attenuation, and zn and
εn are the zeros and poles, respectively, of the
scattering matrix. We further define zn and εn as

zn = Re[zn] + iIm[zn], (3)

εn = fn − iΓn, (4)
and adopt the convention that Γn > 0 in passive
lossy systems. It has been shown [19] that the
complex Wigner–Smith time delay associated with
each mode n can be written as a sum of two terms
for both the real and imaginary parts, one involving
the scattering poles and the other the scattering
zeros as follows

Re[τW ] =
1

M

N∑
n=1

[
Im[zn]− η

(f − Re[zn])2 + (Im[zn]− η)2

+
Γn + η

(f − fn)2 + (Γn + η)2

]
, (5)

Im[τW ] = − 1

M

N∑
n=1

[
f − Re[zn]

(f − Re[zn])2 + (Im[zn]− η)2

− f − fn
(f − fn)2 + (Γn + η)2

]
, (6)

Using this formalism, we can see that the Wigner–
Smith time delay is divergent at f = Re[zn] when
the imaginary part of the zero Im[zn] of the scatter-
ing matrix is equal to the uniform attenuation η of
the system. The diverging time delay for the wave
propagating inside a lossy system is an indication
that the S-matrix zero has crossed the real fre-
quency axis, which is an enabling condition for co-
herent, perfect absorption [8, 19]. Further, from the
measured Wigner–Smith time delay, poles and ze-
ros can be systematically extracted using fits to (5)
and (6), and their evolution with the metasurface
voltage bias can be visualized. For example, note
that the divergent term in the real part of τW has a
sign that depends on the sign of Im[zn] − η, which
changes as the imaginary part of the S-matrix zero
is varied. Using information such as this, we can
understand how a complex scattering system inter-
acts with incoming waves and use this knowledge to
engineer conditions for achieving CPA.

4. Experimental results

For a specific setup of the cavity, we perform mea-
surements in a particular frequency range and volt-
age bias applied to one of the metasurfaces. Then,
the applied bias is swept until the Wigner–Smith
time delay shows a near divergence. A typical result

Fig. 2. Real part of the Wigner–Smith time delay
Re[τW ]/(2π) vs frequency and metasurface 2V for
a particular cavity realization. We use a nonlinear
color scale to help distinguish the areas of small
time delay from the areas of very large time delay
due to the divergence of the Wigner–Smith time
delay at one point in this parameter space. With
this color scale, the majority of the colors between
blue and red (green–yellow) are concentrated near
the mean value of the time delay in this parame-
ter space (∼ 3 ns). The single largest value of the
Wigner–Smith time delay measured in this domain
has a value of 696.5 µs, but is excluded from this
plot for clarity. The Heisenberg time (τH = 2π/∆,
with mean mode-spacing ∆ = c2/(2πfA) for this
2D billiard of area A) at 9.66 GHz is τH ≈ 0.49 µs.
Note that τW is divided by 2π to convert to sec-
onds. (Left inset) Real Wigner–Smith time delay
vs voltage at 9.66 GHz. (Right inset) Real part of
Wigner–Smith time delay vs frequency at a fixed
voltage of 6.87 V.

is shown in Fig. 2 for the real part of the Wigner–
Smith time delay in a narrow range of frequency
and voltage. For the mode at 9.66 GHz, the time
delay becomes very large in magnitude around the
metasurface bias of 6.87 V. This indicates that a
CPA state is possibly located at the point of diver-
gence. The left inset of Fig. 2 shows the real part
of the time delay as the voltage bias is increased at
a fixed frequency of 9.66 GHz, through the point of
divergence. The dramatic increase can be explained
by the imaginary part of scattering zero (Im[zn])
decreasing in magnitude toward the value of the
uniform attenuation (η) of the system, causing the
Wigner–Smith time delay to increase. At the diver-
gence, Im[zn] is equal to η, and past the point of
divergence, Im[zn] has decreased below the value
of η, causing the sign of the Wigner–Smith time de-
lay to switch from positive to negative (see (5)). In
the right inset of Fig. 2, the voltage is kept fixed at
6.87 V while the frequency increased through the
point of divergence. Therefore, a similar increase of
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Fig. 3. Zeros and poles of the scattering matrix for
a particular mode of the bowtie billiard, extracted
from measured complex time delay, plotted in the
complex frequency plane as a function of voltage
bias applied to metasurface 1. For each successive
point from blue to red, the applied bias to metasur-
face 1 is increased while holding all other param-
eters fixed. The top curve shows evolution of the
S-matrix zero, and the bottom curve shows evolu-
tion of the pole.

the real part of the time delay is observed, except
that the sign of the Wigner–Smith time delay re-
mains positive through the divergence. The inter-
pretation is that at a fixed voltage bias of 6.87 V,
the values of Im[zn] and η remain essentially fixed as
the frequency is varied, while the divergence arises
from the frequency dependence indicated in (5).
The variation of Re[τW ] from +4 µs to −3.6 µs vis-
ible in Fig. 2 occurs diagonally across the frequency
and voltage bias because the bias voltage changes
both the real and imaginary parts of the S-matrix
zero simultaneously.

Using the Wigner–Smith time delay expression as
a sum of two terms for the real and imaginary parts,
the location of the poles and zeros of the scattering
matrix are extracted as functions of applied bias to
metasurface 1 for another mode of the bowtie bil-
liard, as shown in Fig. 3. This is accomplished by
fitting the Lorentzian expressions (see (5) and (6)
for a single mode) to the real and imaginary parts of
the experimental data simultaneously, and from the
best fitting we extract the pole and zero informa-
tion of that single mode for each voltage bias. Note
that the fit parameters for each mode n are Re[zn]
and Im[zn]− η for the zero, and fn and Γn + η for
the pole. Figure 3 shows that as the applied bias is
increased, the zeros are observed to move upward
in the complex frequency plane toward the real fre-
quency axis, and CPA is enabled at the point where
Im[zn]−η = 0. With this information, we now know
how to engineer the cavity to have a specific time
delay, degree of absorption, etc., for this frequency
range.

Fig. 4. Zeros of the scattering matrix
(Re[zn], Im[zn] − η) for a particular mode of
the bowtie billiard, plotted in the complex fre-
quency plane. Each successive point from left to
right is a 0.01 V step increase in the voltage applied
to metasurface 3 (MS3), and each color represents
a different fixed voltage of metasurface 1 (MS1).
During these measurements, metasurface 2 was
held at a fixed voltage bias. The inset shows a
zoomed in view of the real frequency axis near the
axis crossings.

Taking measurements of the cavity under dif-
ferent conditions, a particularly interesting case is
found where a single mode has a zero that crosses
the real axis twice as the voltage bias to metasur-
face 3 is varied (see Fig. 4). These real frequency-
axis crossings for the S-matrix zero correspond to
two CPA states in the voltage sweep of one metasur-
face. Then, using the other two metasurfaces in the
cavity, it is possible to raise and lower this parabolic
evolution of the zeros in the complex plane, as il-
lustrated in the inset of Fig. 4. This result demon-
strates control of the scattering zeros of the system
through the additional degrees of freedom that the
other metasurfaces offer.

Using the extracted pole and zero locations as
a function of voltage, we can use the Lorentzian
expression (see (5)) to examine in detail the real
part of the Wigner–Smith time delay for one of the
curves in Fig. 4. In Fig. 5 we see that there are two
locations where the time delay is nearly divergent,
and that between the divergences there is a signifi-
cant peak value of time delay, approximately 9 µs,
and its location can be finely tuned in frequency.
This delay corresponds to 2.7 km of free space
travel, and with the characteristic length scale of the
cavity being

√
A (with cavity area A = 0.115m2), it

corresponds to approximately 8000 bounces around
the cavity. It should be noted that at all bias values
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Fig. 5. Real part of the Wigner–Smith time delay
Re[τW ]/2π vs frequency recovered from a partic-
ular curve in Fig. 4 describing the S-matrix zero
evolution, and evaluated as a function of frequency
using (5). The sign changes of the extreme values of
time delay bracket the two CPA points. The lower
frequency CPA state has an extreme time delay
value around 60 µs, and the upper frequency CPA
state has an extreme time delay value near −500 µs,
not shown for presentation clarity. The gaps in be-
tween the peaks for each color result from the fi-
nite metasurface bias voltage resolution of the mea-
surement. The inset shows the real part of Wigner–
Smith time delay vs frequency for different fixed
values of the metasurface 1 and 2 voltage biases,
showing the two CPA points separated by a much
larger frequency.

the time delay-bandwidth product is on the order of
unity. In Fig. 5, from the inset we can also see that
we can move the scattering matrix zeros and push
apart the frequencies of the diverging time delay by
utilizing other metasurfaces inside the cavity. This
also causes the peak time delay between the two
zero crossings to decrease.

Once the conditions where the Wigner–Smith
time delay diverges are found, we see that the S-
matrix has at least one eigenvalue nearly equal to
λS = 0+ i0. We can calculate the eigenvector of the
S-matrix corresponding to this eigenvalue. To test
for the CPA condition, we must inject this eigenvec-
tor excitation into the billiard. The CPA eigenvector
can be defined as

|ψCPA〉 =

(
X e iθ

Y e iψ

)
, (7)

defining the amplitudes and phases of excitation at
the CPA frequency. Hence for CPA excitation, the
relative phase of the signal between ports 1 and 2 is
(ψ− θ), and the relative amplitude between ports 1
and 2 is 20 log10

(
X
Y

)
, when X and Y are measured

in linear voltage and need to be converted to dB.
The VNA is used to inject this specific excitation

into the system at the CPA frequency. The expec-
tation is that the output vector |ψout〉 = S |ψin〉 = 0
in this case, which means that all of the input en-
ergy is perfectly absorbed, and none is reflected or
transmitted.

To test this experimentally, we measure both the
injected and received powers from the cavity and
see how those powers vary as the parameters of the
system, and the excitation, are changed. In Fig. 6,
the four parameters we have control over are sys-
tematically varied to verify that the CPA state is
correctly identified. The four parameters are: the
voltage applied to the metasurface (which controls
the location of the S-matrix zero in the complex fre-
quency plane), the relative amplitudes of the signals
on the two input channels, the frequency f , and the
relative phase of the signals injected into the two
channels. For each parameter sweep, the other pa-
rameters are set to their optimal values. We mea-
sure the total input power delivered to the system
through the two channels, Pin = Pin,1 + Pin,2, and
the total power that emerges from the cavity, Pout =
Pout,1 + Pout,2, and form the ratio Pout/Pin. This
process is carried out in an iterative manner and
converges to a point very close to the CPA condition
for the system, which corresponds to Pout/Pin = 0.
For example, in the frequency sweep in Fig. 6c, the
ratio of output power to input power changes by
approximately seven orders of magnitude for small
changes in frequency, with a minimum output to in-
put power ratio of Pout

Pin
= 3.71 × 10−8. We observe

that the exact conditions of the CPA state slowly
drift over time, likely due to temperature fluctua-
tions of the laboratory. We believe this tempera-
ture drift to be the limiting factor on how precisely
we can measure the CPA state. This illustrates
how sensitive the CPA state is to small perturba-
tions to the system, making it attractive for use as
a sensor.

5. Discussion

Much of the prior work to controllably alter the
scattering matrix of complex systems has been done
by mechanical means, mainly for the purpose of per-
turbing the poles of the scattering matrix [29]. With
metasurfaces, the poles and zeros of the scattering
matrix can be smoothly varied in the complex fre-
quency plane and placed in determined locations,
purely by electronic means. By moving the zero of
the scattering matrix to the real frequency axis, we
can enable CPA and this is correspondingly seen as
a divergence in the real part of the Wigner–Smith
time delay. We can inject the zero-eigenvalue eigen-
vector and observe nearly complete absorption, but
this is a singular condition that is only possible at a
single point in the parameter space. Suwunnarat et
al. [30] have recently shown the creation of a non-
linear CPA by using exceptional point degeneracies
of the zeros of the scattering matrix. Work such
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Fig. 6. Evidence of coherent perfect absorption in the ray-chaotic quarter bow-tie microwave billiard, for four
independent parametric sweeps. We measure the ratio of the total output power to the total input power,
Pout/Pin as a function of parameter variation. The swept voltage bias to metasurface 2 is shown in (a). Small
parametric deviations from the CPA input eigenvector |ψCPA〉 are made through the relative power 20 log10

(
X
Y

)
(b), frequency (c), and relative phase (ψ − θ) (d) sweeps.

as [30] shows future possibilities of creating larger
parametric regions of coherent near-perfect absorp-
tion, which can be beneficial for a variety of ap-
plications in communications and wireless power
transfer.

6. Conclusions

In this paper, we show that using tunable meta-
surfaces inside a two-dimensional wave-chaotic cav-
ity, we can control the locations of the scattering
poles and zeros in the complex frequency plane. By
perturbing the system with metasurfaces, we can
drag the scattering zeros across the real frequency
axis to create a coherent perfect absorption condi-
tion. The demonstration of nearly complete absorp-
tion is illustrated in Fig. 6, by having approximately
seven orders of magnitude less power leaving the
system compared to that injected in the CPA eigen-
vector. We also demonstrated precise manipulation
of the location of the CPA state by applying voltage

biases to other metasurfaces in the cavity. This is
equivalent to controlling the scattering properties
of the system, and this control gives us the ability
to engineer specific conditions in the cavity, such as
having coherent perfect absorption at a particular
frequency, tuning a desired time delay for a signal,
having regions of high absorption for unwanted sig-
nals, and low absorption for desired signals, etc.
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We extend the Berezinskii diagrammatic technique to one-dimensional disordered spin systems, in which
time-reversal invariance is broken due to a spin–orbit coupling term inducing left–right asymmetric
scattering. We then use this formalism to theoretically describe the dynamics of the quantum boomerang
effect, a recently discovered manifestation of Anderson localization. The theoretical results are confirmed
by exact numerical simulations of wave-packet dynamics in a random potential.

topics: Anderson localization, disorder scattering, spin–orbit coupling, quantum wave packets

1. Introduction

In the presence of a spatially disordered poten-
tial, quantum wave packets may experience, after
a transient temporal spreading, a complete freezing
of their density distribution due to the proliferation
of destructive interference in the multiple scattering
process. This phenomenon, which generically occurs
in low dimensions, is one of the most representative
manifestations of Anderson localization [1]. As such,
it has been primarily exploited in the experimen-
tal quest for the localization of cold atoms in ran-
dom potentials [2–5]. Recently, however, a variety of
alternative signatures of Anderson localization has
been identified. Those include the temporal freezing
of the coherent backscattering effect in reciprocal
space [6–8] or the universal growth of narrow peak
structures in the density profile [9, 10] and momen-
tum distribution [11–13] of spreading wave packets
(see [14] for a review).

Recently, yet another unexpected manifestation
of Anderson localization, dubbed the quantum
boomerang effect (QBE), has been discovered [15].
QBE corresponds to a back-and-forth motion of the
mean position of a quantum wave packet launched
with a finite velocity in a given direction in a ran-
dom potential. In one dimension, for instance, if
the quantum particle is launched to the right, it
will first move to the right over a distance of the
order of the mean free path, then make a U-turn

and eventually return to its starting point at long
time. This phenomenon was also shown to exist
in higher-dimensional random or pseudo-random
systems [15, 16], as well as in kicked-rotor mod-
els [16], where it was recently demonstrated exper-
imentally [17]. While originally described in time-
reversal-invariant (TRI) systems, recently QBE was
also shown to exist in systems without time-reversal
symmetry [18–20]. In [18], in addition, QBE was
characterized in the presence of a spin–orbit cou-
pling mechanism inducing left–right asymmetric
scattering between different spin states. This is also
the scenario addressed in the present paper.

At a theoretical level, describing the temporal dy-
namics of quantum wave packets in the presence of
disorder is a challenging task [21–23]. In one dimen-
sion, however, a very powerful analytical approach
known as the Berezinskii diagrammatic technique
has been developed [24]. Originally, this method was
successfully used for calculating the ac conductivity
of electronic conductors in the localization regime or
the long-time density distribution of spreading wave
packets [24–26], the predictions being exact in the
limit of weak disorder. More recently, it also allowed
the description of QBE in TRI systems [15] and, in
the context of electron scattering, was extended to
account for the presence of spin–orbit coupling [27].

In this paper, we extend the Berezinskii diagram-
matic technique to TRI-broken spin-dependent
systems in which a spin–orbit coupling term
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induces asymmetric scattering, as recently realized
experimentally with cold atoms [28, 29]. This for-
malism is developed in Sects. 2 and 3. In Sect. 4,
we then apply the method to the calculation of
a specific observable, namely the mean position
of a quantum-mechanical wave packet launched in
a random potential with finite velocity. This pro-
vides a thorough theoretical description of QBE in
spin–orbit coupled systems with asymmetric scat-
tering, complementing results obtained in the re-
cent work [18]. Generally speaking, the formalism
presented in this paper provides a practical analyti-
cal tool to characterize the dynamics of spinor wave
packets in disordered systems with TRI-broken
symmetry.

2. Principles of the Berezinskii technique

We start by recalling the main ideas of the orig-
inal Berezinskii diagrammatic technique used to
compute the time-dependent transport properties
of one-dimensional disordered systems. The start-
ing point is the single-particle Hamiltonian

H = H0 + V (x), (1)
where V (x) is a random (disorder) potential and H0

is the disorder-free part of the Hamiltonian (e.g.,
H0 = p2/(2m)). We suppose that the random po-
tential has a vanishing mean, V (x) = 0, and fol-
lows Gaussian statistics characterized by the two-
point correlation function V (x)V (x′) = ηC(x′ − x),
where η is called the disorder strength. Symbol (. . .)
here denotes averaging over different disorder re-
alizations. The function C(x′ − x) quantifies the
range of the spatial correlation of the disorder. In
the whole paper, we restrict ourselves to a delta-
correlated potential, i.e., C(x′ − x) = δ(x′ − x).

In this paper, we aim at describing the time evo-
lution of quantum-mechanical wave packets gov-
erned by an Hamiltonian of the type of (1). In
the localization problem, this evolution is charac-
terized by considering the disorder-average of ob-
servables that depend quadratically on the wave
function, such as the density n(x, t) or the mean
position 〈x(t)〉 =

∫
dx xn(x, t) of the wave

packet. These observables, by definition, can be
expressed in terms of the disorder-averaged corre-
lator GR(x, x′, ε)GA(x′′, x, ε− ~ω) [30, 31], where
GR/A(x, x′, ε) ≡ 〈x| (ε−H ± i0+)

−1 |x′〉 are the
single-realization, retarded and advanced Green’s
functions at energy ε associated with Hamilto-
nian (1). The energy difference ~ω introduced in
the correlator allows us to capture the time depen-
dence of observables after an inverse Fourier trans-
form. The precise connection between 〈x(t)〉 and
the Green’s function correlator, for instance, will
be given in Sect. 3.

Both Green’s functions GR/A that appear in the
correlator may be computed in a perturbative fash-
ion using the Born expansion [30]

GR/A(x, x′, ε) = G
R/A
0 (x, x′, ε)

+

∫
dx1 G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x

′, ε)

+

∫
dx1dx2 G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x2, ε)

×V (x2)G
R/A
0 (x2, x

′, ε) + . . . , (2)
where

G
R/A
0 (x, x′, ε) ≡ 〈x|

(
ε−H0 ± i0+

)−1 |x′〉 (3)

are the retarded and advanced Green’s functions
associated with the free part of the Hamiltonian.
Physically, the expansion (2) describes a multiple
scattering sequence involving scattering events on
the random potential at points x1, x2, . . ..

As for the case of the average product
GR(x, x′, ε)GA(x′′, x, ε− ~ω), it includes all possi-
ble correlations between two multiple scattering
paths starting at the initial points x′ and x′′, re-
spectively, and both ending at the final point x. The
starting point of the Berezinskii technique is to take
advantage of the one-dimensional geometry, which
enables us to order the scattering events on a line
−∞ < x1 ≤ . . . ≤ x′ ≤ . . . ≤ x ≤ . . . ≤ xi <∞.

(4)
Thanks to this ordering, each contribution to the
product GRGA may be represented by a diagram,
like the one shown in Fig. 1a [24], which combines
a retarded (solid lines) and an advanced (dashed
lines) multiple scattering sequence, respectively un-
folded in the upper and lower parts of the diagram.
The scattering events occur at the points xi. In the
example of Fig. 1a, the upper sequence involves 8
scattering events (twice at point x3), and the lower
one — 7 scattering events.

The diagrams effectively contributing to Green’s
function correlator GRGA do not have arbitrary
shapes. Indeed, because of the assumed Gaussian
statistics and the corresponding Wick’s theorem,
only diagrams whose scattering events can all be
paired appear. For instance, the diagram in Fig. 1a
vanishes upon averaging because some scattering
events cannot be paired. Pairing scattering events at
different points would occur in the case of a weakly
correlated disorder (for which the correlation length
is smaller than the mean free path), a problem pre-
viously addressed in [25, 26, 32].

The second important approximation of the
Berezinskii technique is to assume that among all
possible diagrams contributing to the correlator,
only those for which the phase factors induced
by free-particle Green functions exactly compen-
sate each other when ω → 0 matter. This ap-
proximation, which holds true in the regime of
“weak disorder” (see Sect. 3.3), amounts to impos-
ing that there is exactly the same number of re-
tarded and advanced Green’s function in between
any two successive scattering events xi and xi+1.
In turn, this yields restrictions on the possible
scattering vertices, which are building blocks of the
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x1 x2 x3 x4 x5 x6 x7 x8x~x

L Z R

x1 x2 x3 x4 x5 x6 x7 x8 xx’’ x’ x9

(a)

(b)

Fig. 1. (a) Example of diagram involved in
the product GR(x, x′, ε)GA(x′′, x, ε−~ω) computed
from the Born expansion (2). Solid lines rep-
resent free retarded Green’s functions GR

0 , and
dashed lines — free advanced Green’s functions GA

0 .
Scattering events occur at points xi. (b) Exam-
ple of non-vanishing contribution to the correlator
GR(x, x̃, ε)GA(x̃, x, ε−~ω). The wavy lines refer to
a two-point correlation function of the random po-
tential. At each scattering event, one finds a vertex
belonging to the set presented in Fig. 3. The corre-
lation diagram can be divided into three blocks L,
Z, and R, separated by the points x̃ and x.

diagrams — aside from the trivial constraint that
the solid/dashed lines have to be continuous, all ver-
tices have to be phaseless.

With these conditions implemented, the Berezin-
skii diagrammatic technique provides a strategy to
exactly sum all possible diagrams with nonzero con-
tributions, as we will now detail for the case of a
spin–orbit Hamiltonian H0.

3. Diagrammatic approach without
time-reversal symmetry

3.1. Free Hamiltonian and Green’s function

In this work, we extend the standard Berezin-
skii technique to a one-dimensional spin sys-
tem with spin–orbit coupling and Zeeman split-
ting breaking all anti-unitary time-reversal symme-
tries [18, 28, 29]. The corresponding disorder-free
Hamiltonian reads

H0 =
~2k2

2m
+ γ~kσz +

~δ
2
σz +

~Ω
2
σx, (5)

where σi are the usual Pauli matrices. The Hilbert
space is spanned by two-dimensional complex-
valued spinors. Further, γ is the strength of the
spin–orbit coupling, Ω is the Rabi frequency, and
δ is the detuning. Diagonalization of the Hamilto-
nian H0 yields two energy bands denoted by ± with
corresponding energies

E±(k) =
~2k2

2m
± ~

2

√
(2γk+δ)

2
+ Ω2. (6)

Due to this band structure, for a given energy ε, the
Hamiltonian hosts either 2 or 4 possible eigenstates.
From now on, we focus on the case where only two
eigenstates are involved, which corresponds to a dy-
namics operating at energies belonging to the lower
band only [18]. We denote by k± the momenta of
these two states, and by v± = 1

~ |dE−(k±)/dk|
the associated velocities. As compared to the stan-
dard single-particle Hamiltonian H̃0 = p2/(2m), it
should be noted that the two involved momenta are
not just of opposite sign, i.e., k− 6= −k+ (and, cor-
respondingly, v− 6= v+). The left–right symmetry
is therefore broken, which, as will be seen below,
constitutes the most significant difference as com-
pared to the usual Berezinskii approach. In [27], a
much simpler situation was studied, where only the
spin–orbit interaction is present (i.e., δ = Ω = 0);
in such a case, the dispersion relation is symmet-
ric with respect to k → −k, so that v− = v+, and
the extension of the Berezinskii technique is rather
easy. In contrast, the calculations presented in the
present paper are more general and valid when (gen-
eralized) TRI is broken.

In the diagrammatic treatment of disorder scat-
tering introduced in the previous section, a funda-
mental ingredient is the free Green’s function (3),
which we need to evaluate for the Hamiltonian (5).
To this aim, we use the definition

GR0 (x, x′, ε) ≡
∞∫
−∞

dk

2π

e ik(x−x′)

ε−E−(k)+i0+
. (7)

A careful calculation of the integral in momentum
space provides us with

GR0 (x, x′, ε) =


− i

~v+ e ik+(x−x′), x− x′ > 0,

− i
2~

(
1
v+

+ 1
v−

)
, x = x′,

− i
~v− e ik−(x−x′), x− x′ < 0,

(8)
where, in particular, the diagonal value GR0 (x, x, ε)
is obtained by properly accounting for all the real
and complex poles in the denominator in (7). Note
that, strictly speaking, when x − x′ 6= 0, these ex-
pressions only hold at distances |x− x′| larger than
the de Broglie wavelength 2π/|k±|. This knowledge,
however, is sufficient within the weak disorder limit
(see (15) given in Sect. 3.3) where the Berezinskii
approach operates. Because of translation invari-
ance, the free Green’s function GR0 (x, x′, ε) =
GR0 (x−x′, ε). Its Fourier transform is therefore
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x’
x’’

x’
x’’ x’

x’’
x’

x’’

(a) (b) (c) (d)

Fig. 2. List of all possible initial vertices. In the
limit ω → 0 they correspond to the factors (a)
(~v+)−1 e ik+(x′′−x′), (b) (~v−)−1 e ik−(x′′−x′),
(c) (~2v−v+)−1/2 e i (k+x′′−k−x′), and (d)
(~2v−v+)−1/2 e i (k−x′′−k+x′).

diagonal in momentum space, with the diago-
nal value defined as GR0 (k, ε)=

∫
dr e− ikrGR0 (r, ε),

where r=x−x′. Note that with this definition,
(8) implies that GR/A(k, ε) 6= GR/A(−k, ε), con-
trary to TRI systems. From (8), finally, the ad-
vanced Green’s function follows from Hermitian
conjugation, GA0 (x, x′, ε) = [GR0 (x′, x, ε)]∗.

In the following, we will also need the energy-
shifted Green’s function GA0 (x′, x, ε−~ω), where
ω � ε/~. To evaluate this object, we use the Taylor
expansions k±(ε−~ω) ≈ k± ∓ ω/v±, so that

GA0 (x′, x, ε− ~ω) =
i

~v+ e− i (k+−ω/v+)(x−x′), x− x′ > 0,

i
2~

(
1
v+

+ 1
v−

)
, x = x′,

i
~v− e− i (k−+ω/v−)(x−x′), x− x′ < 0. (9)

3.2. Mean free times

Before constructing the diagrammatic approach
based on the Hamiltonian H0 + V (x), let us intro-
duce a few important scattering parameters that
will be used in the following. The central one is
the concept of scattering mean free time, which
gives the average time scale between two consec-
utive scattering events. In the present case, how-
ever, two different mean free paths can be defined
due to the left–right asymmetry. To find them, let
us denote by |±〉 = |k±〉 ⊗ |χ±〉 the two eigen-
states of H0, where |χ+〉 and |χ−〉 are the spin
state components associated with the wave num-
bers k+ and k−, respectively. This leads us to define
τ+ and τ−, the scattering mean free times for the
processes |+〉 → |−〉 and |−〉 → |+〉, respectively.
At weak disorder, they can be evaluated from the
Fermi golden rule

1

τ±
=

2π

~
∣∣〈∓|V |±〉∣∣2 ρ(E−(k∓)

)
, (10)

where ρ(E−(k∓)) is the density of states evalu-
ated at the energy E−(k∓) of the final state. Us-
ing the fact that the disorder is uncorrelated, i.e.,
V (x′)V (x) = η δ(x′−x) (see Sect. 2), we infer

τ± =
~2v∓
2ηκ

, (11)

where κ ≡ |〈χ+| |χ−〉|2 is the overlap factor of the
two spin states. In the following, we will be also
led to use the mean free time associated with the
weighted sum of the two scattering processes

1

τ
=

1

2

(
1

τ+
+

1

τ−

)
, (12)

which turns out to be the relevant time scale gov-
erning the boomerang effect, as will be shown in
Sect. 4. Note that the validity of the Fermi golden
rule used above is only guaranteed in the weak dis-
order limit described in Sect. 3.3 by (15).

3.3. Vertices

At the core of the Berezinskii diagrammatic tech-
nique is the idea of transferring the propagating fac-
tors from the free Green’s functions to the scatter-
ing events, called vertices. For example, assuming
xi > xj , the free Green’s function can be split as

GR0 (xi, xj , ε) =

√
− i

~v+
e ik+xi

√
− i

~v+
e− ik+xj ,

(13)
where we formally associate the weights and expo-
nential factors to the vertices at points xi and xj .
The difference between the TRI system and the
TRI-broken case is that these factors depend on the
direction of propagation. For example, in the TRI
system, the opposite case xj > xi would result in
just a change of sign of the phase factors in (13),
whereas in the system with broken TRI, the veloc-
ities also change.

Initial vertices. We start by selecting the rele-
vant initial vertices effectively contributing to the
correlator GR(x, x′, ε)GA(x′′, x, ε− ~ω). In general,
scattering paths may start from any of the 4 vertices
shown with their weights in Fig. 2. The vertices with
advanced and retarded lines starting into opposite
directions, i.e., vertices c and d, carry exponential
factors with phases i(k±x

′′ − k∓x′). Upon integra-
tion over the starting points x′ and x′′ (see (29) in
Sect. 4.1), they typically yield negligible contribu-
tions. Thus, we can restrict the analysis to only two
classes of initial vertices — a and b. These classes,
in turn, correspond to two different types of initial
states for the dynamics: (a) with positive (v+) and
(b) with negative (v−) initial velocity.

A second simplification is based on the assump-
tion that no scattering happens between the ini-
tial points x′ and x′′ [15, 33]. This invites us to
introduce the Wigner variables r = x′−x′′ and
x̃ = (x′+x′′)/2. In the limit ω → 0, vertices a and b
are thus approximated by their counterparts start-
ing from a single point x̃. At the level of Green’s
functions, this simplification reads [26]

GR(x, x′, ε)GA(x′′, x, ε− ~ω) ≈

e− ikεr GR(x, x̃, ε)GA(x̃, x, ε− ~ω), (14)
where kε is the wave number satisfying the disper-
sion relation ε = E−(kε).
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Phaseless scattering vertices. Our ultimate goal
is to sum all significant contributions to the product
of Green’s functions GRGA. This formidable task
is, in general, out of reach except for the so-called
weak-disorder limit

kε`� 1, (15)

where ` = τ+v+ = τ−v− is the scattering mean
free path (see also Sect. 3.1). Under this condition,
only a limited set of scattering vertices that do not
accumulate any phase and, as such, are not van-
ishingly small upon disorder averaging, should be
considered when constructing correlation diagrams.
The procedure to identify this set is detailed in
Appendix A for clarity. It yields four families of ver-
tices that are listed in Fig. 3. One can easily check
that the phase associated with each vertex is zero.
For instance, the vertex a1 originates from a fac-
tor of the type ηGR0 (xi, xi−1)GR0 (xi, xi)G

R
0 (xi+1, xi)

in the disorder-average of the Born expansion (2).
With the help of the splitting procedure (13) and
of (8), this corresponds to a vertex weight

η

√
− i

~v+
e ik+xi × − i

2~

( 1

v+
+

1

v−

)
×

√
− i

~v+
e− ik+xi ,

(16)
whose phase is indeed zero. In turn, the weights of
all phaseless scattering vertices are

a1/2: −
η

2~2v±

(
1

v+
+

1

v−

)
,

b1/2: −
η

(~v±)2
,

b3: − η

(~v+)(~v−)
,

c: − ηκ

(~v+)(~v−)
,

d1/2:
η

(~v±)2
,

d3/4:
η

(~v+)(~v−)
,

e:
ηκ

(~v+)(~v−)
exp

[
iωx

(
1

v+
+

1

v−

)]
,

f:
ηκ

(~v+)(~v−)
exp

[
− iωx

(
1

v+
+

1

v−

)]
.

(17)

Notice that among all diagrams in Fig. 3, the ver-
tices families c, e, and f involve a “backscattering
event” in both the retarded and advanced parts.
This implies that, in the spin system described by
Hamiltonian (5), the associated weights include the
spin-state overlap factor κ = |〈χ+| |χ−〉|2.

3.4. Correlation diagrams

Knowing all possible phaseless scattering vertices
relevant to our problem, we now wish to write down
the equations describing the diagrams contributing

a1 a2

b1 b3b2

c

d1 d2 d3 d4

e f
Fig. 3. All possible phaseless scattering vertices to
be considered in the Berezinskii technique. Vertices
from a, b, and c families have dashed-line counter-
parts. The weights associated with the vertices are
indicated in (17).

to the correlatorGRGA. An example of such a corre-
lation diagram is shown in Fig. 1b. Its generic struc-
ture can be divided into three left, right, and central
blocks denoted by L, R, and Z, as illustrated in
Fig. 1b. These different blocks are characterized by
their total number of incoming and outgoing solid
(retarded) and dashed (advanced) lines.

We first consider the left blocks L. Because the
scattering vertices change the number of lines by
at most 2, these blocks always have the same even
number 2m′ (with m′ being an integer) of re-
tarded and advanced lines attached. For instance,
L in Fig. 1b hasm′ = 1. With this property in mind,
let us denote by Lm′(x̃) the sum of contributions
from all L blocks that have their right boundary at
point x̃ with 2m′ lines. To calculate Lm′(x̃), we con-
sider how it changes with an infinitesimal change
of the boundary position, x̃ → x̃ + δx, by count-
ing all possibilities of adding new scattering vertices
to Lm′(x̃). This counting is detailed in Appendix B
for clarity. Taking the limit δx → 0, it yields the
following differential equation [34]
dLm′

dx̃
= − 2m′η

~2v+v−
Lm′ (1 + (m′−1)κ) +

m′2ηκ

~2v+v−

×
[
Lm′+1 e

iωx̃( 1
v+

+ 1
v−

)
+ Lm′−1 e

− iωx̃( 1
v+

+ 1
v−

)
]
.

(18)
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x~ Γ+,·
x~Γ ,·–

x Γ·,–
xΓ·,+

a b c d
Fig. 4. List of possible initial and final phase-
less vertices. They are associated with the follow-
ing weights (for ω → 0): (a) Γ+,· = (~v+)−1,
(b) Γ−,· = (~v−)−1, (c) Γ·,+ = (~v+)−1, and (d)
Γ·,− = (~v−)−1.

This equation is solved by an ansatz Lm′(x̃) =
Lm′ exp [− im′ωx̃ (1/v+ + 1/v−)], which leads to an
iterative equation for Lm′

sLm′ +m′
(
Lm′+1 − Lm′−1 + 2Lm′

)
= 0, (19)

where s = 2−2/κ+ iν with ν = ω(v++v−)~2/(κη).
The explicit solution of (19) is
Lm(s) = −sΓ (m+ 1)Ψ(m+ 1, 2;−s), (20)

with Ψ(a, b; z) being the confluent hypergeometric
function of the second kind. Note that in the usual
case of spinless TRI systems, Lm satisfies a similar
equation as (19), but with sTRI = 2iωv/η, where
v is the velocity of the state at energy ε [24]. The
main difference is that sTRI is fully imaginary, while
in our case, s has a finite real part.

The treatment of the right block R is fully analo-
gous. Denoting by Rm(x) the sum of all right-hand
blocks that have their left boundary at point x with
2m lines (with m an integer), we find that Rm(x) =
Lm(−x) and, with a similar ansatz, Rm = Lm.

Let us finally consider the central block Z. As
compared to L and R, this block has one additional
line which connects points x̃ and x, i.e., for the left
and right blocks that have 2m′ and 2m retarded and
advanced lines attached, the central block Zm′,m
connecting them has 2m′+ 1 lines at its left bound-
ary and 2m + 1 lines at its right boundary. For in-
stance, the diagram in Fig. 1b has 2m′ + 1 = 3 and
2m+ 1 = 1.

To derive a differential equation for Zm′,m(x̃, x),
we have to make an assumption on the direction
of the extra line. Its type depends on the sign of
x− x̃ and introduces a kind of asymmetry because
our problem differentiates left and right directions.
Here, we assume x̃ − x < 0, i.e., that the addi-
tional line is going from left to right, like in Fig. 1b.
The total derivative of Zm′,m(x̃, x) with respect to x
includes the contributions from scattering vertices,
but it also has to include the derivative of the final
vertex. These final vertices are analyzed analogously
to the initial vertices. Out of four possibilities, only
two are phaseless and thus contribute to the final
sum of diagrams. They correspond to vertices with
lines incoming only from a single direction, i.e., both
from left or both from right. The list of all phase-
less initial and final vertices is summarized in Fig. 4,

together with their corresponding weights, denoted
by Γ±,. and Γ.,± for initial and final vertices, re-
spectively.

Computing the total derivative of the central
block at the final point x, assuming x̃ < x, we find
that

dZm′,m(x̃, x)

dx
= ± iω

v±
Zm′,m(x̃, x)

− η

~2v+v−
(
2m2κ+ 2m+ 1

)
Zm′,m(x̃, x)

+
ηκ

~2v+v−

[
(m+1)2Zm′,m+1(x̃, x)e

iωx( 1
v+

+ 1
v−

)

+ m2Zm′,m−1(x̃, x)e
− iωx( 1

v+
+ 1
v−

)
]
. (21)

The sign of the first term on the right-hand side
depends on the final vertex type, i.e., Γ·,+ or Γ·,−.
It turns out, on the other hand, that this expres-
sion does not depend on the sign of x̃ − x. Note
that when v+ = v− and κ = 1, (18) and (21) re-
duce to the known spinless TRI case [24]. While
we are not aware of any analytic solution for the
differential-recursive equation (21), in general, the
direct knowledge of the full function Zm′,m(x̃, x) is
not required for the computation of observables. An
example of this will be given in the next section
when discussing the quantum boomerang effect.

We conclude this section by expressing the
Green’s function correlator in (14) in terms of the
blocks L, R, and Z described above. For x̃ < x, and
if we suppose that the initial wave function only
populates the state with initial velocity v+ (this is
the practical case that will be considered in Sect. 4),
the correlator

GR(x, x̃, ε)GA(x̃, x, ε− ~ω) =
Γ x̃<x+,+

~2v2+
+

Γ x̃<x+,−

~2v+v−
(22)

is the sum of two contributions corresponding to the
two possible final vertices c and d in Fig. 4, with

Γ x̃<x+,+ =

∞∑
m,m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm(x), (23)

Γ x̃<x+,− =

∞∑
m,m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm+1(x). (24)

Finally, in the opposite case, i.e., x̃ > x, (22) still
holds, but with Γ x̃<x+,± changed to

Γ x̃>x+,+ =

∞∑
m,m′=0

Lm′+1(x)Zm′,m(x, x̃)Rm+1(x̃),

(25)

Γ x̃>x+,− =

∞∑
m,m′=0

Lm′(x)Zm′,m(x, x̃)Rm+1(x̃). (26)

Together with the solution of (21), (22)–(26) consti-
tute the final solution of the localization problem.
In the next section, we will apply this formalism
to access the time evolution of a particular observ-
able, the mean position of wave packets, featuring
the quantum boomerang effect.
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4. Quantum boomerang effect without
time-reversal symmetry

We will now apply the above formalism to the
theoretical description of a concrete problem, the
quantum boomerang effect (QBE). We recall that
QBE describes a back-and-forth motion of the
mean position of a quantum particle launched with
nonzero initial velocity in a disordered potential.
Here, we describe this phenomenon based on the
TRI-broken Hamiltonian H0 +V , with the free part
H0 defined by (5).

4.1. Mean position

To describe QBE within the Berezinskii tech-
nique, we consider for definiteness a wave packet
initially launched in a disordered potential with the
mean eigen-wave-number k+ of the Hamiltonian (5)
in the corresponding spin state |χ+〉. We denote by
ε0 = E−(k+) the associated energy. We thus write
the initial wave function as

Ψ0(x) =
1

(πσ2)
1
4

exp

(
− x2

2σ2
+ik+x

)
|χ+〉,

(27)

where σ is the wave-packet width. As explained in
the previous sections, the ensuing dynamics of this
state in the disorder gives rise to a coupling with
the backward-propagating state of wave number k−
and spin component |χ−〉.

By definition, the disorder-average mean position
is

〈x(t)〉 ≡
∫

dx x|ψ(x, t)|2. (28)

Using ψ(x, t) =
∫

dx′GR(x, x′, t)Ψ0(x′), we can re-
late its Fourier transform 〈x(ω)〉=

∫
dt e iωt〈x(t)〉

to the Green’s function correlator as

〈x(ω)〉 =
1

2π~

∫
dxdx′dx′′dε Ψ0(x′)Ψ∗0 (x′′)

×x GR(x, x′, ε)GA(x′′, x, ε− ~ω), (29)

where we expressed the retarded and advanced
Green’s functions in the Fourier domain. To sim-
plify this expression, we make use of (14), which
leads to

〈x(ω)〉 =

∫
dxdx̃dε xW (x̃, kε)

× GR(x, x̃, ε)GA(x̃, x, ε− ~ω), (30)

with W being the Wigner distribution of the initial
state

2π~W (x̃, kε) =

∫
dr e− ikεrΨ0

(
x̃+

r

2

)
Ψ∗0
(
x̃−r

2

)
.

(31)

For an initial wave function (27) of spatial width
σ much smaller than the mean free path, we find
W (x̃, kε) ≈ ~−1δ(x̃)δ(kε − k+), such that, eventu-
ally,

〈x(ω)〉=v+

∞∫
−∞

d(∆x) ∆xGR(x, x̃, ε0)GA(x̃, x, ε0−~ω),

(32)

where for convenience we replaced the integral over
x by an integral over ∆x ≡ x − x̃, using that the
integrand depends only on x − x̃ due to statisti-
cal translational invariance. Equation (32) directly
connects the average mean position to the Green’s
function correlator, which we now compute using
the results of the previous section.

4.2. Time evolution of the boomerang effect

Inserting the general Berezinskii result (22)
into (32), we infer
〈x(ω)〉 = 〈x(ω)〉+ + 〈x(ω)〉−, (33)

where

〈x(ω)〉+ =
2`

v+

∑
m′

(
Lm′S0

m′ + Lm′+1S
1
m′
)

(34)

is the contribution of velocities v+ (technically, of
the final vertex c in Fig. 4), and

〈x(ω)〉− =
2`

v−

∑
m′

(
Lm′S2

m′ + Lm′S3
m′
)

(35)

is the contribution of velocities v− (final vertex d
in Fig. 4). Notice that we here introduced for con-
venience the mean free path ` = τ+v+ = τ−v−. In
(34) and (35), the two terms on the right-hand side
are the contributions of x̃ < x and x̃ > x, respec-
tively, with the coefficients Lm defined by (20). The
quantities Sim, on the other hand, are given by spa-
tial integrals of the block functions Rm and Zm′,m.
For instance, we have

S0
m′ =

1

2`

∑
m

∞∫
0

(d∆x) ∆xe
− im′ωx̃( 1

v+
+ 1
v−

)

× Zm′,m(x̃, x)e
imωx( 1

v+
+ 1
v−

)Rm. (36)

To compute the coefficients S0
m′ , we perform a par-

tial integration on the right-hand side and use (21)
to express the derivative dZm′,m′(x̃, x)/dx̃ in terms
of Zm′,m. This provides us with the iterative equa-
tion

2`Q0
m + iν

(
m+

v−
v++v−

)
S0
m − 2`ηβmS

0
m

+m2S0
m−1 + (m+1)2S0

m+1 = 0, (37)

where βm ≡ (2κm2 +2m+1)/(~2v+v−), and we re-
mind that ν ≡ ω(v+ + v−)~2/(κη). The coefficient
Q0
m is defined as

Q0
m =

1

2`

∑
m

∫ ∞
0

d(∆x) e
− im′ωx̃( 1

v+
+ 1
v−

)

×Zm′,m(x̃, x)e
imωx( 1

v+
+ 1
v−

)Rm (38)
and is deduced from an iterative equation similar
to (37)

435



J. Janarek et al.

Lm + iν

(
m+

v−
v+ + v−

)
Q0
m − 2`ηβmQ

0
m

+m2Q0
m−1 + (m+1)2Q0

m+1 = 0. (39)
The coupled system of equations (37) and (39) is
closed, so that at a formal level, it can, in princi-
ple, be solved to find the coefficients S0

m and, in
turn, to compute the first sum on the right-hand
side of (34). The calculation of the coefficients S1

m,
S2
m, and S3

m that appear in (34) and (35) follows the
same lines. We provide the corresponding iterative
equations they obey in Appendix C for the sake of
completeness.

However, instead of exactly computing all the
Sim coefficients, the mean position can be con-
veniently evaluated from its short-time expansion
using a Padé approximant [33, 34]. The short-
time expansion of 〈x(t)〉+ and 〈x(t)〉− is system-
atically obtained by inserting the series Sim(ν) =∑
n s

i
m,n/(iν)n and Qim(ν) =

∑
n q

i
m,n/(iν)n in the

iterative relations (37) and (39) and also (46)–(51)
from Appendix C, and computing the sim,n and qim,n
coefficients at arbitrary order in 1/ν. This proce-
dure eventually yields the following short-time ex-
pansion for the mean position
〈x(t)〉
v+τ

=
t

τ
− t2

2τ2
+

t3

6τ3

−

[
1 + ∆

(
4 + ∆

(
8 + ∆(4 + ∆)

))]
t4

24(1 + ∆)4 τ4
+O(t5),

(40)

where ∆ ≡ v−/v+ and τ is defined by (12). In
Appendix D, we also provide the corresponding ex-
pansions for the partial components 〈x(t)〉+ and
〈x(t)〉− that respectively describe right- and left-
moving particles after the last scattering event.
In Fig. 5, we show a comparison between an ex-
act numerical calculation of 〈x(t)〉± based on a
temporal wave-packet propagation with the disor-
dered Schrödinger equation (details on the numeri-
cal simulations are given in the figure caption) and
the short-time expansion up to order 11 obtained
by solving the Berezinskii equations as explained
above. Numerical and theoretical results are in very
good agreement without any fit parameter up to
t/τ ≈ 3. This corresponds to a finite radius of con-
vergence in time, which is also present in the TRI
version of the quantum boomerang effect [15]. This
radius seems to be dependent on the ratio of veloc-
ities ∆. Most importantly, as indicated by (40), the
expression of 〈x(t)〉 is no longer universal because
it depends on the velocities’ ratio starting from the
4th order. This is a significant difference with the
TRI quantum boomerang effect, which solely de-
pends on the dimensionless time scale t/τ at all
times. The TRI solution is fully recovered when
v+ = v− = v.

It is also instructive to compare the exact,
quantum-mechanical short-time expansion (40)
with the classical prediction of the Boltzmann

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

Fig. 5. Numerical (solid lines with error bars) and
short-time diagrammatic solution (dashed lines) for
the mean position computed up to order O(t11) for
a disordered system whose free Hamiltonian part
is given by (5). The numerical simulations con-
sist of a temporal propagation of the initial state
(27) with the Schrödinger equation. For these sim-
ulations, we choose σ = 50 for the wave-packet
width, γ = 0.4, δ = Ω = 0.4 for the Hamil-
tonian parameters, and an energy ε0 = 0. This
energy is associated with the two eigen-momenta
k+ = 1.1850 and k− = −0.6453. The respective ve-
locities are v+ = 0.8014 and |v−| = 0.5307, and
the spin overlap is κ = 0.5050. We take a disorder
strength η = 0.0049, so that the mean free time is
τ = 129.4159. The simulations are done using a sys-
tem of length L = 10000 with a small discretization
∆x = 0.2, and numerical results are averaged over
40960 disorder realizations.

equation, which discards any interference in the
multiple scattering process. At a classical level,
the mean position is simply given by 〈x(t)〉class. =
τv+(1−e−t/τ ), which is essentially the same expres-
sion as in TRI systems (see the supplemental mate-
rial of [18] for details on the classical calculation).
This classical result has the short-time expansion
〈x(t)〉class.

v+τ
=
t

τ
− t2

2τ
+

t3

6τ3
− t4

24τ4
+O(t5),

(41)

which starts to deviate from the quantum-
mechanical prediction (40) starting from the 4th
order. For completeness, in Appendix D, we also
provide the short-time expansions for the classical
components 〈x(t)〉class.+ and 〈x(t)〉class.− .

With the short-time expansion (40) at hand, we
can infer the 〈x(t)〉 using a Padé approximant of
the full Taylor series [35]. To this aim, we use that,
at long time, 〈x(t)〉 ∝ 1/t2 (see below). With this
knowledge, we compute the mean position at any
time using

〈x(t)〉 = v+τ
(τ
t

)2
lim
n→∞

An(t), (42)

where An(t) is a diagonal Padé approximant [35]
whose coefficients are computed from the Tay-
lor expansion at a desired order n (e.g., (40) for
n = 4). In Fig. 6, we compare the exact numerical
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Fig. 6. Mean position as a function of time. The
main plot shows numerical data (points with error
bars) for 〈x(t)〉+, 〈x(t)〉− and 〈x(t)〉 = 〈x(t)〉+ +
〈x(t)〉−, together with the Berezinskii solutions
computed with a Padé approximant (solid lines)
and the classical solutions (54) and (55) given in
Appendix D (dashed lines). Note that no fit pa-
rameter is used. The inset shows a log–log scale of
〈x(t)〉 (points with error bars) and a fitting function
α log(βt/τ)/(t/τ)2 (black dashed line), with fitted
parameters α = 99.65 and β = 0.18. The initial
state and parameters of the system are the same as
in Fig. 5.

simulations for 〈x(t)〉+, 〈x(t)〉− and 〈x(t)〉 to the
corresponding Padé approximants constructed from
the Berezinskii technique. The plots reveal the QBE
— after a few mean free times, the mean position
exhibits a maximum and eventually decays to zero.
For all quantities, we find a very good agreement be-
tween the simulations and the Berezinskii approach
up to long times.

Let us finally come back to the long-time behav-
ior of 〈x(t)〉. The latter is best visualized in the inset
in Fig. 6, which shows the mean position obtained
from numerical simulations of the Schrödinger equa-
tion in the log–log scale. We find that its long-time
asymptotics is well approximated by a function scal-
ing as α log(βt/τ)/(t/τ)2, which is of the same form
as in spinless TRI Hamiltonians [33]. In the present
case of Hamiltonian (5), however, a direct deriva-
tion of this asymptotic limit appears to be much
more involved and is left for future work.

5. Conclusions

In this paper, we have extended the Berezin-
skii diagrammatic technique describing the dynam-
ics of Anderson localization in one dimension to
TRI-broken disordered Hamiltonians by including
a spin–orbit coupling term that induces an asym-
metry between right and left scattering processes.
Using the formalism, we have computed the time
evolution of the mean position of a wave-packet
launched in a given direction and recovered the

quantum boomerang effect discussed in [18]. As an
extension of this work, it would be interesting to
extract analytical long-time, asymptotic expansions
for the mean position in this system or to charac-
terize the dynamics of other observables such as the
mean square width 〈x2(t)〉 or the full density distri-
bution of the wave packet.
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Appendix

A: Identification of scattering vertices

In this appendix, we briefly explain the proce-
dure used to identify the set of phaseless scattering
vertices in Fig. 3. To this aim, let us consider the
diagram in Fig. 1a once more. The diagram can be
split into spatial intervals lying between consecutive
scattering events xi and xi+1. Each interval contains
a specific number of lines. There are in total 4 kinds
of lines: retarded lines and advanced lines (both in
two possible directions). The numbers of lines are
denoted as g+ and g− (for retarded lines), and (g+)′

and (g−)′ (for advanced lines), with the index ± in-
dicating their direction. For example, the interval
lying between the points x′ and x3 in the diagram
from Fig. 1a has g+ = 2, g− = 1, (g+)′ = 2, and
(g−)′ = 1 lines. Each scattering event induces a def-
inite change in the number of respective lines, which
we denote by ∆g± and (∆g±)′. These changes deter-
mine the phases associated with scattering vertices.
To find these phases, we first note that each incom-
ing and outgoing retarded propagator line at point
x carries a phase that depends on the direction of
the line and on its type:

• every incoming (outgoing) positive line, i.e.,
propagating to the right, carries a k+x
(−k+x) phase;

• every incoming (outgoing) negative line, i.e.,
propagating to the left, carries a −k−x (k−x)
phase.

For advanced lines, the phases have opposite signs.
For vertices involving only one type of lines, e.g.,

only retarded Green’s functions, the total phase φ
of a scattering vertex is then calculated from the
total change of the number of lines, i.e.,

φ = ±
(
∆g+k+ −∆g−k−

)
x. (43)

Hence, the phaselessness condition of the scatter-
ing vertex in the limit of ω → 0 is that the vertex
does not change the total number of incoming and
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Fig. 7. Schematic representation of (45). Note that Lm′(x̃ + δx) can be constructed with Lm′(x̃) and all
possible combinations of the scattering vertices. The figure shows one example for each scattering vertex.

outgoing lines, that is, ∆g± = 0. This condition is
very similar to the original TRI Berezinskii method,
although in our system k+ and k− do not cancel
each other. In the case of the mixed-line vertices
involving both GR0 and GA0 , the problem is slightly
different — lines from GR0 and GA0 may cancel each
other. The total phase of a vertex is

φ =
[

(∆g+−(∆g+)′) k+− (∆g−−(∆g−)′) k−

]
x.

(44)
This phase is zero only if ∆g± − (∆g±)′ = 0.

B: Differential equation for Lm blocks

In this appendix, we provide details about the
derivation of the differential equation (18) for the
left blocks of correlation diagrams. To calculate
Lm′(x̃), we consider how it changes with an in-
finitesimal change of the boundary position, say
x̃ → x̃ + δx, by adding all possible contributions
from different scattering vertices. For this purpose,
we have numbered the lines on the boundary by
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assigning consecutive numbers to the outgoing and
incoming lines, as presented in Fig. 7. The figure
also shows a schematic way of adding new vertices

to Lm′(x̃), bearing in mind that the lines cannot
create loops nor cross each other. We get the corre-
sponding equation

Lm′(x̃+ δx) = Lm′(x̃) + (−2m′)
ηδx

2
Lm′(x̃)

(
1

v+
+

1

v−

)2

+ ηδxLm′(x̃)

[
−m

′(m′−1)

v2+
− m′(m′−1)

v2−
− 2m′2

v+v−
− 2κm′(m′−1)

v+v−
+
m′2

v2+
+
m′2

v2−
+

2m′2

v+v−

]

+
ηδx κ

v+v−

[
(m′)2Lm′+1(x̃)e

iωx̃( 1
v+

+ 1
v−

)
+ (m′)2Lm′−1(x̃)e

− iωx̃( 1
v+

+ 1
v−

)
]
. (45)

After taking the limit δx → 0 and some simplifica-
tions, we finally obtain (18) from the main text.

C: Iterative Berezinskii equations

In this appendix, we provide the coupled equa-
tions for the Sim coefficients (i = 1, 2, 3) that ap-
pear in the expressions of the mean position, i.e.,
(34) and (35) in the main text.

Using the same procedure as for S0
m, explained in

the main text, we find the following coupled itera-
tive equations for the Sim, Qim (i = 1, 2, 3)

−2`Q1
m + iν

(
m+

v+
v+ + v−

)
S1
m − 2`ηβmS

1
m

+m2S1
m−1 + (m+ 1)2S1

m+1 = 0, (46)

Lm+1 + iν

(
m+

v+
v+ + v−

)
Q1
m − 2`ηβmQ

1
m

+m2Q1
m−1 + (m+1)2Q1

m+1 = 0, (47)

2`Q2
m + iν

(
m+

v−
v+ + v−

)
S2
m − 2`ηβm S

2
m

+m2S2
m−1 + (m+1)2S2

m+1 = 0, (48)

Lm+1 + iν

(
m+

v−
v+ + v−

)
Q2
m − 2`ηβmQ

2
m

+m2Q2
m−1 + (m+1)2Q2

m+1 = 0, (49)

−2`Q3
m + iν

(
m+

v+
v+ + v−

)
S3
m − 2`ηβm S

3
m

+m2S3
m−1 + (m+1)2S3

m+1 = 0, (50)

Lm+1 + iν

(
m+

v+
v+ + v−

)
Q3
m − 2`ηβmQ

2
m

+m2Q3
m−1 + (m+ 1)2Q3

m+1 = 0. (51)

D: Partial components 〈x(t)〉±

We finally provide the short-time expansions
for 〈x(t)〉+ and 〈x(t)〉−, and the exact expressions
(valid at any time) of their classical counterparts
〈x(t)〉class.+ and 〈x(t)〉class.−

〈x(t)〉+
v+τ

=

[
t

τ
− 1

1+∆

t2

τ2
+

3−∆

6(1+∆)

t3

τ3

−∆(∆+1)[∆(∆2 + ∆− 3)− 7]− 2

12(∆+1)5
t4

τ4

]
+O(t5),

(52)

〈x(t)〉−
v+τ

=

[
1−∆

2(1+∆)

t2

τ2
− 1−∆

3(1+∆)

t3

τ3
+

−∆(9−∆(∆(3∆(∆ + 3) + 8)− 8)) + 3

24(∆+1)5
t4

τ4

]
+O(t5), (53)

〈x(t)〉class.+

τv+
=

[
2∆

1+∆

(
1−e−t/τ

)
+

1−∆
1+∆

t

τ
e−t/τ

]
,

(54)

〈x(t)〉class.−
τv+

=
1−∆
1+∆

(
1−e−t/τ − t

τ
e−t/τ

)
. (55)
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We analytically derive the updates of a transmission-line network’s interaction matrix and scattering
matrix as a consequence of a fault (an interrupted transmission line). We find that the fault alters not
only the direct coupling between the two nodes that were previously connected by the faulty cable,
but that the fault also alters these nodes’ self-interactions in a non-trivial manner. Given the network’s
topology, it is then possible to remotely localize the fault on the faulty cable based on measurements of
the faulty network’s scattering coefficient(s). Our analytical expressions make it possible to efficiently
calculate the expected scattering matrix for different fault locations (orders of magnitude faster than a
brute-force evaluation). We report a simple demonstration for which we assume to know the network’s
topology as well as which cable is faulty; we identify the location of the fault on the faulty cable by
comparing the broadband scattering coefficient(s) swept across candidate fault locations to the one(s)
measured on the faulty network.

topics: transmission-line network, fault localization, physical-model-based remote sensing, isospectral
reduction

1. Introduction

In a simple cable, a fault is easily localized via
time-domain analysis of the cable’s reflection or
transmission coefficient. In this paper, we are in-
terested in the more challenging problem of local-
izing a fault in a cable that is part of a complex
transmission-line network. Thus, we cannot probe
the cable in isolation nor directly. We can only probe
the cable remotely via asymptotic scattering chan-
nels connecting the network to the outside world.
In general, asymptotic scattering channels are not
directly connected to the faulty cable of interest.

Fault localization in a complex transmission-line
network can be understood as a sensing problem
inside a complex scattering medium. On the one
hand, reverberation in such a complex system can
drastically enhance the achievable resolution be-
cause it boosts the wave’s sensitivity to the per-
turbation of interest. Indeed, we recently demon-
strated a direct link between the resolution with
which an object can be localized inside a chaotic
cavity and the dwell time of the wave inside the
cavity [1]. The chaotic cavity acts essentially like
a generalized interferometer, and the resulting in-
terferometric sensitivity can yield orders of magni-
tude finer resolution than in free space. Deeply sub-
wavelength resolution without capturing evanescent
waves is thereby feasible [1]. On the other hand,
data analysis inevitably must take into account the
complexity of the specific system. In [1], the exact

geometry and material composition of the chaotic
cavity were unknown such that a calibration dataset
had to be measured to characterize the specific sys-
tem’s complexity. In contrast, in the present case
of a transmission-line network, the topology is usu-
ally known, so that its complexity can be taken into
account without the need for calibration measure-
ments.

The considered problem of remotely localizing
a network fault is of practical importance, for in-
stance, to diagnose line outages in large networks.
Currently, such problems are often studied under
simplifying assumptions (e.g., using DC approxima-
tion of AC power flow models) and assuming that a
line outage simply removes the line from the net-
work topology [2]. Our analytical calculations in
the present paper based on a physical model sug-
gest that a fault additionally impacts (in a signifi-
cant and non-trivial manner) the self-interactions
of the nodes that were connected by the faulty
line.

Meanwhile, we note that other physics-based
remote-sensing approaches for transmission-line
networks are currently being explored in the litera-
ture. For example, [3] considers the case of an initial
network being split at various edges and nodes into
two networks; it is shown in [3] that by determining
the networks’ Euler characteristic from scattering
measurements [4], one can determine at how many
edges and nodes the initial network was split —
even without knowing its topology.
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Fig. 1. Considered fault: the cable linking nodes α
and β is interrupted (cut) at a distance L1 from α,
creating two new nodes γ and δ. The sketches show
(a) an intact cable and (b) a faulty cable of interest
within a larger transmission-line network.

Related to the present paper is also a “differential
DORT” technique† for the detection of soft faults
in complex wire networks that is similarly based on
measuring the scattering matrix of the intact and
faulty network, as well as knowledge of the network
topology [5]. The signal processing in this “differ-
ential DORT” technique consists in identifying the
wavefront that focuses on the fault (hence the term
“DORT” in the technique’s name), computing the
field distribution within the network, and compar-
ing it to the baseline field distribution (hence the
term “differential” in the technique’s name). How-
ever, as pointed out in [5], this differential approach
relies on the Born approximation (i.e., the amount
of power scattered by the fault is small, so there is
no significant portion of the wave energy that inter-
acts with the fault more than once). Therefore, the
technique is limited to soft faults, which only weakly
perturb the network. In contrast, the present pa-
per considers hard faults, which are open circuits.
Hence, many interactions with the fault occur, and,
in fact, the resolution improves with the number of
interactions [1].

In the present paper, we derive an analytical ex-
pression for how a fault alters the interaction ma-
trix of a given network and thereby the observ-
able scattering coefficient(s). We numerically vali-
date the derived expressions and demonstrate their
application to remote physical-model-based fault
localization.

†1DORT — decomposition of the time reversal operator

2. Background

In this section, we recall the well-established
background on wave scattering in a transmission-
line network on which our subsequent analysis
builds.

A transmission-line network, also known as a
“quantum graph” [6–8], can be understood as com-
posed of non-resonant scattering entities (its nodes,
i.e., junctions) that have certain couplings between
each other (its bonds, i.e., cables) and with the out-
side world (asymptotic scattering channels). Let us
consider a system composed of n nodes of which
m ≤ n are directly connected to the asymptotic
scattering channel; we assume that each asymptotic
scattering channel is non-dispersively coupled to ex-
actly one node.

The considered transmission-line networks
are also known as Neumann quantum graphs,
and [7, 9, 10] derived an exact expression relating
the system’s scattering matrix S ∈ Cm×m to the
network topology

S = Im − 2i W †
1

H + iWW †
W. (1)

The matrices involved in (1) are defined as follows:
1. Im ∈ Bm×m is the m×m identity matrix.
2. W ∈ Bn×m is the coupling matrix describ-

ing the coupling between each node and each
asymptotic scattering channel. If the i-th
meta-atom is connected to the j-th asymp-
totic scattering channel, the (i, j)-th entry of
W is unity; otherwise, it is zero.

3. H ∈ Rn×n is the interaction matrix of the
transmission-line network. Its (i, j)-th entry
is defined as follows

Hi,j =

−
∑
l 6=i

Ci,l cot(kLi,l), if i = j,

Ci,j csc(kLi,j), otherwise.
(2)

Here, Ci,j is unity if the nodes indexed i and
j are directly connected, and zero otherwise;
Li,j is the length of the cable connecting the
nodes indexed i and j; k is the wavenumber.
In the present paper, we limit ourselves to re-
ciprocal bonds, so H is a symmetric matrix.
Moreover, its dependence on the wavenumber
implies that H, and therefore also S, are fre-
quency dependent.

3. Physics-compliant fault model

The fault considered in this paper is illustrated
in Fig. 1, where the cable of length L linking nodes
α and β is cut at a distance L1 from α. This fault
implies that the direct link between nodes α and β is
interrupted, but this fault is not equivalent to just
removing the cable between α and β. The waves
will still travel along the faulty cable and will be
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Fig. 2. Fault-induced update of the interaction matrix in the reduced n×n basis. The update concerns 2× 2
block of the interaction matrix involving nodes α and β.

reflected by the fault, which we assume to be an
open-circuit end. Therefore, the physics-compliant
fault model consists of two modifications of the orig-
inal network topology:

1. Removal of the cable linking nodes α and β.
2. Creation of two new nodes, γ and δ, which

are directly connected to α and β via cables
of length L1 and L− L1, respectively.

Let us denote by H0 and S0 the interac-
tion matrix and scattering matrix of the intact
transmission-line network of interest, respectively.
Assuming the network topology is known, H0 and
S0 are also known analytically. When a fault ap-
pears, the faulty network is described by H1 and S1.
Note that the dimensions of H1 are (n+2)× (n+2)
because of the two new nodes γ and δ. (Of course,
the dimensions of both S1 and S0 are n× n.)

We assume that we know (i) the network topology
and (ii) which cable is faulty, and we seek to localize
the fault on the faulty cable by estimating L1. Our
next goal is hence to find an analytical expression
for ∆S = S1 − S0 as a function of the sought-after
parameter L1.

4. Interaction matrix update due to fault

As a first step, we seek to identify in this section
how the interaction matrix of our network must be
updated to account for the fault. Without loss of
generality, we index the nodes of the intact network
such that α and β have indices (n − 1) and n, re-
spectively.

So far, we have considered the interaction matrix
always in the canonical basis, where its dimensions
directly correspond to the number of nodes. How-
ever, there are equivalent representations reduced
to a subset of nodes. Indeed, nodes that are not
directly connected to asymptotic scattering chan-
nels can equivalently be understood as merely be-
ing a non-local coupling mechanism between the
remaining nodes. Mathematically, such a reduced-
basis representation is based on the block matrix
inversion lemma. Calculations of reduced-basis in-
teraction matrices were presented in contexts rang-
ing from tight-binding network engineering [11]

to isospectral graph reduction [12]. In particu-
lar, we have recently used them to achieve covert
symmetry-based wave scattering control by encod-
ing the symmetry in the non-local interactions be-
tween “primary” meta-atoms such that the symme-
try is “hidden”, i.e., the symmetry is only appar-
ent in a reduced basis but not in the canonical
basis [13]; very recently, we also used a reduced-
basis representation to formulate and calibrate
compact physics-compliant models of massively
parametrized complex media such as “smart” radio
environments [14, 15].

In the present context, the two fault-induced new
nodes, γ and δ, are certainly not directly connected
to any asymptotic scattering channel (they have
only one connection to α or β, respectively). There-
fore, we can find an equivalent representation of H1

in the basis reduced to the n initial nodes. We begin
by writing H1 in block form

H1 =

[
H1,n X

Y Z

]
, (3)

where H1,n ∈ Rn×n, X ∈ Rn×2, Y ∈ R2×n, and
Z ∈ C2×2. Then, the reduced-basis representation
of H1 is

Hred
1 = H1,n −XZ−1Y. (4)

Since our goal is to expressHred
1 as an update ofH0,

we introduce∆ = H1,n−H0. Now, we can formulate
the impact of the fault as an update of the original
interaction matrix

Hred
1 = H0 + ∆−XZ−1Y = H0 + Γ . (5)

Next, we seek to define the entries of Γ =
∆−XZ−1Y in terms of L1. This procedure is illus-
trated in Fig. 2. The only non-zero entries of ∆ are
the ones in its bottom right 2× 2 block

∆n−1,n−1 = a = cot(kL)− cot(kL1),

∆n−1,n = ∆n,n−1 = b = −csc(kL),

∆n,n = c = cot(kL)− cot(k(L− L1)). (6)
The only non-zero entries of X = Y T are the fol-
lowing two

Xn−1,1 = Y1,n−1 = d = csc(kL1),

Xn,2 = Y2,n = e = csc(k(L− L1)). (7)
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The entries of Z are as follows
Z1,1 = f = −cot(kL1),

Z1,2 = Z2,1 = 0,

Z2,2 = g = −cot(k(L− L1)).
(8)

Ultimately, we find that only the bottom right 2×2
block of Γ is non-zero, i.e.,

Γn−1,n−1 = p = a− d2

f = cot(kL)− cot(kL1)

+
(csc(kL1))

2

cot(kL1)
,

Γn−1,n = Γn,n−1 = b = −csc(kL),

Γn,n = q = c− e2

g = cot(kL)− cot (k(L− L1))

+
(csc

(
k(L− L1))

)2
cot (k(L− L1))

.

(9)
Therefore, the fault has not only removed the

direct coupling between α and β, but it has also
changed the self-interactions of α and β in a non-
trivial way. One possible interpretation is that in
the reduced basis, α and β are now resonant be-
cause they have a cable of length L1 or L− L1, re-
spectively, with open-circuit termination attached
to them.

5. Scattering matrix update due to fault

In the previous section, we expressed the impact
of the fault as an update (parametrized by L1) of
the interaction matrix. In this section, we now eval-
uate how the scattering matrix of the network is
updated due to the fault. As seen in (1), to go from
the interaction matrix H to the scattering matrix
S, the matrix G = H + i WW † must be inverted.
We define

G1 = Hred
1 + i WW † = H0 + Γ + i WW † =

G0 + Γ = G0 + UDV, (10)
where

U =

[
0n−2,2

Q

]
and V =

[
0n−2,2

T Q−1
]
,

(11)
and where QDQ−1 is the eigendecomposition of
the bottom right 2 × 2 block of Γ , and 0n−2,2 is
a (n− 2)× 2 matrix of zeros.

Based on the Woodbury matrix identity, we ob-
tain
G1
−1 = G0

−1 −G0
−1U

(
D−1+V G0

−1U
)−1

V G0
−1

(12)
and hence
S1 = I − 2iW †G1

−1W =

S0+2iW †
[
G0
−1U

(
D−1+V G0

−1U
)−1

V G0
−1
]
W.

(13)

Fig. 3. Considered random transmission-line net-
work. Each of the two red nodes is directly con-
nected to one asymptotic scattering channel. The
location of the fault, at which the faulty cable is
interrupted, is highlighted in green.

Next, we seek to express Q and D in terms of
L1 so that we can analytically relate the change of
the observable scattering coefficient(s) to L1. The
analytical eigendecomposition of the bottom right
2× 2 block of Γ yields

Q =

−(q − p+ z)

2b

p− q + z

2b
1 1

 ,
D = diag

([
p+ q − z

2

p+ q + z

2

])
,

(14)
where z =

√
p2 − 2pq + q2 + 4b2, and the diag(·)

operator constructs a diagonal matrix from a vector.
Equations (13) and (14) are the key result of the

present paper, analytically relating the update of S
due to the fault to L1.

6. Application to an example network

In this section, we consider a specific example net-
work (i) to validate the key result of our analytical
calculations (i.e., (13)) and (ii) to demonstrate its
use for fault localization.

6.1. Numerical validation of (13)

We consider the example random transmission-
line network shown in Fig. 3. Two asymptotic scat-
tering channels are connected to the network, and
one of the network’s inner cables is interrupted by
a fault. We assume the wave speed to be 70 % of
the speed of light in free space.

In Fig. 4 we plot the frequency-dependent scat-
tering coefficients of the intact (blue) and faulty
(red) networks. The fault altered the network’s scat-
tering matrix very significantly. The blue and red
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Fig. 4. Comparison of the frequency-dependent scattering coefficients in terms of magnitude (a) and phase
(b) for the intact network (blue), the faulty network (red), and the faulty network evaluated with (13) (yellow).

curves are evaluated with the brute-force approach
from (2). However, in the case of the faulty network,
the scattering coefficients can be more efficiently
evaluated as updates of the intact network’s scatter-
ing coefficients using (13), yielding the yellow lines
in Fig. 4. The agreement between red and yellow
lines validates the analytical expression from (13).

6.2. Remote model-based fault localization

The faulty network’s transmission coefficient
S21(f) is a wave fingerprint of the fault’s loca-
tion [1, 16, 17]. Given (13), we can now analytically
calculate the expected transmission spectra for dif-
ferent candidate fault locations L1, in order to iden-
tify the one that best explains the measured S21(f)
of the faulty network.

For the sake of simplicity, we assume negligible
measurement noise. For our analysis, we restrict
ourselves to a rather small (arbitrarily chosen) fre-
quency interval, 37.3<f<49.8 MHz, with 50 linearly
spaced frequency points. We consider 1000 linearly
spaced candidate values of L1 between zero and the
length of the cable connecting α and β in the intact
network. For each candidate value of L1, we com-
pute the correlation coefficient of the transmission
spectrum with that measured on the faulty network.
Our estimate of L1 is then simply the candidate
value with the highest correlation coefficient. Our
results displayed in Fig. 5 provide an accurate es-
timate of L1, orders of magnitude better than the
smallest measured wavelength (4.2 m for 49.8 MHz).

Of course, the data analysis method can be re-
fined to endow it with robustness against mea-
surement noise [1] and/or environmental perturba-
tions [17], for example by training an artificial neu-
ral network for the wave fingerprint identification,

Fig. 5. Demonstration of remote model-based
fault localization for the faulty network from Fig. 3.
The vertical magenta-colored line indicates the
ground-truth value of L1.

as reported in [1, 17] for localization in a chaotic
cavity. The application of these techniques to the
localization of faults in transmission-line networks
is left for future work. The main purpose of the
present work is to demonstrate that in the case of
a transmission-line network, wave-fingerprint-based
localization techniques can be applied using an effi-
cient physics-compliant model, instead of having to
collect experimental calibration data.

7. Conclusions

To summarize, we have derived an analytical
expression for the update of a transmission-line
network’s scattering matrix due to a fault. We
found that besides removing the direct connection
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between two nodes, a fault also significantly alters
the self-interactions of these two nodes in a rather
complicated manner. Using the derived physics-
compliant model, we remotely localized the fault
in an example random network with high accuracy
based on the faulty network’s transmission spec-
trum. Looking forward, the signal-processing as-
pects of the methodology can be refined to remove
the need for knowing which cable is the faulty one,
and to be resilient against noise and environmental
perturbations. Naturally, experimental validations
at various scales are also envisioned.
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In an absorptive system, the Wigner reaction K-matrix (directly related to the impedance matrix in
acoustic or electromagnetic wave scattering) is non-selfadjoint, hence its eigenvalues are complex. The
most interesting regime arises when the absorption, taken into account as an imaginary part of the
spectral parameter, is of the order of the mean level spacing. I will show how to derive the mean density
of the complex K-matrix eigenvalues for the M -channel reflection problem in disordered or chaotic
systems with broken time-reversal invariance. The computations have been done in the framework of
the nonlinear σ-model approach, assuming fixed M and the dimension of the underlying Hamiltonian
matrix N → ∞. Some explicit formulas are provided for zero-dimensional quantum chaotic system as
well as for a semi-infinite quasi-1D system with fully operative Anderson localization.

topics: quantum chaotic scattering, random matrix theory, non-Hermitian matrices.

1. Introduction

Consider the problem of wave scattering from a
piece of random medium confined to a spatial do-
main D and described by a self-adjoint Hamiltonian
H, e.g.,

H=
∑
r∈Λ

V (r)
∣∣r〉〈r∣∣+ ∑

r∼r′

[
trr′
∣∣r〉〈r′∣∣+ tr′r

∣∣r′〉〈r∣∣],
(1)

where the second sum runs over nearest neighbours
on a lattice Λ (assumed to be confined to the do-
main D). The parameters tr′r are in general com-
plex, satisfying t∗rr′ = tr′r to ensure the hermiticity
of the Hamiltonian, H = H†, where we use t∗ to
denote complex conjugation of t and H† for Hermi-
tian conjugation of H. The disordered nature of the
medium is taken into account by choosing the on-
site potentials V (r) and/or hopping parameters tr′r
to be random variables. Such construction is known
in the literature as the Anderson model and pro-
vides the paradigmatic framework to study single-
particle localization phenomena. Note that form (1)
can also be used for modelling a quantum particle
motion on any graph r ∈ G, with trr′ being the
elements of the adjacency matrix of graph G.

The tight-binding representation is convenient as
it allows one to think of such a Hamiltonian as de-
scribed by a large N × N random matrix H, with
N being the number of sites in the lattice or graph.
Alternatively, one may think of its continuum ana-
logue, H = − ~2

2m∇
2 + V (r), r ∈ D, with the ap-

propriate (e.g., Dirichlet) conditions at the bound-
ary of D. In fact, under appropriate conditions,

the essentially random nature of wave scattering
can be generated by an irregularly shaped bound-
ary of the domain D, without any intrinsic po-
tential disorder. This is the standard case in the
so-called wave billiards, the paradigmatic toy sys-
tems for studying the effects of quantum or wave
chaos, see, e.g., [1–4]. In such a case, the famous
Bohigas–Giannoni–Schmit conjecture [5] allows one
to describe universal features of such systems ef-
ficiently by replacing the Hamiltonian H with a
random N × N matrix from Gaussian ensembles:
Gaussian orthogonal (GOE), Gaussian symplec-
tic (GSE), or Gaussian unitary (GUE), depending
on the presence or absence of time-reversal sym-
metry (and/or other relevant symmetries) in the
system.

A very convenient framework for describing the
scattering of classical or quantum waves from the
disordered or chaotic medium has been formulated
in [6] (see, e.g., [7] for more detail). Within such
a framework, which is frequently called in the lit-
erature the “Heidelberg model”, one constructs the
unitaryM×M energy-dependent scattering matrix
S(E) describing the scattering of waves incident on
a random medium at some energy E and then exit-
ing it viaM open scattering channels, numbered by
c = 1, . . . ,M (see Fig. 1). Unitarity reflects the flux
conservation, i.e., the vectors a = (a1, . . . , aM ) of
incoming and b = (b1, . . . , bM ) of outgoing ampli-
tudes are linearly related via b = S(E)a and have
the same norm.

The relation between S(E) and the medium
Hamiltonian H is then provided by the following
expression
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S(E) =
1− iK(E)

1+iK(E)
, K(E) =W †

1

E−H
W,

(2)
where columnsWc (c = 1, . . . ,M) of an N×M ma-
trixW of coupling amplitudes toM open scattering
channels can be taken as fixed vectors satisfying the
orthogonality condition

N∑
i=1

W ∗ciWbi = γcδcb, (3)

with γc > 0 ∀c = 1, . . . ,M determining the “bare”
strength of coupling of a given channel to the scat-
tering system. The resultingM×M Hermitian ma-
trix K(E) is known in the literature as the Wigner
reaction K-matrix. It is the hermiticity of K which
implies S-matrix unitarity and, hence, implies the
flux conservation. Note that the Wigner K-matrix
is experimentally measurable in microwave scatter-
ing systems, as it is directly related to the systems
impedance matrix, see, e.g., [8–10].

One of the serious challenges related to the theo-
retical description of scattering characteristics, how-
ever, is related to the fact that experimentally mea-
sured quantities suffer from inevitable energy losses
(absorption), e.g., due to damping in resonator walls
and other imperfections. Such losses violate the uni-
tarity of the scattering matrix and are important for
interpretation of experiments, hence considerable
efforts were directed towards incorporating them
into the Heidelberg approach [11]. At the level of
the model (1), the losses can be taken into account
by allowing the spectral parameter E to have a fi-
nite imaginary part by replacing E → (E + iα) ∈ C
with some α > 0. This replacement violates the
hermiticity of the Wigner matrix K(E + iα); in
particular, entries of K now become complex even
for real symmetric choice of H and real W . The
most interesting, difficult, and experimentally rel-
evant regime occurs when absorption parameter α
is comparable with the mean separation ∆(E) be-
tween neighbouring eigenvalues of the wave-chaotic
Hamiltonian H. For example, if one uses the Gaus-

SH
W

Fig. 1. A sketch of a chaotic wave scattering from
a region schematically represented by a cavity and
assumed to contain a random medium inside. An
operator governing wave dynamics in such a cavity
decoupled from the channels is assumed to be effec-
tively described by a large random matrix H. An
infinite lead is assumed to support M propagating
channels in the considered energy range and is cou-
pled to the cavity region by a matrix/operator W .
The ensuing M × M unitary scattering matrix S
can be related to H and W in the framework of the
Heidelberg approach and is given by (1).

sian random matrix model for H, normalized to
have the mean eigenvalue density given by Wigner
semicircle ν(E) = 1

(2π)

√
4− E2 in a finite interval

|E| < 2, one has ∆(E) = (ν(E)N)−1 as N→∞.
The statistics of the real and imaginary parts of
K-matrix entries in such a regime have been the
subject of a considerable number of theoretical pa-
pers [12–16] and are by now well-understood and
measured experimentally with good precision for
systems with preserved time-reversal invariance in
microwave cavities [8–10, 17] and microwave sim-
ulations of quantum graphs [18–21]. More recently,
experimental results forK-matrices in systems with
broken time-reversal invariance [22, 23] and eventu-
ally symplectic symmetry [24] have been also re-
ported.

In the present paper, we will be interested in yet
another characteristic of the non-Hermitian Wigner
matrix K(E + iα), the mean density of its com-
plex eigenvalues Kc = Re(Kc) − i Im(Kc), ∀c =
1, . . . ,M , defined as

ρM (u, v; y) =

〈
M∑
c=1

δ
(
u−Re(Kc)

)
δ
(
v−Im(Kc)

)〉
,

(4)
where we suppressed the energy dependence for
simplicity, indicating instead explicit dependence
on the appropriately scaled absorption parameter
y = 2πα

∆ . Here and henceforth, the angular brackets
〈. . .〉 indicate the averaging over ensemble of ran-
dom Hamiltonians H. Note that selecting the cou-
pling vectors Wc coinciding with the first M basis
vectors in N -dimensional space, i.e., W1 = e1 =
(1, 0, . . . , 0), W2 = e2 = (0, 1, 0, . . . , 0), etc., con-
verts the K-matrix to M × M top left corner of
the N ×N resolvent matrix (E+iα−H)−1. Physi-
cally, this corresponds toM perfectly coupled chan-
nels attached to the first M sites. From that an-
gle, we aim to characterize the eigenvalue density
for the corner resolvent minor at complex values of
the spectral parameter, which is an interesting and
potentially rich mathematical problem. We are not
aware of any systematic studies in that direction.

Note that in a fully chaotic, zero-dimensional sys-
tem, the positions of channel attachment do not
play any role due to inherent ergodicity. In a more
general non-ergodic situation, which may arise due
to the presence of Anderson localization phenom-
ena, one may think of such an arrangement as cor-
responding to a wave reflection problem. In such
a setting, the density (4) has appeared recently
in paper [25] as an important quantity facilitating
the computation of the mean density of S-matrix
poles, also known as resonances, in the complex
energy plane. The latter density is experimentally
measurable in wave-chaotic system [26, 27] and is
a subject of long-standing theoretical interest, see,
e.g., [28–34]. Clearly, the density (4) is also experi-
mentally measurable in principle, provided that ac-
curate experimental data can be sampled for the
whole K-matrix. The paper [25] included, without
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a proper derivation, an explicit expression for such
density, valid for a general class of disordered sys-
tems with broken time-reversal invariance, namely
for those that can be mapped on the so-called su-
persymmetric nonlinear σ-model (see [35] and dis-
cussions in [25] for more information). The present
paper aims to fill that gap by providing a detailed
derivation, which involves several steps that are
only relatively briefly described in the available lit-
erature.

To begin with, for the special simplest case
M = 1, the K-matrix consists of a single element,
and finding the density (4) is equivalent to comput-
ing the joint probability density of the real and com-
plex parts of such an element. Such density has been
originally addressed in [36] via quite tedious calcula-
tions in the σ-model approximation. A much more
efficient approach has been proposed later in [14]
(see also an account in [11]). Our goal in this pa-
per is to show how to generalize that approach to
any number of open channels M , on an example of
systems with broken time-reversal invariance. Along
these lines, we also try to elucidate some features of
the method which were omitted in the exposition
in [11, 14].

2. Derivation of the main results

2.1. General exposition of the method

Given two real parameters p ∈ R and q > 0, we
start with defining the following object

Cα(p, q) :=〈
Tr
(
z−K

(
E+iα

))−1
Tr
(
z−K

(
E− iα

))−1 〉
,

(5)
where we denoted z = p+iq, z = p− iq and assumed
the real energy E and the absorption parameter
α > 0 to be fixed. As eigenvalues of the matrices
K(E+iα) and K(E− iα) are complex conjugates
of each other, one can write each trace in terms
of Kc = Re(Kc) − i Im(Kc) := uc − ivc, with
vc > 0, representing (5) as a sum of diagonal and
off-diagonal contributions

Cα(p, q) = C(diag)
α (p, q) + C(off)

α (p, q), (6)
where

C
(diag)
α (p, q) :=

〈∑M
c=1

1
|z−Kc|2

〉
=〈∑M

c=1
1

(p−uc)2+(q+vc)
2

〉
, (7)

whereas C(off)
α (p, q) is given by

C
(off)
α (p, q) :=

〈∑M
c6=c′

1

(z−Kc)(z−Kc′ )

〉
=〈∑M

c6=c′
1

uc−uc′− i (2q+vc+vc′ )

×
[

1
p−uc+i(q+vc)

− 1
p−uc′− i (q+vc′ )

] 〉
. (8)

In the next step, let us introduce the Fourier trans-
form in variable p,

C̃α(k, q) :=
1

2π

∫ ∞
−∞

dp e ipk Cα(p, q). (9)

Taking into account q > 0, vc ≥ 0 ∀c, we get

C̃(diag)
α (k, q) =

〈
1

2

M∑
c=1

e ikuc−|k|(q+vc)

q + vc

〉
, (10)

whereas the Fourier-transformed off-diagonal part
C̃

(off)
α (k, q) now reads〈∑M

c 6=c′
(− i)

[
uc−uc′− i(2q+vc+vc′)

]−1
×
[
θ(−k)e ikuc+k(q+vc) + θ(k)e ikuc′−k(q+vc′ )

]〉
,

(11)
where θ(k) = 1 for k ≥ 0 and zero otherwise.

The next step is to continue analytically in the
parameter q from positive real values to the whole
complex plane slit along the negative real line
q = −v, v > 0, and evaluate the jump across the
slit, defined as

δC̃α(k, v>0):= lim
ε→0

(
C̃α(k,−v− iε)−C̃α(k,−v+iε)

)
.

(12)
For the diagonal part one finds after straightforward
algebra

δC̃(diag)
α (k, v > 0) = i lim

ε→0

〈 M∑
c=1

e ikuc+|k|(v−vc)

(
ε cos(ε|k|)

ε2 + (v − vc)2
− sin(ε|k|)(v − vc)

ε2 + (v − vc)2

)〉
, (13)

which upon using

lim
ε→0

[
ε cos(ε|k|)
ε2+(v−vc)2

− sin(ε|k|)(v−vc)
ε2+(v−vc)2

]
= π δ(v−vc)

(14)
reduces the diagonal contribution to

δC̃(diag)
α (k, v>0) = iπ

〈
M∑
c=1

e ikuc δ(v−vc)

〉
.
(15)

At the same time, straightforward computations
show that assuming that the eigenvalues of the
K-matrix are all distinct, i.e., uc − ivc 6= u′c − ivc′
for c 6= c′, the off-diagonal part does not generate
any non-vanishing jump across the slit at q = −v,
v>0, that is δC̃(off)

α (k, v>0) = 0. Finally, applying
in (15) the inverse Fourier transform in the variable
k and comparing with the definition (4) provides
the expression for the density of complex eigenval-
ues of the K-matrix in the form

ρM (u, v; y) =

∫ ∞
−∞

dk

2iπ2
e− iku δC̃α= y∆

2π
(k, v>0).

(16)
In this way, the problem of computing the den-
sity ρM (u, v; y) is reduced to the ability to evalu-
ate explicitly the correlation function Cα(p, q > 0)
in (5) and perform the required Fourier transforms
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and jump evaluation. Below, we show how this pro-
gram is executed for those disordered or chaotic sys-
tems with broken time-reversal invariance, which
can be mapped onto the corresponding nonlinear
σ-model.

2.2. Computations for systems with broken
time-reversal invariance

Referring the interested reader to [25] and ref-
erences therein for a detailed discussion of phys-
ical assumptions behind such mapping, we only
mention here that it provides the most powerful
and systematic approaches to addressing univer-
sal single-particle features of wave propagation in
a disordered medium, including Anderson localiza-
tion phenomena. Developed in the seminal works
by Efetov [35] building on earlier ideas of Weg-
ner [37], the model is defined by specifying a weight
function e−S[Q], with the action S[Q] describing in-
teraction between supermatrices Q(r) (i.e., matri-
ces with Grassmann/anticommuting/fermionic and
ordinary/commuting/bosonic entries) associated to
every site r ∈ Λ̃ located on an auxiliary lattice Λ̃.
The size of the supermatrices involved depends on
the underlying symmetries of the Hamiltonian H
and in the simplest case of the Hamiltonians with
fully broken time-reversal symmetry, denoted in
the standard nomenclature as class A with Dyson
parameter β = 2, the supermatrices are of the
size 4 × 4. Physically, such a model provides, in
a certain sense, a coarse-grained description of the
original microscopic Anderson model or its con-
tinuous equivalent, with non-universal features on
scales smaller than the mean free path l being ef-
fectively integrated out. In such a picture, every
(super)matrix Q(r) associated with a single lattice
site in Λ̃ “lumps together” behaviour of the micro-
scopic model on scales of the order of the mean free
path l. From this point of view, the billiards in the
quantum chaotic regime, where essentially l is of the
same order as the system length L, are effectively
characterized by nonlinear σ-models with a single
matrix Q without any spatial dependence. Such a

limit is traditionally called “zero-dimensional”. At
the same time, all effects of the Anderson localiza-
tion require considering extended lattices of inter-
acting Q-matrices.

One of the central objects of such theory turns
out to be the so-called “order parameter function”
(OPF) Fr(Q), which is formally defined [38] by in-
tegrating the weight e−S[Q] over all but one su-
permatrix Q(r). Due to global symmetries of the
action, the OPF can be shown to actually depend
on only a few real Cartan variables parametrizing
Q matrices. In particular, for systems with broken
time-reversal symmetry, one has Fr(Q) := F(λ, λ1),
with λ ∈ [−1, 1] and λ1 ∈ [1,∞] being the com-
pact and non-compact coordinates, respectively (we
omitted spatial dependence on r for brevity). Note
that the OPF characterizes the closed system, which
(in the absence of absorption) conserves the number
of particles, whereas allowing particles/waves at a
given energy to be sent via the lead to the random
medium and then collecting the reflected waves ren-
ders the medium open. However, if one makes an
assumption of “locality” of the lead, whose trans-
verse extent is assumed to be much smaller than
the mean free path l in the disordered medium,
then the coupling with it is effectively point-wise
at the level of σ-model description. Still, even such
point-wise lead may support arbitrarily many prop-
agation channels M , though we will always assume
that M remains negligible to the number of sites in
the underlying microscopic lattice Λ.

The power of nonlinear σ-model description in
our case lies in our ability to provide an explicit
representation for the correlation function Cα(p, q)
defined in (5) in terms of the OPF F(λ, λ1) at the
point of lead attachment. For systems with broken
time-reversal invariance, such computation has al-
ready been performed in [7], albeit formally only in
the “zero-dimensional” limit, with OPF taking an
especially simple form F(λ, λ1) = e−y(λ1−λ), where,
as before, y = 2πα/∆ is the effective absorption pa-
rameter. It is, however, straightforward to adapt the
calculation for arbitrary nonlinear sigma-model (see
Appendix B of [11]), the result being given by the
sum of two contributions, the disconnected one

C(disc)
α (p, q) =

M∑
c=1

1

p−γc E2 − i
(
q+π ν(E)γc

) M∑
b=1

1

p−γc E2 +i
(
q+π ν(E)γb

) (17)

and the connected one

C(con)
α (p, q) =

1∫
−1

dλ

∞∫
1

dλ1
F(λ, λ1)
(λ1−λ)2

RM (p, q|λ, λ1), (18)

where the last factor in (18) is given by

RM (p, q|λ, λ1) := Lp,q
M∏
c=1

(
p− γc E2

)2
+ q2 + 2π ν(E)γcλ+

(
π ν(E) γc

)2(
p− γc E2

)2
+ q2 + 2π ν(E) γcλ1 +

(
π ν(E)γc

)2 (19)

with the coupling coefficients γc defined in (3) and the differential operator Lp,q := 1
4 (

∂2

∂p2 + ∂2

∂q2 ).
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These expressions provide the basis for imple-
menting the analytic continuation procedure de-
scribed above. For simplicity, we consider below ex-
plicitly only the case E = 0, so that πν(E) = 1,
and largely concentrate on the simplest, yet impor-
tant, case of equivalent channels, namely γc = γ,
∀c = 1, . . . ,M†1. The analytic continuation pro-
cedure for the disconnected part amounts to a
straightforward repetition of our derivation of (16)
and yields ρ(disc)(u, v) =

∑M
c=1 δ(u) δ(v − γc). The

connected contribution to the density is much less
trivial, and we consider it below.

One starts with rewriting (19) in the form

RM (p, q|λ, λ1) = Lp,q
(
1− 2qγ(λ1−λ)

p2+q2+2γcλ1+γ2
c

)M
,

(20)
which after expanding the binomial reduces to

RM (p, q|λ, λ1) = −
M∑
l=1

(
M
l

)
(λ1−λ)l
(l−1)!

× ∂l−1

∂λl−1
1

Lp,q 2qγ
p2+q2+2γcλ1+γ2

c
. (21)

The latter form makes it an easy task to perform
the Fourier transform in the variable p assuming

q > 0, which essentially amounts to making in (21)
the replacement
Lp,q 2qγ

p2+q2+2γcλ1+γ2
c
−→ φ(k, q),

φ(k, q) = πγ
2

(
∂2

∂q2−k2
)
q

exp
[
−|k|
√
q2+2γλ1q+γ2

]
√
q2+2γλ1q+γ2

.

(22)
Following the procedures described in (12), we now
continue analytically in the parameter q from posi-
tive real values to the whole complex plane slit along
the negative real line q = −v, v > 0 and we evaluate
the associated jump across the slit

δφ(k, v>0) := lim
ε→0

(
φ(k,−v− iε)−φ(k,−v+iε)

)
,

(23)
which is easily found to be equal to

δφ(k, v>0)=πγ
(
∂2

∂v2−k2
) v cos

[
k
√

2γλ1v−v2−γ2
]

√
2γλ1v−v2−γ2

× θ
(
2γλ1v−v2−γ2

)
. (24)

Straightforward inversion of the Fourier transform
in the variable k converts the above into

δφ(u, v > 0) =
γ

2

(
∂2

∂u2
+
∂2

∂v2

)
v
δ
(
u−
√

2γλ1v−v2−γ2
)
+δ
(
u+
√

2γλ1v−v2−γ2
)

√
2γλ1v−v2−γ2

θ(2γλ1v−v2−γ2) =

1

2

(
∂2

∂u2
+

∂2

∂v2

)
δ (λ1 − xγ) , (25)

where xγ := u2+v2+γ2

2γ v . Next we trade the deriva-
tives over λ1 for those over xγ by the identity

∂l−1

∂λl−11

δ (λ1−xγ) = (−1)l−1 ∂
l−1

∂xl−1γ

δ (λ1−xγ)
(26)

and in this way arrive at replacing (21) with

R̃M (u, v|λ, λ1) = − 1
2

(
∂2

∂u2+
∂2

∂v2

)
×

M∑
l=1

(
M
l

)
(−1)l−1(λ1−λ)l

(l−1)!
∂l−1

∂xl−1
γ

δ (λ1−xγ) .
(27)

With this, (16) and (18) imply the density of
K-matrix eigenvalues via

ρ(con)(u, v)=

1∫
−1

dλ

2π

∞∫
1

dλ1
F(λ, λ1)
(λ1 − λ)2

R̃M (u, v|λ, λ1),
(28)

which upon substituting (27) into it and changing
the order of integrations yields

ρ(con)(u, v)=
1

4π

(
∂2

∂u2
+
∂2

∂v2

) 1∫
−1

dλGM (λ|xγ).
(29)

†1However, see expression (42) for two non-equivalent
channels.

Here we denoted

GM (λ|xγ) :=
M∑
l=1

(
M
l

)
(−1)l−1

(l−1)!

× ∂l−1

∂xl−1
γ

[
(xγ−λ)lT (λ|xγ)

]
,

(30)

with

T (λ|xγ) =
F(λ, xγ)
(xγ−λ)2

. (31)

Applying the Leibnitz formula
∂l−1

∂xl−1
γ

[
(xγ − λ)l T (λ|xγ)

]
=

l−1∑
k=0

(
l − 1
k

)
l!

(k+1)! (xγ−λ)
k+1 ∂k

∂xkγ
T (λ|xγ) (32)

and substituting it back to (30) one may change the
order of summation as

GM (λ|xγ) =
∑M

l=1
Al
∑l−1

k=0
Bk,lVk =

∑
_k = 0M−1Vk

∑M

l=k+1
AlBk,l (33)

with Vk := (xγ − λ)k+1 ∂k

∂xkγ
T (λ|xγ) and

Al :=
(
M
l

) (−1)l−1
(l − 1)!

, Bk,l :=
(
l − 1
k

) l!

(k + 1)!
.

(34)
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This gives∑M
l=k+1AlBk,l =

M !
k!(k+1)!

∑M
l=k+1

(−1)l−1

(M−l)!
1

(l−k−1)! =

(−1)kM !
(M−k−1)!k!(k+1)!

∑M−k−1
n=0 (−1)n

(
M−k−1

n

)
=

(−1)M−1

(M−1)! δk,M−1 (35)

using the Kronecker symbol δk,k′ , since the sum over
n is vanishing for all 0 ≤ k < M − 1, and is equal
to unity at k =M − 1.

As a result, we get the final expression for the
connected part of the mean density of K-matrix
eigenvalues in the form

ρ
(con)
M (u, v) = 1

4π
(−1)M−1

(M−1)!

(
∂2

∂u2+
∂2

∂v2

)
×

1∫
−1

dλ (xγ−λ)M ∂M−1

∂xM−1
γ

F(λ,xγ)
(xγ−λ)2 .

(36)

A few remarks are here in order to help properly
interpret and appreciate the content of (36).

Remark 1. Recalling from (25) that

xγ =
u2 + v2 + γ2

2γ v
≡ u2

2γ v
+

1

2

(
v

γ
+
γ

v

)
≥ 1,

(37)
one may straightforwardly check that for any
smooth enough function Φ(x) holds(

∂2

∂u2
+
∂2

∂v2

)
Φ(xγ) =

1

v2
∂

∂xγ
(x2γ−1)

∂

∂xγ
Φ(xγ)

(38)
for xγ > 1. This exact form was used to represent
the density in [25].

There is, however, a subtlety in (36) related to
its content at xγ → 1. In our derivation, we tacitly
assumed xγ > 1. However, a more careful analysis
shows that the integral in (36) should be pre-
multiplied with the step-function factor θ(xγ − 1)
arising as the result of performing integration over
λ1 ∈ [1,∞) with the factor δ(λ1−xγ). The presence
of such a seemingly innocent θ-factor has, however,
important consequences — when acted upon with
the differential operator on the right-hand side of
(38), it generates the δ-function factors exactly
cancelling the contribution from the disconnected
part, ρ(disc)(u, v) =

∑M
c=1 δ(u) δ(v−γc). As a result,

the formula (36) as it is written (i.e., without
θ-factor) in fact gives the full, properly normalized,
eigenvalue density for the K-matrix in absorptive
systems. A similar mechanism of cancellation of
δ-terms has been first noticed in [39], and we
explain in Appendix A how it works in our case
using the simplest case of M = 1 as an example.

Remark 2. With hindsight, one may notice that
one could have arrived at the same expression
(36) by a much simpler procedure. Namely, by
defining

x̃ :=
p2 + q2 + γ2

2γ q
, (39)

Fig. 2. A sketch of the “quasi-1D” model. The left
part in grey represents an infinite-length ideal lead
supporting M propagating modes. The disordered
part is of a finite length L and contains finite con-
centration of random impurities inside.

rewriting (20) in the form

RM (p, q|λ, λ1) = 1
4q2

∂
∂x̃ (x̃

2−1) ∂∂x̃
(
x̃+λ
x̃+λ1

)M
.

(40)
Then one must simply replace u→ p, q → −v− i0,
implying x̃ → −xγ + i0, and calculate the associ-
ated jump across the cut using

Im

[(
−xγ+i0+λ
−xγ+i0+λ1

)M]
= (xγ−λ)M (−1)M−1

(M−1)!

× ∂M−1

∂xM−1
γ

Im
[

1
xγ−λ1− i 0

]
=

π(xγ−λ)M (−1)M−1

(M−1)!
∂M−1

∂xM−1
γ

δ(xγ−λ1). (41)

Such a recipe is exactly the same as the one em-
ployed for M = 1 in [14], though without a proper
explanation provided there or in the review [11].

Armed with such a recipe, one can easily apply
it to the case of non-equivalent channels. General
formulas in that case look quite complicated,
but in the simplest case of two non-equivalent
channels with coupling constants γ1 6= γ2, one gets
a relatively compact expression

ργ1,γ2(u, v) =
1
4π

(
∂2

∂u2+
∂2

∂v2

)
×

1∫
−1

dλ

{[
F(λ,x1)
x2−λ2

+F(λ,x2)
x1−λ1

]
−
[
F(λ,x1)−F(λ,x2)

]
x1−x2

}
,

(42)
where we defined

x1 =
u2 + v2 + γ21

2γ1 v
, x2 =

u2 + v2 + γ22
2γ2 v

.

(43)

Remark 3. It is clear that performing further
analysis of (36) hinges on our ability to have a
good understanding of the OPF F(λ, x) for the
closed counterpart of the scattering system, which
in general also depends on the (appropriately nor-
malized) absorption parameter α. Such knowledge
is currently available mainly in two cases: (i) the
“zero-dimensional” limit, with OPF taking an espe-
cially simple form F (0d)(λ, x) = e−y(x−λ), where,
as before, y = 2πα/∆, and (ii) in a (semi) infinite
quasi-one-dimensional wire (see Fig. 2) of length
L → ∞, with one edge closed for the waves and
second edge attached to an infinite waveguide with
M propagating channels.

Such a wire is characterized by a classical mi-
croscopic diffusion constant D related to the local-
ization length ξ of the quantum wave problem as
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ξ = 2πνD, with ν being, as before, the mean eigen-
value density at a given energy. Note that math-
ematically such wires can be modelled by a large
banded random matrix [40, 41]. In such a system,
the OPF at points close to its edges has been orig-
inally found in [42] and takes the following form in
terms of the modified Bessel functions Ip(z),Kp(z),

F (1D)(λ, x) = bK0(a) I1(b) + aK1(a) I0(b),
(44)

with
a = κ

√
(x+ 1)/2, b = κ

√
(λ+ 1)/2, (45)

where the parameter κ is related to the absorption
α as

κ =
√

8α/∆ξ, (46)

with an important energy scale ∆ξ = (4π2Dν2)−1

= D/ξ2 giving the mean level spacing in the quasi-
one-dimensional wires whose length L is equal to
the localization length ξ.

In the “zero-dimensional” limit, due to a simple
form of the order parameter function, one can rel-
atively straightforwardly perform the required in-
tegrations and differentiations in (36) and get the
explicit formulas, which we present below for the
simplest cases M = 1 and M = 2 of equivalent
channels

ρ0D,M=1(u, v)=
1

2πv2
e−xγ[

y cosh (y)− sinh (y)(1−yxγ)
]

(47)

and

ρ0D,M=2(u, v)=
1

2πv2
e−xγ sinh(y)

[
y(x2γ−1)− 2xγ

]
+

1

πv2
e−xγ

[
y cosh(y)− sinh(y)

(
1−yxγ

)]
, (48)

with the same definition of xγ (see (37)). The for-
mula equivalent to (47) appeared already in the lit-
erature (see Eq. (5) in [13]), but the two-channel
case seems to be new. As to the quasi-1D system
of infinite length, it turns out that again the re-
sults can be found explicitly in the general case.
Below we present it only for the simplest case of a
single attached channel, when the density acquires
quite an elegant form after manipulations outlined
in Appendix B of this paper

ρ1D,M=1(u, v) =
1

2πv2P0(xγ),

P0(x) =
κ2

4

[
I2(κ)K0

(
κ
√

x+1
2

)
+ I1(κ)

√
x+1
2

×K1

(
κ
√

x+1
2

)]
. (49)

As is shown in [13], for M = 1 and γ = 1 the vari-
able r = (x−1)/(x+1) is nothing else but the modu-
lus of the reflection coefficient, which in the absorp-
tive system is smaller than one. Correspondingly,
the function P0(x) in (49) provides the distribu-
tion for x, hence for r, in a single-channel quasi-1D
system with absorption. This complements a result
for the same geometry in the case of no absorp-
tion inside the sample, but for the second edge of

the sample being in contact with perfectly absorb-
ing lead, see Eqs. (12)–(13) in [12]. Note also that
it is not difficult to further integrate the variable
u, getting an explicit formula for the distribution
of variable v, known as the local density of states,
corresponding to locations close to the edge of the
sample. The latter is an important characteristic of
disordered single-particle systems, see [36, 43, 44].

3. Conclusions

In conclusion, we derived the mean density of
complex eigenvalues for random Wigner reaction
K-matrices for absorptive disordered or chaotic
systems with broken time-reversal invariance, in
the σ-model approximation. Extension of these re-
sults to systems with preserved time-reversal invari-
ance (and then eventually symplectic symmetry) is
certainly possible along similar lines, generalizing
M = 1 results presented in [11]. These subjects are
left for future publications.
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Appendix A:
Cancellation of the disconnected part

Our starting point is the formula (36) with in-
cluded θ-factor, specified for simplicity and trans-
parency to the case of a single channel M = 1 and
γ = 1, so that xγ=1 = x. We write it in the form

ρ
(con)
M=1(u, v) =

1

4πv2
Lx [θ(x− 1)Φ(x)] ,

Φ(x) =

∫ 1

−1
dλ
F(λ, x)
(x− λ)

,

(50)
where we introduce the differential operator

Lx :=
∂

∂x
(x2−1) ∂

∂x
. (51)

Straightforward differentiation then gives
Lx
[
θ(x−1)Φ(x)

]
= θ(x−1)LxΦ(x)

+δ(x−1)
[
2xΦ(x) + 2(x2 − 1)Φ′(x)

]
+ δ′(x−1)

[
(x2 − 1)Φ(x)

]
. (52)

Further using the integration by parts identity

δ′(x−1)
[
(x2−1)Φ(x)

]
=−δ(x−1) d

[
(x2−1)Φ(x)

]
dx =

−δ(x−1)
[
2xΦ(x) + (x2 − 1)Φ′(x)

]
(53)
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we conclude that
Lx
[
θ(x−1)Φ(x)

]
= δ(x−1)

[
(x2−1)Φ′(x)

]
+θ(x−1)LxΦ(x), (54)

so it remains to evaluate limx→1[(x
2−1)Φ′(x)]. To

this end, we notice that it can be generally shown
that limx→1 F(λ, x) = 1, hence from (50) we have
Φ(x → 1) ≈

∫ 1

−1 dλ 1
(x−λ) = ln[x+1

x−1 ], which im-
mediately implies limx→1[(x

2−1)Φ′(x)] = −2. This
gives the singular contribution to the density (50)
in terms of the variables u, v, as follows

− 2
4πv2 δ

(
u2+v2+1

2v −1
)
= − 1

πv δ
(
u2+(v−1)2

)
=

−δ(u) δ(v−1), (55)
which exactly cancels the contribution from the dis-
connected part.

Appendix B

In this appendix, we show how (44), when sub-
stituted into (36), implies (49). Throughout this
appendix, we again use xγ = x and Lx :=
∂
∂x (x

2 − 1) ∂∂x . First of all, we use the identity (45)
from the paper [25], which claims that
∂
∂κF

(1D)(λ, x)=−κ(x−λ)2 K0

(
κ
√

x+1
2

)
I0

(
κ
√

λ+1
2

)
.

(56)
By differentiating both sides of (36) over κ and us-
ing (56) in the right-hand side yields

∂
∂κρ1D,M=1(u, v) = − 1

8πv2Lx
[
κK0

(
κ
√

x+1
2

)
×

1∫
−1

dλ I0

(
κ
√

λ+1
2

)]
(57)

and after performing the integral by substitution
λ = 2z2 − 1, z ∈ [0, 1] find that
∂
∂κρ

(con)
1D,M=1(u, v)=−

1
2πv2Lx

[
K0

(
κ
√

x+1
2

)
I1(κ)

]
=

− 1
2πv2

∂
∂x

√
x+1
2

[
1−x
2 κ I1(κ)K1

(
κ
√

x+1
2

)]
.
(58)

In the next step, we employ the following identity
(see Sect. 5.54 in p. 624 of [45])
1−x
2 κ I1(κ)K1

(
κ
√

x+1
2

)
= ∂
∂κ

[
κI2(κ)K1

(
κ
√

x+1
2

)
+κ
√

x+1
2 I1(κ)K2

(
κ
√

x+1
2

)]
. (59)

Using the fact that ρ(con)1D,M=1(u, v) → 0 as κ → ∞,
we then may conclude that (58) and (59) together
imply

ρ1D,M=1(u, v)=− 1
2πv2

∂
∂x

√
x+1
2 κ I2(κ)K1

(
κ
√

x+1
2

)
− 1

2πv2
∂
∂x

x+1
2 κ I1(κ)K2

(
κ
√

x+1
2

)
=

− 1
2πv2

{
I1(κ)
κ

∂
∂x

[
κ2 x+1

2 K2

(
κ
√

x+1
2

)]
+I2(κ)

∂
∂x

[
κ
√

x+1
2 K1

(
κ
√

x+1
2

)]}
. (60)

Finally, introducing in the above the variable z =
κ
√

x+1
2 , using the chain rule and the identity (see

Sect. 8.846.14 in [45])
d

dz

(
zpKp(z)

)
= −zpKp−1(z), (62)

allows us to bring the density ρ(con)1D,M=1(u, v) to the
final form (49).
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1. Introduction

The current note is devoted to the boundary con-
trol method [1–6] applied to solve inverse prob-
lems for magnetic Schrödinger operators on met-
ric graphs [7, 8]. It is well-known that the precise
form of the magnetic potential cannot be recon-
structed from the spectrum — standard magnetic
Schrödinger operators with equal fluxes through the
cycles and the same electric potentials are unitary
equivalent and hence isospectral. Moreover, the in-
verse problems for operators with zero magnetic po-
tential cannot always be solved uniquely [9–18] (see
also numerous papers devoted to isospectral discrete
graphs, e.g., [19–23]). It was proposed in [24] to use
magnetic fluxes to enrich the set of spectral data in
order to get a unique solution to the inverse prob-
lem. The spectral data are given by the spectrum
for different values of the magnetic fluxes through
the cycles. It was proposed to call this method mag-
netic boundary control (MBC-method) to underline
the role of the magnetic field in the solution of the
inverse problem.

In the case of trees (graphs without cycles),
the magnetic potential can be removed completely,
hence the spectrum is independent of the magnetic
potential. The inverse problem is uniquely solvable
if the M -function (energy-dependent Dirichlet-to-
Neumann map) associated with all degree one ver-
tices is known [25, 26]. The MBC-method for stan-
dard operators on graphs with one cycle was con-
sidered in [24]. It was proven that the solution to
the inverse problem is not unique if the cycle is
given by a loop. On the other hand, if the cy-
cle is not a loop, then the solution is unique in
the generic case†1. Our goal today is to study the

†1One should mention that for the lasso graph with other
than standard vertex conditions, the inverse problem is
uniquely solvable by the MBC-method [27].

MBC-method for graphs with several cycles. It ap-
pears that the inverse problem can sometimes be
uniquely solved using this new method. We have
illustrated our discoveries with a few explicit exam-
ples showing both the power of the method and its
limitations.

2. Metric graphs and standard
Schrödinger operators

A finite compact metric graph Γ can be
seen as a collection of compact intervals En =
[x2n−1, x2n], n = 1, 2, . . . , N, called edges with the
set of end points V = {xj}2Nj=1 divided into equiva-
lence classes V m (m = 1, 2, . . . ,M) called vertices,
so that V =

⋃M
m=1 V

m and V m1
⋂
V m2 = ∅, pro-

vided m1 6= m2. Then the metric graph Γ is the
union of edges Γ =

⋃N
n=1En with the end points

belonging to the same vertex identified [8].
The corresponding Hilbert space of square-

integrable functions on Γ coincides with the
orthogonal sum of the spaces of functions on the
edges

L2(Γ ) =

N⊕
n=1

L2(En). (1)

Let q ∈ L2(Γ ) and a ∈ C(Γ \ V ) be real-valued
electric and magnetic potentials on the edges. Then
the standard magnetic Schrödinger operator in
L2(Γ ) is defined by the differential expression

τq,a :=

(
i
d

dx
+ a(x)

)2

+ q(x) (2)

on the functions from

W 2
2 (Γ ) =

N⊕
n=1

W 2
2 (En) (3)

satisfying standard vertex conditions at every ver-
tex V m (m = 1, 2, . . . ,M)
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u(xj) = u(ul), provided xj , xl ∈ V m

— continuity condition,∑
xj∈Vm ∂u(xj) = 0 — Kirchhoff condition.

(4)
Here, u(xj) and ∂u(xj) = (−1)j−1u′(xj) denote the
limiting values of the function u ∈ W 2

2 (Γ ) and its
first oriented derivative, respectively. Note that the
derivates are taken in the direction pointing inside
the corresponding edge and, therefore, are indepen-
dent of the chosen orientation of the edges.

The main results presented in this paper hold
even for potentials q ∈ L1(Γ ), but our presenta-
tion will be limited to L2(Γ ) potentials for the sake
of clarity. The general case has been treated in [8].
We shall also avoid discussing other than standard
vertex conditions — the reason is that the elimina-
tion of the magnetic potential leads to a change in
vertex conditions.

Let us denote the corresponding self-adjoint op-
erator by Lq,a(Γ ). Its spectrum is discrete [7, 8].

The spectrum of Lq,a(Γ ) does not depend on the
particular form of the magnetic potential a, but on
the magnetic fluxes — the integrals of the magnetic
potential along non-trivial cycles Cj in Γ , i.e.,

Φj =

∫
Cj

dy a(y), j = 1, 2, . . . , β1, (5)

where β1 is the first Betti number — the number of
independent cycles in Γ .

3. M-function: short introduction

The (scalar) Titchmarsh–Weyl M -function was
first introduced to describe spectral properties of
one-dimensional Schrödinger operators [28]. For
many years, its matrix generalisation has been used
to solve inverse problems for operators on metric
graphs [25, 29]. It is not our aim to give a rigor-
ous introduction to the theory of M -functions for
metric graphs — it is given in [8].

Among all vertices in Γ , we choose a non-empty
subset ∂Γ , which we call the contact set. It should
be understood that the graph Γ can be approached
only via this set. Of course, we are interested in the
case when this set is small compared to the set of
all vertices in the graph. For any λ ∈ C\R consider
solutions to the stationary magnetic Schrödinger
equation on the edges

−
( d

dx
− ia(x)

)2
ψ(λ, x) + q(x)ψ(λ, x) = λψ(λ, x),

(6)
satisfying standard conditions (4) at all internal
vertices V m ∈ V \ ∂Γ and just continuous at the
contact vertices V m ∈ ∂Γ . Every such solution is
uniquely determined by its values on the contact
set. Consider the matrix-valued function, called M -
function for the graph Γ and contact set ∂Γ ,

MΓ (λ) : ψ|∂Γ 7→ ∂ψ|∂Γ , (7)

connecting the values of the solution at the contact
vertices ψ(V m) to the sums of oriented derivatives

∂ψ(V m) :=
∑

xj∈Vm

∂ψ(xj). (8)

This is a matrix-valued Herglotz–Nevanlinna func-
tion in λ, i.e., it is analytic outside of the real axis
and has a positive imaginary part in the upper half-
plane

=
(
λ
)
> 0⇒ =(MΓ (λ) :=

(
MΓ (λ)−M∗Γ (λ)

)
2i

≥ 0.

(9)
In what follows, we shall also use the Dirich-

let Schrödinger operator LD
q,a(Γ ) — the operator

in L2(Γ ) defined by the same differential expres-
sion, standard vertex conditions at the internal ver-
tices, and Dirichlet conditions at the contact ver-
tices. This operator is again self-adjoint and has a
discrete spectrum.

The singularities of theM -function coincide with
the spectrum of the Dirichlet operator LD

q,a(Γ ),
while some of the spectrum of Lq,a(Γ ) can be iden-
tified using the secular equation detMΓ (λ) = 0.
The last equation determines those eigenvalues of
Lq,a(Γ ), which are not simultaneously eigenvalues
of LD

q,a(Γ ).
The eigenvalues and the normalised (in the orig-

inal Hilbert space L2(Γ )) eigenfunctions of Lq,a(Γ )
and LD

q,a(Γ ) will be denoted by λn, ψn and λDn , ψD
n ,

respectively.
The structure ofM -functions for the graph is best

seen from the following two explicit formulas [30, 31]

MΓ (λ) = −

[ ∞∑
n=1

〈
ψn|∂Γ , ·

〉
`2(∂Γ)

ψn|∂Γ
λn − λ

]−1
, (10)

MΓ (λ)−MΓ (λ
′) =

∞∑
n=1

λ− λ′

(λDn − λ)(λDn − λ′)

×
〈
∂ψD

n |∂Γ , ·
〉
`2(∂Γ)

∂ψD
n |∂Γ . (11)

In the above formulas, ψn|∂Γ and ∂ψD
n |∂Γ denote

the function values and the oriented derivative val-
ues at the contact vertices, respectively, and λ′ 6= λ
is any complex number not lying in the spectra of
Lq,a(Γ ) and LD

q,a(Γ ).
The first formula determines MΓ (λ) directly,

while the second formula determines only the
difference between the values of M -function at two
different points. To use the second formula, it is
enough to know the degrees dm of the contact ver-
tices since the M -function possesses the asymp-
totics

M(−s2) = −sdiag
{
dm
}
+O(1), s→∞.

(12)
To understand formula (12), consider the boundary
control for the Laplace operator (q(x) = a(x) ≡ 0).
If the boundary control is applied at a degree dm
vertex, then for sufficiently small times the ver-
tex acts as a collection of degree one vertices. The
boundary control creates outgoing waves in the
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edges joined at the vertex, hence for small times
the response is equal to the sum of responses from
the degree one vertices. Connectivity between these
edges starts to play a role only when the travelling
waves return after reflection from the neighbour-
ing vertices. Adding electric and magnetic poten-
tials does not affect the asymptotics.

4. Dissolving a vertex

By solving the inverse problem using the
MBC-method, one dissolves high-degree contact
vertices. In this section, we shall discuss whether
the M -function known for different values of the
magnetic fluxes can be used to reconstruct the
M -function for the graph where one of the vertices
is substituted with several (dm) degree one vertices.

Definition 1. We say that the metric graph Γ1 is ob-
tained from a metric graph Γ by dissolving a certain
vertex V 0 in Γ if:

• the metric graphs Γ and Γ1 share the same set
of edges {En}Nn=1,

• the end points connected at V 0 in Γ form degree
one vertices in Γ1,

• all other vertices in Γ and Γ1 coincide.

Let us see Fig. 1, where the dissolving procedure
is presented schematically. The green area repre-
sents the part of the graph that is not affected by
the procedure. The degree four vertex V 0 is substi-
tuted with four degree one vertices V 1, . . . , V 4.

We restrict our presentation to connected graphs
(both Γ and Γ1 are connected). Then, the number
of broken cycles is given by

β1(Γ )− β1(Γ1) = d0 − 1. (13)

Our goal is to compare the M -functions corre-
sponding to Γ and Γ1. These functions depend not
only on the spectral parameter λ, but on the mag-
netic fluxes as well. We shall indicate dependence
on the fluxes through the broken cycles, assuming
that the other fluxes (through preserved cycles) are
fixed.

By V 1, . . . , V d0 we denote the pendant vertices in
Γ1 coming from the vertex V 0 in Γ and let Cj be
a path connecting V d0 to V j , j = 1, 2, . . . , d0 − 1.
These paths on Γ1 correspond to the cycles in Γ
that are broken under the dissolution. The corre-
sponding fluxes are

Φj =

∫
Cj

dy a(y) =

V j∫
V d0

dy a(y), (14)

where j = 1, 2, . . . , d0−1. These fluxes form the vec-
tor Φ. It will be convenient to view Φ as an element
of Rd0 despite the fact that only d0−1 of its coor-
dinates may be non-zero

Φ =
(
Φ1,Φ2, . . . ,Φd0−1, 0

)
. (15)

Fig. 1. Dissolving a vertex.

To reconstruct theM -function for Γ1, it is enough
to consider the fluxes equal to 0 and π, therefore we
introduce the signs

µj := e iΦj , j = 1, 2, . . . , d0;

µ =
(
µ1, µ2, . . . , µd0

)
= e iΦ ,

(16)

and consider the M -functions depending on the
signs µj instead of the phases Φj . To get the cor-
responding spectral data, it is enough to consider
the standard operators with zero magnetic poten-
tial and additional signing conditions(

u(yj + 0)

u′(yj + 0)

)
= −

(
u(yj − 0)

u′(yj − 0)

)
(17)

introduced at certain points yj (j = 1, 2, . . . , d0)
on the pendant edges. The sign conditions can be
seen as a singular magnetic potential concentrated
at the point yj [32]. These operators will be marked
with Lsign

q (Γ ) and called signed Schrödinger opera-
tors. We have 2d0−1 different signed operators.

Our first step is to establish the relation between
the diagonal element of the M -function associated
with Γ and the vertex V 0

M00
Γ (λ,µ) =: M(λ,µ) (18)

and the diagonal d0 × d0 block of the M -function
associated with the graph Γ1 and the degree
one vertices coming from V 0. We shall find
an explicit relation between the scalar Herglotz–
Nevanlinna functionM(λ,µ) and the d0×d0 matrix-
valued Herglotz–Nevanlinna function M1(λ,µ) :=

{M ij
Γ1
(λ,µ)}d0i,j=1.

The dependence of M1(λ,µ) upon µ is trivial,
namely
M1(λ,Φ) = diag {µj}M1(λ,1) diag {µj}−1︸ ︷︷ ︸

=diag {µj}

, (19)

where 1 =
(
1, 1, . . . , 1

)
. To see this, it is enough to

eliminate the magnetic potential starting from V d0

using the transformation

f(x) 7→ g(x) = exp

− i

x∫
V d0

dy a(y)

 f(x). (20)
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The scalar function M(λ,µ) is simply equal to
the sum of all entries in M1(λ,µ)

M(λ,µ)︸ ︷︷ ︸
=M00

Γ (λ,µ)

=

d0∑
i,j=1

µiµjMij
1 (λ,1)︸ ︷︷ ︸

=Mij
Γ1

(λ,1)

. (21)

This formula determines the M -function for any
signed operator on Γ through the M -function
for Γ1.

Let ψD
n denote the eigenfunction corresponding to

zero fluxes through the broken cycles. These eigen-
functions can be chosen to be real-valued. Then,
the normal derivatives of the Dirichlet eigenfunc-
tions for non-zero fluxes are given by µj∂ψD

n (V
j),

implying in particular that the normal derivative at
V 0 is∑d0

j=1
µj∂ψ

D
n (V

j). (22)

It follows that the singularity of M(λ,µ) is of the
form

M(λ,µ) ∼
λ→λD

n

1

λDn−λ

d0∑
i,j=1

µiµj ∂ψ
D
n (V

i)∂ψD
n (V

j)=
1

λDn−λ

[
d0∑
i=1

(
∂ψD

n (V
i)
)2

+

d0∑
i,j=1,
i6=j

µiµj ∂ψ
D
n (V

i)∂ψD
n (V

j)

]
,

(23)

where we have used that ∂ψD
n are real-valued.

Introducing the notation aj := ∂ψD
n (V

j), we are
faced with the following trivial problem — deter-
mine aj if the numbers

(±a1 ± a2 ± · · · ± ad0−1 + ad0)
2 (24)

are known for all possible combinations of the signs.
It is clear that this reconstruction is possible only
up to the multiplication of all aj by −1, which cor-
responds to the multiplication of the corresponding
eigenfunctions by −1.

The sum of the squares can be obtained by aver-
aging over all possible signs

d0∑
i=1

a2j =∑
µ∈({1,−1}d0−1,1)

(
µ1a1+µ2a2+ . . .+µd0−1ad0−1+ad0

)2
2d0−1

.

(25)
Hence, we are able to determine the following

combinations of aj ’s
d0∑

i,j=1,
i 6=j

µiµj aiaj =

(
d0∑
i=1

µiai

)2

−
d0∑
i=1

a2j . (26)

We recover the products by averaging a second
time

akal =
1

2d0−1

∑
µ∈({1,−1}d0−1,1),

µk=µl

(
d0∑

i,j=1,
i 6=j

µiµj aiaj

)
,

(27)
for k 6= l. The product akal = alak appears in
the double sum precisely 2d0−1 times, while all
other products cancel since µiµj attains +1 and −1
equally many times.

If at least three of the coefficients are non-zero,
then the squares a2j are determined as

a2i =
(aiaj) (aial)

(ajal)
, (28)

provided aj , al 6= 0. We are able to recover one non-
zero aj up to a sign, but then all other non-zero
coefficients are determined from the products ajai.
We conclude that if the squared sums (

∑d0
j=1 µjaj)

2

are known for all µ of the form µ ∈ ({1,−1}d0−1, 1),
then the coefficients aj are determined up to a com-
mon sign.

It follows that the diagonal element M(λ,µ)
known for all µ ∈ ({1,−1}d0−1, 1) determines the
vector
∂ψD

n 2 :=
(
∂ψD

n (V
1), ∂ψD

n (V
2), . . . , ∂ψD

n (V
d0)
)
,
(29)

up to the common sign, hence the singular part of
M1(λ,~0) is determined, which as before allows us to
reconstruct it up to the constant matrix A, yielding

M1(λ,0)=A+
∑

λD
n (Γ1)

λ−λ′

(λDn−λ)(λDn−λ′)

〈
ψD
n 2, ·

〉
∂ψD

n 2.

(30)
To determine A, we remember that the M -function
possesses the asymptotics (12).

We conclude that the M -function for Γ1 can be
recovered, provided the M -functions of all signed
operators on Γ are known and the following gener-
ically satisfied conditions are fulfilled:

• the spectrum of LD
q (Γ1) is simple;

• the corresponding eigenfunctions ψD
n on Γ1

are either invisible from the involved degree
one vertices (all ∂ψD

n (V
j) = 0, j = 1, 2,

. . . , d0), or at least three normal derivatives
∂ψD

n (V
j), j = 1, 2, . . . , d0, are different from

zero.

5. First examples

In this section, we discuss how to apply the MBC-
method to solve inverse problems for metric graphs.
We start by presenting examples where the whole
graph can be reconstructed starting from a single
vertex.
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5.1. Example 1

Consider the graph presented in Fig. 2 and as-
sume that the contact set consists of the single ver-
tex V . Let us dissolve the vertex V . The described
procedure allows us to determine the M -function
associated with the new graph and all its degree
one vertices. Conventional boundary control allows
us to determine the lengths of the pendant edges
and the potential q on them [25]. Then these edges
can be peeled away, and we can reduce the inverse
problem to a smaller graph, where contact vertices
are indicated by red points. By repeating the pro-
cedure by dissolving the vertices V ′ and V ′′, the in-
verse problem is reduced to a tree with all pendant
vertices in the contact set (see the upper sequence
in Fig. 2). The MBC-method allows us to solve the
inverse problem for this graph. Note that starting
from a single vertex, we recovered both the metric
graph Γ and the electric potential q on it.

The inverse problem for this graph can be solved
by dissolving the vertices V , V ∗, and V ∗∗ instead
(see the lower sequence in Fig. 2). The resulting

graph is the cycle with 3 contact points — the in-
verse problem can again be solved by dismantling
the cycle into three intervals.

This example shows that the MBC-method allows
us to solve the inverse problem for rather compli-
cated graphs with an arbitrary number of cycles and
very few contact points.

5.2. Example 2

Figure 3 presents another graph with a single con-
tact vertex V . After dissolving V and removing the
pendant edges, we get the graph with three vertices.
We may dissolve only the vertex V ′ because the re-
maining two contact vertices have degree two.

This leads to a graph with three contact vertices,
namely two degree two vertices and one bottleneck
vertex V ′′ — the dissolution of this vertex would
disconnect the graph. The inverse problem for the
remaining graph cannot be solved by dismantling it,
since the corresponding trees are not independent.
Note that the original graph in this example is a
slight modification of the graph presented in Fig. 2.

Fig. 2. Reconstruction of the whole graph using the MBC-method.

Fig. 3. Reconstruction terminated by the bottleneck.
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It is not surprising that not all pendant-free
graphs may be reconstructed starting from a sin-
gle contact vertex — the described procedure may
terminate immediately or after a few steps. As the
last example shows, there are two reasons for the
termination:

• degree two contact vertices,

• bottlenecks.

6. Conclusions

It is shown how magnetic boundary control can
be applied to solve inverse problems for Schrödinger
equations on metric graphs. It remains to charac-
terise all metric graphs together with contact sets
that guarantee solvability of the inverse problem.
One may prove explicit theorems characterising the
minimal contact sets.
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The spectral determinant is usually defined using the spectral zeta function that is meromorphically
continued to zero. In this definition, the complex logarithms of the eigenvalues appear. Hence, the notion
of the spectral determinant depends on the way in which one chooses the branch cut in the definition
of the logarithm. We give results for the non-self-adjoint operators that specify when the determinant
can and cannot be defined and how its value differs depending on the choice of the branch cut.

topics: spectral determinant, branch cut, spectral zeta function

1. Introduction

When studying the spectral properties of opera-
tors, various concepts can be investigated. One of
them is the spectral (functional) determinant, cor-
responding to the product of eigenvalues. It can be
viewed as a generalization of the determinant for
a square matrix (an operator with finitely many
eigenvalues). Since for most of the interesting op-
erators the product of their eigenvalues is not con-
vergent, one defines it using the spectral zeta func-
tion, a function of a complex variable s defined
through an infinite sum that is usually convergent
in a certain half-plane in s (for details, see Sect. 2).
Using the fact that the spectral zeta function can
be uniquely meromorphically continued to the rest
of the complex plane in s, allows us to assign the
unique value to its derivative at s = 0. This value
is then used for the definition of the determinant.

The above definition of the spectral determinant
can be traced back to the works of Minakshisun-
daram and Pleijel [1] and Ray and Singer [2]. Since
then, results for various operators have been ob-
tained. Without claiming that the list of works is
complete, we mention, e.g., the papers on the de-
terminant for the Sturm–Liouville operators [3–5],
Dirichlet Laplacians on balls or polygons [6, 7], or
harmonic and anharmonic oscillators [8, 9]. An im-
portant application of the spectral determinants can
be found in string theory or quantum field theory
(see [10] and references therein). A result for more
general elliptic operators obtained in [11] was ap-
plied for the damped wave equation in [12] or for
the polyharmonic operator in [13].

When defining the spectral determinant using the
spectral zeta function, complex logarithms of the
eigenvalues appear (for more details, see Sect. 2).
However, the complex logarithm is not a unique
function. When one wants to define it as a unique
function, one must choose a certain branch — an
interval of the width 2π, from which the arguments
of the eigenvalues are taken. As it was already men-
tioned in [12, 14], the choice of the branch may in-
fluence the value of the determinant. The aim of the
current note is to shed some light on this problem.
For various distributions of the eigenvalues in the
complex plane and different choices of the branch
cut, we find how the determinant changes when al-
tering the branch cut.

The result in [12] obtained for the linear dis-
tribution of the eigenvalues on the imaginary axis
is generalized in two ways: we allow for multiple
rays along which the eigenvalues are distributed,
and we generalize the result to power growth. For
this setting, we prove that the determinant changes
the sign when the branch cut crosses one of the
rays on which the eigenvalues are distributed. More-
over, we prove that for the exponential and the
logarithmic growth, the spectral determinant can-
not be reasonably defined. Finally, we study the
distribution of the eigenvalues on a line not go-
ing through the origin, and we compare the re-
sults to the previous results on the damped wave
equation.

The paper is structured as follows. In Sect. 2,
we properly define all notions used in the paper.
In Sect. 3, we give an introductory example show-
ing how the choice of the branch cut influences the
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determinant. Section 4 gives the main results of the
paper; we compare the determinants for different
branch cuts and various distributions of the eigen-
values.

2. Definition and preliminaries

Throughout this paper, we will assume an
operator A with a discrete spectrum. Operator A
can be, in general, non-self-adjoint, and thus its
eigenvalues may not be real. To define the spectral
determinant for this operator, we have to introduce
the spectral zeta function first, which is a function
of the complex parameter s.

Definition 1. The spectral zeta function of the
operator A is

ζA(s) =

∞∑
j=1

λ−sj , (1)

where λj ’s are the eigenvalues of the operator A.

This definition is a generalization of the Riemann
zeta function ζR(s) =

∑∞
j=1 j

−s. We stress that,
similarly to the Riemann zeta function, the sum in
the spectral zeta function is typically not conver-
gent for all complex s. However, for the most com-
mon operators (as, for instance, the Sturm–Liouvile
operators), the sum is typically convergent in the
half-plane Re(s) > c.

Since it will be used in Sect. 4.4, we also intro-
duce the Hurwitz zeta function.

Definition 2. Hurwitz zeta function is a function of
two complex parameters, s and a, defined by the
formula

ζH(s, a) =
∞∑
j=0

1

(j + a)s
, (2)

Now, we can define the spectral determinant.

Definition 3. The spectral determinant for the opera-
tor A is defined as

det
[
A
]
= exp

(
− ζ ′A(0)

)
, (3)

where prime denotes the complex derivative of the
zeta function with respect to s.

Notice that s = 0 is the point where the sum (1)
is not convergent, as it consists of infinitely many
ones. However, one can bypass this issue if the sum
is properly defined in the above-mentioned half-
plane. We use the fact that the function can be
uniquely meromorphically continued from the half-
plane to the rest of the complex plane, and the
needed derivative at zero is computed using this
continuation.

For the reader’s convenience, we introduce the
well-known notions from complex analysis (see,
e.g., [15, 16]).

Definition 4. We say that a complex function of the
complex variable f(z) is holomorphic in an open set
Ω ⊂ C if there exists its complex derivative f ′(z) for
every z0 ∈ Ω . The function which is holomorphic in Ω
up to the set of isolated points is called meromorphic.
The function is complex analytic at z0 if it is infinitely
many times differentiable and equal to its Taylor
series in the neighbourhood of z0.

Theorem 1. For functions on an open ball, the
function is holomorphic if and only if it is analytic.

Theorem 2. Two functions that are complex analytic
in Ω̃ and coincide on some set with an accumulation
point in Ω̃ are identical.

Hence, if we have a meromorphic function in an
open set Ω , we can meromorphically continue it to
the whole complex plane. The zeta function in Defi-
nition 3 is thus understood as the unique meromor-
phic continuation to zero from the above-mentioned
set where the sum in the definition of the zeta func-
tion converges.

At the end of this section, let us mention a prop-
erty that will be important in the following sec-
tions. There appears the term λ−sj in the defini-
tion of the spectral zeta function. Let us stress that
both λj and s are complex and that the expression
can be rewritten as exp(−s ln (λj)). Hence, the spec-
tral zeta function (and through it also the spectral
determinant) is dependent on the definition of the
complex logarithm of the eigenvalues. The complex
logarithm can be regarded as a multivalued func-
tion, with the imaginary part having values that
can differ by multiples of 2π. When one wants to
define the logarithm as a single-valued function, one
must specify the interval of the width 2π and take
the arguments of the numbers in the argument of
the logarithm from that interval. Thus, one chooses
one particular branch of the logarithm. Then, the
ray in the complex plane where the arguments are
discontinuous is called the branch cut.

As it was found in [12] and earlier in Examples 11
and 12 [14], the choice of the branch cut of the
logarithm can influence the value of the spectral
determinant. In the next sections, we will investi-
gate this issue deeper and try to elucidate under
which conditions the spectral determinant changes
and how.

3. Example — damped wave equation

In this section, we will reproduce an example
from [12]. In the mentioned paper, the spectral de-
terminant for the damped wave equation on an in-
terval of the length T was studied. On this interval,
the equation

∂2v(t, x)

∂t2
+ 2a(x)

∂v(t, x)

∂t
=
∂2v(t, x)

∂x2
, (4)
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is investigated, where a(x) ∈ C([0, T ]) is the damp-
ing function. The Dirichlet boundary conditions
v(0) = v(T ) = 0 and certain initial conditions are
assumed. The problem can be rewritten into the
form of a matrix equation

∂

∂t

(
v0(t, x)

v1(t, x)

)
=

(
0 1
∂2

∂x2 −2a(x)

)(
v0(t, x)

v1(t, x)

)
.

(5)
It is easy to find that after the substitution for v1,
the variable v0 satisfies (4). Furthermore, the ansatz
v0(t, x) = eλtu0(x), v1(t, x) = eλtu1(x) leads to the
alternative formulation of the problem — finding
the eigenvalues for the matrix operator

ADWE =

(
0 1
∂2

∂x2 −2a(x)

)
. (6)

Then, (5) translates to

ADWE

(
u0(x)

u1(x)

)
= λ

(
u0(x)

u1(x)

)
. (7)

The spectral determinant for the operator ADWE

was found in [12], and it was proven that it does not
depend on the damping. The effect of the choice
of the branch cut that is found in [12] is visible
already for the case without damping (a(x) ≡ 0),
i.e., the operator with the eigenvalues λj± = ± jπT i ,
j ∈ N. We will study the spectral determinant for
the branch cuts in the negative and the positive real
axis. For the former, the interval of the arguments
of the eigenvalues will be chosen from the interval
(−π, π), and the eigenvalues can be rewritten as

λj+ =
jπ

T
e i

π
2 , λj− =

jπ

T
e− i π2 . (8)

The spectral zeta function can be then written as

ζA(s) =

∞∑
j=1

[(
jπ

T
e i

π
2

)−s
+

(
jπ

T
e− i π2

)−s]
=

∞∑
j=1

(
jπ

T

)−s (
e− i π2 s + e i

π
2 s
)
=

∞∑
j=1

2

(
jπ

T

)−s
cos
(πs

2

)
=

2es log (
T
π ) cos

(πs
2

)
ζR(s), (9)

where ζR is the Riemann zeta function.
The Riemann zeta function is well defined in the

half-plane Re(s) > 1 and thus can be meromorphi-
cally continued to the rest of the complex plane with
the known values

ζR(0) = −
1

2
, ζ ′R(0) = −

1

2
log (2π). (10)

Differentiating (9) and using (10), we get

ζ ′A(0) = 2 log
T

π
ζR(0) + 2ζ ′R(0) = − log (2T ).

(11)
Hence, the determinant is

det
[
A
]
= elog (2T ) = 2T. (12)

For the choice of the cut on the positive real axis,
one has to take the arguments of the eigenvalues
from the interval (0, 2π). Hence, we plug into the
formula for the zeta function the values

λj+ =
jπ

T
e i

π
2 , λj− =

jπ

T
e i

3π
2 (13)

and, using similar manipulations as above, we ob-
tain the result

ζA(s) = 2e− iπs es log (
T
π ) cos

(πs
2

)
ζR(s). (14)

Thus, the derivative at zero differs by the factor of
iπ, i.e.,

ζ ′A(0) = −2iπζR(0) + 2 log
T

π
ζR(0) + 2ζ ′R(0) =

iπ − log (2T ).
(15)

This results in the spectral determinant that has a
different sign, i.e.,

det
[
A
]
= e− iπ+log (2T ) = −2T. (16)

This result shows that the change of the branch
cut can, in some cases, cause a difference in the
spectral determinant, for instance, in its sign. The
analysis provided in this section illustrates that
to get a proper value of the spectral determi-
nant, one must clearly specify which branch of
the logarithm is assumed in its definition. Even in
this simple example inspired by a physical prob-
lem, the value of the spectral determinant differs;
this drives us to investigate this problem further
and find how the determinant changes in differ-
ent geometrical settings of the eigenvalues of the
problem.

4. Results

In this section, we try to generalize this result for
different and more general types of operators, or in
other words, distributions of eigenvalues. We start
with a result already mentioned in [12], concerning
the shift of the branch cut through finitely many
eigenvalues.

Theorem 3. If the branch cut of the logarithm
moves so that it crosses finitely many eigenvalues
of the operator A, its spectral determinant does not
change.

We generalize the result of Sect. 3 in two di-
rections. First, the eigenvalue distances from the
origin grow at a different rate (as a power of j,
exponentially or logarithmically). Secondly, we al-
low for more rays on which the eigenvalues are
situated.

4.1. Power growth

One of the main results of the paper is the fol-
lowing theorem concerning the power growth of the
eigenvalues.
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Theorem 4. Let us have a finite number of angles α`,
such that 0 < α1 < α2 < · · · < αN < 2π. Let us
assume that the eigenvalues of the operator A are

λ
(1)
j = c1j

c2 e iα1 ,

λ
(2)
j = c1j

c2 e iα2 ,

...

λ
(N)
j = c1j

c2 e iαN (17)
(see Fig. 1), where c1, c2 ∈ R+. If the branch cut is
moved so that it passes n half-lines with angles α`,
the determinant will be (−1)n-multiple of the former
determinant.

Proof. Let us define angles β`, ` = 1, . . . , N+1 such
that 0 < β1 < α1 < β2 < α2 < β3 < · · · < βN <
αN < βN+1 < 2π and assume the branch cuts on
the half-lines under the angles β`. For a particular
branch cut under the angle β`, the arguments of the
eigenvalues will be in the interval (β`, β`+2π). It is
clear that the arguments of the eigenvalues in the
particular rays are successively α1 + 2π, α2 + 2π,
. . . , α`−1+2π, α`, α`+1, . . . , αN . The spectral zeta
function is
ζA(s) =

∑∞
j=1(c1j

c2)−s
[
e− iα1s−2π is+e iα2s−2π is

+ . . .+e− iα`−1s−2π is+e− iα`s+ . . .+e− iαNs
]
=

e−s log c1ζR(c2s)
[
e− iα1s−2π is+e− iα2s−2π is+ . . .

+e− iα`−1s−2π is+e− iα`s+ . . .+e− iαNs
]
. (18)

The sum is convergent for Re(s) > c−12 , hence, we
can continue it to the rest of the complex plane.
The derivative of the spectral zeta function at zero
is
ζ ′A(0) = − log (c1) ζR(0)N+c2ζ

′
R(0)N+ζR(0)(− i)

×

[
2π(`−1)+

N∑
k=1

αk

]
=
N

2
log (c1)−

N

2
c2 log (2π)

+iπ(`−1)+i 12

N∑
k=1

αk. (19)

The determinant is then, according to (3), equal to

det
[
A
]
= (−1)`−1c−

N
2

1 (2π)
c2N
2 exp

[
− i

2

N∑
k=1

αk

]
,

(20)
If the branch cut is changed so that it crosses n
rays of eigenvalues, i.e., we move from the index `
to the index `+ n, the ratio of the determinants is
clearly from the previous formula (−1)n, and hence
we have

det
[
A`+n

]
= det

[
A`
]
(−1)n, (21)

where det[A`] is the determinant for the branch cut
under the angle β` and det[A`+n] is the determinant
for the branch cut under the angle β`+n.

Fig. 1. Power growth of the eigenvalues on more
half-lines.

Let us stress that even for the cut on the same
place in the complex plane but with the angle dif-
ferent by 2π, the determinant does not have to be
the same. If the number of rays of the eigenvalues
is odd, the determinant changes the sign.

4.2. Exponential growth

This subsection is devoted to the exponential
behaviour of the eigenvalues.

Theorem 5. If a ray of eigenvalues behaving as
λj = c1 e

c2j e iα, c1, c2 ∈ R+ is present, the spectral
determinant diverges to +∞.

Proof. We will restrict ourselves to the case when
there is only the above-mentioned ray of eigenval-
ues, although the presence of other eigenvalues (ei-
ther finitely many or infinitely many with power
growth) does not influence the result. First, we write
down the spectral zeta function

ζA(s) =

∞∑
j=1

c−s1 e−c2js e− iαs =

c−s1 e− iαs
∞∑
j=1

e−c2js = c−s1 e− iαs e−c2s

1− e−c2s
=

e−s log (c1) e− iαs 1
ec2s−1 , (22)

where we use the sum for the geometric series that
converges for Re(s) > 0. Its derivative is

ζ ′A(s) = − log c1 e
−s log (c1) e− iαs 1

ec2s − 1

− iαe−s log (c1) e− iαs 1

ec2s − 1

−c2 e−s log (c1) e− iαs ec2s

(ec2s−1)2 . (23)

Both ζA and ζ ′A diverge as s = 0; the limit of the
derivative at zero is −∞. Hence, the spectral deter-
minant diverges to +∞.
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4.3. Logarithmic growth

In this subsection, we study the case where the
eigenvalues on a ray grow logarithmically or slower.

Theorem 6. Let log denote the natural logarithm. If a
ray of eigenvalues behaving as λj = ωj e

iα, ωj ∈ R+,
ωj ≤ c1 log (c2j), c1 ∈ R+, c2 ≥ 1 is present, the
spectral zeta function is not defined.

Proof. The spectral zeta function can be con-
structed similarly to the previous cases, i.e.,

ζA(s) = e− iαs
∞∑
j=1

ω−sj . (24)

Now, we prove that
∑∞
j=1 ω

−s
j diverges for all s ∈ R

with s > 0 (for s ≤ 0, the claim is obvious)
∞∑
j=1

ω−sj ≥ c
−s
1

∑∞

j=1
(log (c2j))

−s =

c−s1

∑∞

j=1
(log (c2) + log (j))−s. (25)

The last sum diverges by the integral criterion. For
any given s > 0, there exists c > 1 such that
1
x < log (x)

−s for x > c. Moreover, there exists
c̃ > 0 such that (log (c2)+log (x))−s ≥ (2 log x)−s ≥
c̃ (log x)−s for x > c. Then,
∞∫
1

dx (log (c2)+ log (x))−s ≥

∞∫
c

dx (log (c2)+ log (x))−s ≥
∞∫
c

dx c̃ log (x)
−s

>

>

∞∫
c

dx
c̃

x
=∞, (26)

and hence the sum diverges. Therefore, there is no
half-plane Re(s) > const. such that the zeta func-
tion is defined in this half-plane, and hence the spec-
tral determinant cannot be reasonably defined.

4.4. Eigenvalues on a vertical line
outside the origin

The next example illustrates that the ratio of the
determinants for different branch cuts is not always
1 or −1. We consider the example from Sect. 3 with
the eigenvalues shifted horizontally. The eigenvalues
will be λj = b+ ij, j ∈ Z\{0} (see Fig. 2).

We will choose the branch cut in the following
way. The first one will be on the positive real axis
or just above it, hence, the arguments of the eigen-
values will be taken from the interval (0, 2π). The
second branch cut will be chosen on the negative
real axis, and the arguments of the complex num-
bers will be taken from the interval (π, 3π). Note
that the eigenvalues in the lower half-plane will have
the same arguments for both choices of the branch
cut.

Fig. 2. Eigenvalues on a vertical line outside the
origin.

The spectral zeta functions can be written using
the Hurwitz zeta functions in the following way

ζ1(s) = e−
π
2 isζH(s, 1− ib) + e−

3π
2 isζH(s, 1+ib)

(27)
for the first choice of the branch cut and

ζ2(s) = e−
5π
2 isζH(s, 1− ib) + e−

3π
2 isζH(s, 1+ib)

(28)
for the second choice. For this construction, we have
rotated the set of points j ± ib, j = 1, . . . ,∞ by
corresponding angles. Note that in the definition of
the Hurwitz zeta function, the sum goes from 0,
while in the definition of the spectral zeta function,
it starts from 1. This results in the factor of 1 in the
second argument of ζH.

Differentiating the expressions (27) and (28), one
obtains

ζ ′1(0) = −π2 i ζH(0, 1− ib) + ∂ζH(s,1− ib)
∂s

∣∣∣
s=0

− 3π
2 i ζH(0, 1+ib) + ∂ζH(s,1+ib)

∂s

∣∣∣
s=0

,

ζ ′2(0) = − 5π
2 i ζH(0, 1− ib) + ∂ζH(s,1− ib)

∂s

∣∣∣
s=0

− 3π
2 i ζH(0, 1+ib) + ∂ζH(s,1+ib)

∂s

∣∣∣
s=0

.
(29)

Let us denote by det1 and det2 the determinant
for the first and the second cut, respectively. The
ratio of both determinants is

det1
det2

= e−ζ
′
1(0)+ζ

′
2(0) = e−2 iπζH(0,1− ib). (30)

Our final task is to find the value of the Hurwitz
zeta function ζ(0, 1− ib). We can use the following
formula (see, e.g., Eq. (1.10.7) in [17])

ζH(s, a) =
1

2
a−s +

a1−s

s− 1

+2

∫ ∞
0

dx
sin (s arctan (x/a))

(a2 + x2)
s/2

(e2πx − 1)
. (31)
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Applying this formula for s = 0 and a = 1− ib,
one finds that the sine and hence also the integral
vanish, and we obtain

ζH(0, 1− ib) =
1

2
+

1− ib

−1
= −1

2
+ b i . (32)

Substitution to (30) yields
det1
det2

= e−2 iπ(−
1
2+b i ) = −e2bπ. (33)

Remark 1. We can see that unlike in [12], the de-
terminant not only changes the sign, but the ra-
tio of the determinants depends on the parame-
ter b. Another example can be found in Examples 11
and 12 [14]. A more detailed analysis of the eigen-
values of our system and the damped wave equation
in [12] for the general value of the damping shows
that, on the one hand, the eigenvalue distribution
looks very similar and, on the other hand, there
are differences in the higher terms of the eigenvalue
asymptotics. For the damped wave equation on the
interval of length 1 with the damping a(x), the large
j eigenvalue asymptotics is

λj ≈ πj i − 〈a〉+
〈a2〉
2π ij

+
1

2π2j2

[
〈a3〉 − 〈a〉〈a2〉

+
1

2

(
a′(1)− a′(0)

)]
+ . . . (34)

(see [18]). The correct choice of the length of the
interval supporting the damped wave equation (in
particular, equal to π) and b = −〈a〉 gives the same
first two terms of the asymptotics as in our example.
However, the higher-order terms differ. This results
in different behaviour of the determinant; in [12],
the determinant did not depend on the damping,
while in the present example, it depends exponen-
tially. One can deduce that even small changes in
the eigenvalue asymptotics can influence the spec-
tral determinant.

5. Conclusions

In this paper, we have illustrated the subtleties of
the spectral determinant and the spectral zeta func-
tion. The spectral zeta function, used for defining
the spectral determinant, is a function of a complex
variable s and (in general, infinitely many) complex
eigenvalues λj . In the variable s, one may find a cer-
tain region in which the infinite sum in its definition
converges, and the zeta function is well-defined and
may be meromorphically continued into the rest of
the s-complex plane. On the other hand, the situ-
ation in the complex plane in which the eigenval-
ues λj “live” is more complicated. The value of the
spectral zeta function depends on the choice of the
interval from which the arguments of the eigenval-
ues are taken. This may result in the discontinuities
of the spectral zeta function in the λ-plane. If the
branch cut moves through infinitely many eigenval-
ues (or, from the other perspective, if we perturb the

eigenvalues so that they move through the branch
cut), the spectral zeta function (and hence also the
spectral determinant) may change.

Although this phenomenon was mentioned ear-
lier in [12, 14], to the best of our knowledge, it has
not been studied in detail previously. In the current
paper, we have given new Theorems 4, 5, and 6
that specify for eigenvalues on rays with power, ex-
ponential, and logarithmic behaviour, respectively,
whether the zeta function and the spectral deter-
minant can be defined, and if yes, how the de-
terminant changes when moving the branch cut.
Moreover, in Sect. 4.4, we studied in detail the ex-
ample of an operator with the eigenvalues on the
line not including the origin. Such a distribution
of eigenvalues is close to the distribution of eigen-
values of the damped wave equation on an inter-
val. However, we show that the behaviour of the
spectral determinants for both operators differs sig-
nificantly. Our result demonstrates that the higher
terms of the asymptotics of the eigenvalues for the
damped wave equation are crucial for the behaviour
of some of its spectral properties, e.g., the spectral
determinant.
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We present the experimental study of the distributions of the reflection amplitudes ri = |Sii| of the
two-port scattering matrix Ŝ for networks with unitary and symplectic symmetries for the intermediate
absorption strength parameter γ. The experimental results confirm the theoretical predictions obtained
within the framework of the Gaussian unitary and symplectic ensembles of the random matrix theory.
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1. Introduction

The theory of quantum chaotic scattering in large
complex quantum systems was developed more than
seventy years ago [1–3]. However, controllable ex-
perimental investigations of such systems due to
the effects of decoherence are still extremely dif-
ficult. Therefore, many of physical problems from
the field of quantum chaos are experimentally un-
dertaken with the help of microwave networks sim-
ulating quantum graphs [4–7].

This article shows how microwave networks can
be applied to obtain the experimental results on
the distributions P (r) of the reflection amplitudes
ri = |Sii| of the two-port scattering matrix

Ŝ =

[
S11 S12

S21 S22

]
(1)

for networks with unitary and symplectic symme-
tries. The experimental results are compared to the
exact random matrix theory (RMT) solutions of
this problem [8].

The concept of quantum graphs constructed from
a set of vertices connected by one-dimensional quan-
tum wires was introduced more than 80 years
ago by Linus Pauling [9]. They are not only ba-
sic mathematical objects but are also indispens-
able in modeling physical networks in the limit
where the lengths of the wires are much larger than
their widths [4, 10]. Quantum graphs are invaluable
tools for studying open quantum systems exhibit-
ing chaotic scattering [11–14]. They have been used

to describe a large variety of systems and models,
e.g., superconducting quantum circuits [15], quan-
tum circuits in tunnel junctions [16], and the re-
alization of high-dimensional multipartite quantum
states [17].

Quantum graphs can be simulated by microwave
networks because of the formal equivalence of the
Schrödinger equation describing quantum graphs
and the telegraph equation of the corresponding
microwave networks [4–6]. It was demonstrated
that microwave networks can experimentally sim-
ulate systems whose fluctuation properties can be
described by all three fundamental ensembles in
RMT. In the case of the systems characterized by
T -invariance, they are the Gaussian orthogonal en-
semble (GOE, symmetry index β=1 in RMT) [4, 12,
18–23] and the Gaussian symplectic ensemble (GSE,
symmetry index β=4) [7, 14, 24, 25]. For sys-
tems for which T -invariance is broken, this is the
Gaussian unitary ensemble (GUE, symmetry index
β=2) [4–6, 26–28].

It should be emphasized that the other complex
quantum systems can be simulated by microwave
plane billiards [29–45] and atoms excited in strong
microwave fields [46–55].

2. Theoretical outline

The distribution of the amplitude of the di-
agonal elements Sii of the scattering matrix Ŝ,
P (r), where r = |Sii|, is an important but
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very rarely studied characteristic of chaotic sys-
tems. The distribution of the reflection ampli-
tude P (r) in the GOE system and in the sys-
tem with partially violated time reversal invariance
was experimentally studied using microwave chaotic
cavities [29, 56].

Recently, substantial progress has been made in
the investigation of open chaotic systems with vi-
olated time reversal invariance (symmetry index
β = 2). The distributions of Wigner’s reaction
K-matrix in the case of high absorption were for the
first time experimentally studied in [6]. Finally, the
experimental investigation of distributions of the
off-diagonal elements of the two-port scattering and
the Wigner’s K̂ matrices were investigated in [28].
However, the distribution of the reflection ampli-
tude P (r) has not been studied yet.

For open chaotic systems with symplectic symme-
try (symmetry index β = 4), the distribution of the
rescaled reflection amplitude P (r̃), where r̃ = r

〈r〉
and 〈r〉 is the average value of r, has been studied
in [7].

In this article, we present the first experimental
study of the distribution of the reflection amplitude
P (r) for an open GUE system. These results are
compared with the ones obtained for the GSE sys-
tem. The openness of the systems will be described
by the dimensionless parameter γ = 2πΓ/∆, char-
acterizing the absorption strength [8, 57], where Γ
and ∆ are the width of resonances and the mean
level spacing, respectively.

The diagonal elements of the scattering matrix Ŝ
can be expressed as Sii = ri e

iθi , where ri and θi are
the reflection amplitude and the phase measured at
the i-th port of the network. The relationship be-
tween the diagonal elements Sexp

ii of the two-port
scattering matrix Ŝexp measured directly in the ex-
periment and the diagonal entries Sii of the matrix
Ŝ will be discussed later.

In the experimental investigations, quantum
graphs with unitary symmetry were modeled by
microwave networks with the circulators [5, 6]
(see Fig. 1). The GSE microwave networks with
symplectic symmetry contained two connected mi-
crowave subnetworks with unitary symmetry (see
Fig. 2). The time reversal invariance violation was
induced by T-shaped circulators of opposite orienta-
tion introduced at corresponding vertices. The con-
nections between the subnetworks were realized by
two phase shifters in order to maintain the signal
phase difference of π (see Fig. 2) and to enforce
the appearance of Kramer’s doublets specific to the
GSE systems [7].

3. Experiment

In this article, the distributions of the reflection
amplitudes P (r) are tested for the intermediate val-
ues of the absorption parameter γ = 5.1 ± 0.5 and
γ = 5.6±0.2 (Γ ' ∆) for the networks with unitary

Fig. 1. The scheme of the experimental set-up for
measuring the scattering matrix Ŝ of the 9-vertex
microwave networks with violated T -invariance
(GUE system) and absorption. The T -violation was
induced using four Anritsu PE8403 microwave cir-
culators. Absorption in the networks was caused by
the internal absorption of microwave cables, 4 phase
shifters, and 4 circulators.

and symplectic symmetries, respectively. In order
to achieve such values of the parameter, in addition
to the microwave cables, 4 circulators and 4 phase
shifters were introduced into the unitary microwave
network (see Fig. 1). The microwave network with
symplectic symmetry contained altogether 20 1 dB
attenuators, 2 circulators, and 4 phase shifters, i.e.,
10 1 dB attenuators, 1 circulator, and 1 phase shifter
for each connected by 2 phase shifters microwave
subnetwork with unitary symmetry (see Fig. 2).

The two-port scattering matrices Ŝexp of the
microwave networks with unitary and symplectic
symmetries required for the evaluation of the nor-
malized two-port scattering matrix Ŝ and the dis-
tributions P (r), were measured using a vector net-
work analyzer (VNA), Agilent E8364B (see Figs. 1
and 2). The networks were connected to VNA
through the leads — HP 85133-616 and HP 85133-
617 flexible microwave cables. The T -violation in
the unitary network and in the subgraphs of the
main GSE network was induced with Anritsu
PE8403 and Aerotek microwave circulators with low
insertion loss, which operate in the frequency ranges
ν ∈ (7–14) GHz and ν ∈ (3.5–7.5) GHz, respec-
tively. The circulators are non-reciprocal three-port
passive devices. A wave that enters the circulator
through port 1, 2, or 3 exits through port 2, 3, or 1,
respectively.

4. Basic formulas

For systems with GUE and GSE invariance
(β = 2 and β = 4), the analytic expression for
the distribution of the reflection amplitude r can
be expressed by the distribution of the reflection
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Fig. 2. The scheme of the microwave network with symplectic symmetry. The microwave network is con-
structed from two GUE subgraphs. Time reversal invariance violation is induced by T-shaped circulators. The
subgraphs are connected by two phase shifters (No. 1 and No. 2) that induce a relative phase π. Different
realizations of the GSE graph were realized by increasing the lengths of two corresponding bonds with phase
shifters (No. 3 and No. 4) by the same amount. The absorption strength parameter γ in the GSE network was
controlled by 20 1 dB attenuators.

coefficient R = r2 given by [8]

P (r) =
4r

(1− r2)2
P0

(
1 + r2

1− r2

)
. (2)

The probability distribution P0(x) for GUE sys-
tems is given by the expression

P0(x) =
1

2

[
AGUE

(α
2
(x+ 1)

)β/2
+BGUE

]
× exp

(
−α
2
(x+ 1)

)
, (3)

where α = γβ/2, AGUE = eα − 1, and BGUE =
1 + α− eα.

While, in the case of GSE symmetry, the proba-
bility distribution P0(x) is defined by

P0(x) =
1

2

[
AGSEγ(x+ 1) +BGSE

]
e−γ(x+1)

+C(x, γ)e−γx
γ∫

0

dt
sinh(t)

t
, (4)

where AGSE = e2γ − 1, BGSE = 1 + 2γ − e2γ , and
C(x, γ) = 1

2γ
2(x+ 1)2 − γ(γ + 1)(x+ 1) + γ.

For each realization of a microwave network, the
absorption parameter γ = 1

2

∑2
i=1 γi was evaluated

by fitting the theoretical mean reflection coefficient

〈r2〉th =

1∫
0

dr r2P (r) (5)

to the experimental one, 〈r2i 〉 = 〈SiiS
†
ii〉, obtained

after eliminating the direct processes, where the in-
dex i = 1, 2 denotes the port 1 or 2. In particular,
the diagonal elements Sii of the scattering matrix Ŝ
of a network for the perfect coupling case were ob-
tained by removing the direct processes present in
the diagonal elements Sexp

ii of the scattering matrix
Ŝexp using the impedance approach [41].

5. Results

In Fig. 3a, the experimentally obtained dis-
tribution of the reflection coefficient P (r) =
1
2

∑2
i=1 Pi(r) for the microwave networks with uni-

tary symmetry is shown for the effective absorption
strength γ = 5.1 ± 0.5 (red dots). The results are
obtained by averaging over 700 realizations of the
network, which were generated by increasing and
decreasing the length of different pairs of network
bonds by the same amount, while keeping the total
optical length of the network constant at 3.61 m.
The corresponding theoretical distribution P (r) cal-
culated from (2) and (3) for the parameter γ = 5.1
is represented by a red dashed line. A good over-
all agreement of the experimental distribution P (r)
with the theoretical one is observed. For compari-
son, we also show the theoretical distribution P (r)
calculated for GSE systems with the same absorp-
tion strength γ = 5.1 (blue solid line).
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Fig. 3. (a) The experimental distribution of the re-
flection amplitude P (r) for the microwave network
with unitary symmetry for γ = 5.1±0.5 (red dots).
It is compared with the theoretical ones for GUE
(red dashed line) and for GSE (blue full line) calcu-
lated for γ = 5.1. (b) The experimental distribution
of the reflection amplitude P (r) for the microwave
network with symplectic symmetry for γ = 5.6±0.2
(blue diamonds). It is compared with the theoreti-
cal ones for GSE (blue full line) and for GUE (red
dashed line) for γ = 5.6.

The experimental distribution of the reflection
coefficient P (r) for the microwave networks with
symplectic symmetry for the effective absorption
strength γ = 5.6 ± 0.2 (blue diamonds) is shown
in Fig. 3b. The results were obtained by averag-
ing over 30 realizations of the networks. The to-
tal optical length of the networks varied from 7.09
to 7.17 m. In Fig. 3b, we also show the correspond-
ing theoretical distribution P (r) (blue full line) cal-
culated from (2) and (4) for the parameters γ = 5.6.
The good overall agreement of the experimental dis-
tribution P (r) with the theoretical one confirms
that the procedure leading to the determination of
the absorption parameter γ using (5) also works
very well for the networks with symplectic sym-
metry. Additionally, the distribution P (r) predicted
for GUE systems (γ = 5.6) is shown with the red
dashed line.

6. Conclusions

In conclusion, we have reported on the measure-
ments of the distribution P (r) of the amplitude of
the diagonal elements r = |Sii| of the two-port scat-
tering matrix Ŝ for the unitary and symplectic mi-
crowave networks for intermediate loss parameters
γ = 5.1 ± 0.5 and γ = 5.6 ± 0.2, respectively. The
experimental results were compared with the the-
oretical ones [8], showing good overall agreement.
Thus, our experimental results validated the theo-
retical ones.

Acknowledgments

This work was supported in part by the Na-
tional Science Centre, Poland, Grant No. UMO-
2018/30/Q/ST2/00324.

References

[1] E.P. Wigner, Ann. Math. 53, 36 (1951).
[2] F. Haake, Quantum Signatures of Chaos,

Springer-Verlag, Heidelberg 2001.
[3] H.A. Weidenmüller, G.E. Mitchell, Rev.

Mod. Phys. 81, 539 (2009).
[4] O. Hul, S. Bauch, P. Pakoński, N. Savyt-

skyy, K. Życzkowski, L. Sirko, Phys. Rev.
E 69, 056205 (2004).

[5] M. Ławniczak, S. Bauch, O. Hul, L. Sirko,
Phys. Rev. E 81, 046204 (2010).

[6] M. Ławniczak, L. Sirko, Sci. Rep. 9, 5630
(2019).

[7] M. Ławniczak, A. Akhshani, O. Farooq,
M. Białous, S. Bauch, B. Dietz, L. Sirko,
Phys. Rev. E 107, 024203 (2023).

[8] Y.V. Fyodorov, D.V. Savin, JETP Lett. 80,
725 (2004).

[9] L. Pauling, J. Chem. Phys. 4, 673 (1936).
[10] T. Kottos, U. Smilansky, Phys. Rev. Lett.

79, 4794 (1997).
[11] T. Kottos, U. Smilansky, Phys. Rev. Lett.

85, 968 (2000).
[12] M. Ławniczak, O. Hul, S. Bauch, P. Seba,

L. Sirko, Phys. Rev. E 77, 056210 (2008).
[13] Z. Pluhař, H. A. Weidenmüller, Phys. Rev.

Lett. 112, 144102 (2014).
[14] J. Che, J. Lu, X. Zhang, B. Dietz, G. Chai,

Phys. Rev. E 103, 042212 (2021).
[15] H.Z. Jooya, K. Reihani, S.-I. Chu, Sci. Rep.

6, 37544 (2016).
[16] O.F. Namarvar, G. Dridi, C. Joachim, Sci.

Rep. 6, 30198 (2016).
[17] M. Krenn, X. Gu, and A. Zeilinger, Phys.

Rev. Lett. 119, 240403 (2017).

472

http://dx.doi.org/10.2307/1969342
http://dx.doi.org/10.1007/978-3-642-05428-0
http://dx.doi.org/10.1103/revmodphys.81.539
http://dx.doi.org/10.1103/revmodphys.81.539
http://dx.doi.org/10.1103/physreve.69.056205
http://dx.doi.org/10.1103/physreve.69.056205
http://dx.doi.org/10.1103/physreve.81.046204
http://dx.doi.org/10.1038/s41598-019-42123-y
http://dx.doi.org/10.1038/s41598-019-42123-y
http://dx.doi.org/10.1103/physreve.107.024203
http://dx.doi.org/10.1134/1.1868794
http://dx.doi.org/10.1134/1.1868794
http://dx.doi.org/10.1063/1.1749766
http://dx.doi.org/10.1103/physrevlett.79.4794
http://dx.doi.org/10.1103/physrevlett.79.4794
http://dx.doi.org/10.1103/physrevlett.85.968
http://dx.doi.org/10.1103/physrevlett.85.968
http://dx.doi.org/10.1103/physrevlett.112.144102
http://dx.doi.org/10.1103/physrevlett.112.144102
http://dx.doi.org/10.1103/physreve.103.042212
http://dx.doi.org/10.1038/srep37544
http://dx.doi.org/10.1038/srep37544
http://dx.doi.org/10.1038/srep30198
http://dx.doi.org/10.1038/srep30198
http://dx.doi.org/10.1103/physrevlett.119.240403
http://dx.doi.org/10.1103/physrevlett.119.240403


Experimental Distributions of the Reflection Amplitude for. . .

[18] O. Hul, M. Ławniczak, S. Bauch, A. Saw-
icki, M. Kuś, L. Sirko, Phys. Rev. Lett 109,
040402 (2012).

[19] M. Ławniczak, S. Bauch, O. Hul, L. Sirko,
Phys. Scr. T147, 014018 (2012).

[20] M. Ławniczak, S. Bauch, L. Sirko, in:
Handbook of Applications of Chaos Theory,
Eds. C. Skiadas, C. Skiadas, CRC Press,
Boca Raton (FL) 2016, p. 559.

[21] B. Dietz, V. Yunko, M. Białous, S. Bauch,
M. Ławniczak, L. Sirko, Phys. Rev. E 95,
052202 (2017).

[22] M. Ławniczak, J. Lipovský, L. Sirko, Phys.
Rev. Lett. 122, 140503 (2019).

[23] M. Ławniczak, P. Kurasov, S. Bauch,
M. Białous, V. Yunko, L. Sirko, Phys. Rev.
E 101, 052320 (2020).

[24] A. Rehemanjiang, M. Allgaier,
C.H. Joyner, S. Müller, M. Sieber,
U. Kuhl, H.-J. Stöckmann, Phys. Rev.
Lett. 117, 064101 (2016).

[25] J. Lu, J. Che, X. Zhang, B. Dietz, Phys.
Rev. E 102, 022309 (2020).

[26] M. Ławniczak, S. Bauch, O. Hul, L. Sirko,
Phys. Scr. T143, 014014 (2011).

[27] M. Białous, V. Yunko, S. Bauch,
M. Ławniczak, B. Dietz, L. Sirko, Phys.
Rev. Lett. 117, 144101 (2016).

[28] M. Ławniczak, B. Tiggelen, L. Sirko, Phys.
Rev. E 102, 052214 (2020).

[29] B. Dietz, T. Friedrich, H.L. Harney,
M. Miski-Oglu, A. Richter, F. Schäfer,
H.A. Weidenmüller, Phys. Rev. E 81,
036205 (2010).

[30] J.-H. Yeh, Z. Drikas, J. Gil Gil, S. Hong,
B.T. Taddese, E. Ott, T.M. Antonsen,
T. Andreadis, S.M. Anlage, Acta Phys.
Pol. A 124, 1045 (2013).

[31] X. Zheng, S. Hemmady, T.M. Antonsen
Jr., S.M. Anlage, E. Ott, Phys. Rev. E 73,
046208 (2006).

[32] H.-J. Stöckmann, J. Stein, Phys. Rev. Lett.
64, 2215 (1990).

[33] S. Sridhar, A. Kudrolli, Phys. Rev. Lett.
72, 2175 (1994).

[34] L. Sirko, P.M. Koch, R. Blümel, Phys. Rev.
Lett. 78, 2940 (1997).

[35] S. Bauch, A. Błȩdowski, L. Sirko,
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We study the influence of feedback operations on the dynamics of (d+1)-dimensional monitored random
quantum circuit. Competition between unitary dynamics and measurements leads to an entanglement
phase transition, while feedback steers the dynamics towards an absorbing state, yielding an absorbing
state phase transition. Based on previous results in one spatial dimension (Phys. Rev. Lett. 130, 120402
(2023)), we discuss the interplay between the two types of transitions for d ≥ 2 in the presence of (i)
short-range feedback operations or (ii) additional global control operations. In both cases, the absorbing
state transition belongs to the d-dimensional directed percolation universality class. In contrast, the
entanglement transition depends on the feedback operation type and reveals dynamics’ inequivalent
features. The entanglement and absorbing state phase transition remain separated for short-range feed-
back operations. When global control operations are applied, we find the two critical points coinciding;
nevertheless, the universality class may still differ, depending on the choice of control operation.

topics: entanglement, monitored quantum dynamics, feedback operations, random circuits

1. Introduction

Monitored many-body quantum systems provide
a natural perspective for understanding the progress
in quantum simulations [1] and noisy intermediate-
scale quantum technologies [2, 3]. Repeated mea-
surements introduce non-unitary effects on the
otherwise unitary evolution of quantum systems,
leading to dynamics that can be described by
stochastic quantum trajectories [4–8]. Most impor-
tantly, there is a striking distinction between the
average and typical properties of the trajectory en-
semble. While the former lead to quantum chan-
nels and Lindbladian evolution, the latter reveal a
rich structure, including fingerprint phenomena like
measurement-induced transitions (MIT) [9–14].

The distinction between average and typical tra-
jectory is of central importance for the observ-
ability of these transitions. While average dy-
namics is experimentally feasible, extraction of
typical features of quantum trajectories requires
post-selection over the measurement results — a
task of outstanding difficulty for generic systems

and observables [15–24]. Indeed, to perform the
post-selection for a given quantum trajectory, one
has to ensure that each of the conducted measure-
ments yields the desired result. MIT is observed in
settings where the number of measurements scales
proportionally to the space-time volume of the con-
sidered system. Since quantum measurements are
inherently stochastic, the probability of obtaining
a given trajectory is exponentially suppressed, or
in other words, the resources needed to perform
an experiment scale exponentially with the size of
the system. Thus, without fine-tuning (cf. [25–29]),
avoiding or mitigating post-selection is a central
open problem in monitored quantum dynamics.

Recently, it has been proposed to use feedback
operations that condition the system’s dynamics
on measurement outcomes to circumvent this post-
selection problem. Indeed, conditional operations
alter the average dynamics [30–32], and, in prin-
ciple, can encode non-linear features of quantum
trajectories, such as MIT, even at the averaged den-
sity matrix level. This idea has been successful for
monitored free fermions and certain models of quan-
tum chaos [33, 34], but the introduction of feedback
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does not necessarily imply that MIT is observable
on the level of average state. For instance, when a
feedback mechanism introduces an absorbing state
to the system, i.e., a state that is a fixed point of
the dynamics, the resulting absorbing phase transi-
tion (APT) and MIT are generally distinct [35–38].
Nevertheless, for carefully chosen feedback opera-
tions [39], fluctuations of the order parameter of
APT and the entanglement entropy can be coupled.
In that case, the entanglement entropy undergoes
a dynamical transition that inherits the universal
features of APT. However, even when the critical
points of MIT and APT coincide, the universal con-
tent of APT may differ from that of MIT, depend-
ing on the renormalization group relevance of the
underlying feedback operations [39, 40].

These previous works investigate one-dimensional
systems and leave the role of dimensionality in mon-
itored systems with feedback essentially unexplored.
Indeed, higher dimensional systems are generally
challenging from a numerical perspective. The ex-
tensive entanglement generated by weakly moni-
tored dynamics poses severe limitations to tensor
network methods [41]. Similarly, the exponential
growth of the Hilbert space with system size lim-
its the exact simulations to a few tens of qubits. An
important exception is stabilizer circuits, which are
efficiently simulable via the Gottesman–Knill theo-
rem [42, 43], and have been recently investigated in
(d + 1) random circuits with [44–46] and without
monitoring [47].

This paper investigates the interplay between
APT and MIT in (d + 1)-dimensional stabi-
lizer circuits. We employ the flagged Clifford cir-
cuits [37, 39, 40], showing that short-range feed-
back operations lead to distinct APT and MIT
critical points and investigating their properties.
Subsequently, we also include a global feedback-
control operation. In that case, the critical points
of APT and MIT coincide. We unravel the similar-
ities between the time evolution of the order pa-
rameter of APT and the entanglement entropy at
any dimension d investigated. Finally, we discuss
the range of validity of our results.

This manuscript is structured as follows. In
Sect. 2, we review flagged stabilizer circuits, dis-
cuss the interplay between monitoring and feed-
back in a heuristic manner, and detail our imple-
mentation in d ≥ 2. The core section of our work
is Sect. 3, which discusses our numerical findings.
Specifically, in Sect. 3.1 we study the order param-
eter behavior for APT, highlighting its direct per-
colation (DP) universality class through numerical
results in 2 ≤ d ≤ 4. In Sect. 3.2, we compare
those findings with the entanglement dynamics for
different choices of feedback operation. Section 3.3
discusses the order parameter and entanglement en-
tropy at a fixed circuit depth (time) t ∝ L, revealing
additional aspects of APT and MIT. Our conclu-
sions, with further discussions and outlooks, are
presented in Sect. 4.

Fig. 1. Gates building a layer K = ActrlK0 of
the considered quantum circuit. The K0 layer con-
sists of gates Um,n applied to neighboring qubits m
and n, depicted in panel (a). These gates include a
two-body Clifford gate Um,n, conditioned on the
flags fm and fn (as discussed in Sect. 2.1), as well
as measurements Mm and Mn of the Zm and Zn

operators. These measurements are performed with
a probability of p. (b) Feedback-control operation
Actrl is a global Clifford gate that acts non-trivially
on all lattice sites at which fm = 0.

2. Feedback-controlled and flagged
stabilizer circuits

This section reviews the concept of flagged stabi-
lizer circuits and details our numerical implementa-
tion of d-dimensional circuits. We also discuss the
phenomenology of our system here.

2.1. Flagged stabilizer circuits

We consider a (d+1) dimensional quantum circuit
defined on a d-dimensional spatial lattice Λ, com-
prising of T layers that intersperse unitary dynam-
ics and projective measurements of the local mag-
netization Zm. The lattice Λ is fixed as as hyper-
rectangular L1×· · ·×Ld lattice, where L1 = L and
L2 = . . . = Ld = L/2. We assume periodic bound-
ary conditions in all directions and denote by |X|
the number of sites in a sublattice X. Throughout
this manuscript, we denote Pauli operators by Xm,
Ym, Zm, while |1m〉 and |0m〉 are the +1 and −1
eigenvectors of Zm, and m labels the lattice sites.
We consider two types of circuits: (i) with short-
range feedback control, in this case each layer of the
circuit is given asK = K0, withK0 comprised of lo-
cal measurements and unitary gates; (ii) with global
control-feedback operations for which each layer of
the circuit is arranged as K = ActrlK0, where Actrl

is a global feedback operation described below.
The measurement/unitary layer K0 is built of

|Λ|/2 two-body gates Um,n presented in Fig. 1a.
The two-body gate Um,n acts on the nearest neigh-
boring sites m,n of the lattice. The first index, m,
is chosen with uniform probability, without repeti-
tions, over the whole lattice Λ. In turn, the second
index is set as n = m + eu, where eu is the unit
vector in a randomly chosen direction u = 1, . . . , d.
The gate Um,n consists of the measurements Mm,
Mn of Zm, Zn operators, and acts on system’s state
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|ψ〉 via

Mm|Ψ〉 =



1+Zm

2

|Ψ〉
√
p+
, with probability p+.

1−Zm

2

|Ψ〉
√
p−
, with probability p−,

(1)

with p± = 〈Ψ |1± Zm|Ψ〉/2 being the Born rule
probability of a given measurement outcome. Each
of the measurements is performed with the mea-
surement probability (or rate) p, which is the control
parameter that allows tuning the considered quan-
tum circuit between various dynamical phases. The
measurements are followed by the action of a two-
body gate Um,n selected, with uniform probability,
from the 2-qubit Clifford group. The gate Um,n is
conditioned on the classical labels fm in a way spec-
ified below. The procedure of creating the layer K0

consists of a random generation of |Λ|/2 two-body
gates Um,n that is performed independently during
the construction of each of the circuit layers.

To introduce feedback in our system, we fix
|ABS〉 ≡

⊗
m∈Λ |1m〉 as the absorbing state, i.e.,

we require that |ABS〉 is a fixed point of the dy-
namics of our circuit, K|ABS〉 = |ABS〉. For this
purpose, the two-body gates Um,n should preserve
the states |1m1n〉. Since Clifford gates fulfilling this
condition do not generate genuine quantum corre-
lations, we introduce, following [39], the classical
flags fm = 0, 1 at each site m ∈ Λ to establish the
feedback mechanism in our stabilizer circuits. The
system is initialized in the state |Ψ0〉 =

⊗
m∈Λ |0m〉

and we initially set fm = 0 for allm ∈ Λ. After each
measurement, we change the flag to fm = 1 when
the outcome is +1 (otherwise the flag remains un-
changed, fm = 0). The two-body gate Um,n acts
on the sites m,n only when fmfn = 0. Otherwise,
Um,n is replaced by the two-site identity matrix.

The short-range feedback mechanism is present
in a circuit comprised solely of layers K0 due to the
flag mechanism built in the two-body gates Um,n.
It is straightforward to verify that |ABS〉 is indeed
an absorbing state, K0 |ABS〉 = |ABS〉.

Finally, to introduce the global control op-
eration to our system, we consider Actrl, see
Fig. 1b, which is a global random Clifford uni-
tary that acts non-trivially only on the subset
Λ̃ = {m ∈ Λ : fm = 0} ⊂ Λ of unflagged sites. This
construction of the feedback-control operation Actrl

ensures that our stabilizer circuit can generate ex-
tensive entanglement in the presence of monitoring
while preserving |ABS〉 as an absorbing state. In the
following, we will compare and contrast the prop-
erties of the circuit built of layers of K = K0 with
the time evolution of the circuit K = ActrlK0 com-
posed of the global feedback-control operation Actrl

and the measurement/unitary layer K0.
We note that with these specifications, the de-

scribed setups are amenable to efficient numer-
ical simulations for d ≥ 2 [45, 47] that scale

polynomially in the system size L. Our simula-
tions of flagged stabilizer circuits are implemented
in a state-of-the-art package STIM [43] and use an
asymptotically fast [48, 49] algorithm for computa-
tion of rank with complexity O(N3/ log2(N)) [50],
whereN = |Λ| is the number of qubits in the lattice.

2.2. Post-selection: linear and non-linear functions
of the density matrix

Before proceeding to the systematic numerical
analysis of the next section, we would like to high-
light some vital physical aspects of the dynamics
of the considered quantum circuits with feedback.
Performing numerical simulations of the quantum
dynamics of the flagged stabilizer circuits, we ob-
tain the time-evolved state |Ψt〉 ≡

∏
tKt |Ψ0〉 and

the corresponding density matrix ρt ≡ |Ψt〉〈Ψt|. We
are interested in quantities that are averaged over
the circuit realizations. This leads to a crucial dif-
ference between physical quantities concerning their
dependence on the density matrix ρt:

• Linear functions of ρt, for instance, a defect
density

ndef(Ψt) = 1− Tr

(
ρt
∑
m

1 + Zm

2N

)
, (2)

where N = |Λ| = L(L/2)d−1 is the total num-
ber of sites in the lattice. Taking the aver-
age (denoted by the overline) over the cir-
cuit realizations of the defect density yields
ndef ≡ ndef(Ψt), which, due to the linearity of
the considered quantity, amounts to

ndef = 1− Tr

(
ρt
∑
m

1 + Zm

2N

)
, (3)

i.e., the average defect density ndef is deter-
mined solely by the average density matrix ρt.

• Non-linear functions of ρt, for instance, entan-
glement entropy

SX(Ψt) = −TrX
(
ρX(t) log2 ρX(t)

)
, (4)

where ρX(t) = TrXc(ρt) is the reduced den-
sity matrix for the subsystem X [8] obtained
by tracing out the degrees of freedom of its
complement Xc (Λ = X ∪ Xc). Due to the
non-linearity of (4), the average entanglement
entropy, SX(t) ≡ SX(Ψt), has to be calculated
directly by evaluating SX(Ψt) and by averag-
ing the result over the circuit realizations. In
other words, there is generally no functional
dependence between SX(t) and the average
density matrix ρt.

The dichotomy between linear and non-linear func-
tions of ρt is reflected at the level of physical quan-
tities and phenomena that can be captured with the
two types of quantities. Averages of linear functions
of ρt are amenable to experiments as they do not
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require post-selection and are dependent solely on
the average density matrix ρt. The defect density
ndef captures APT in the system. Conversely, non-
linear functionals of the state, such as the entan-
glement entropy SX(t), reveal phenomena occuring
at the level of individual trajectories of the system,
such as MIT, and require post-selection. Indeed, to
calculate SX(Ψt), we have first to ensure that we
consider a fixed final state |Ψt〉 that depends on
the outcomes of the performed measurements, then
evaluate SX(Ψt) by repeatedly preparing the same
final state |Ψt〉, and only then we can average the
result over the circuit realizations.

2.3. Phenomenology of feedback-monitored
systems with an absorbing state

In our system, due to the presence of a feed-
back mechanism, we expect that limt→∞ ρ =
|ABS〉〈ABS|. Indeed, if in a particular region λ of
the lattice Λ the measurements of Zm yield the re-
sult of 1, the flags in the region λ are set to unity,
fm = 1. Hence, due to the feedback used, the uni-
tary gates Um,n can act non-trivially only on the
edges of the λ region. In contrast, in the bulk of
the subsystem λ the state is already locally ferro-
magnetically ordered, as in the absorbing |ABS〉.
Hence, as our system evolves, the lattice Λ becomes
covered with ordered domains in which the spins are
aligned as in the absorbing state, 〈Ψt|Zm|Ψt〉 = 1,
and defect regions in which the spins are not aligned
in that way, 〈Ψt|Zm|Ψt〉 6= 1, as schematically pre-
sented in Fig. 2. The fraction of sites in the defect
regions is precisely given by ndef defined in (2).

Since |ABS〉 is invariant under eachK layer of the
circuit, the ordered domains, on average, grow. This
introduces ordering to the system, which finally
reaches the absorbing state. The timescale for reach-
ing |ABS〉 is altered by p. At high measurement
rates (p > pc

APT), ordered regions develop quickly
and the defect density ndef decays exponentially
in time. Conversely, at small measurement rates
(p < pAPT

c ), the system is in a non-absorbing phase.
The unitary gates scramble information, while still
competing with the measurements. This leads to a
non-vanishing defect density ndef , prevails to time
scales exponentially large in the system size L.
Close to the APT critical point p ≈ pAPT

c , order-
ing in the system develops so that the defect den-
sity decays in a characteristic power-law fashion,
which is a signature of absorbing phase transition
(APT).

The dynamics of APT can be observed at the
level of the average state ρt. In contrast, the entan-
glement properties of the system unravel a richer
structure observable at the level of individual tra-
jectories |ψt〉.

Notably, the entanglement content of the system
is fixed by the presence/absence of the feedback-
control operation Actrl, which, by construction, does

Fig. 2. Conditioning of the unitary gates on the
measurement outcomes by the flags mechanism
leads to the emergence of ordered domains (high-
lighted in orange) and defect regions. (a) Short-
range control operations only entangle degrees of
freedom within the same defect regions. (b) An ad-
ditional global feedback-control operation Actrl gen-
erates long-range entanglement, coupling distant
disordered areas. The blue lines pictorially repre-
sent entangled degrees of freedom.

not affect the dynamics of the average state ρt.
Without the control operation (a = 0, K = K0),
the feedback mechanism is solely short-ranged, and
no-long range entanglement is generated between
distant disordered regions, see Fig. 2a. Indeed, the
unitaries Um,n generate quantum correlations only
among degrees of freedom within or close to the
boundary of defect regions. The absorbing state is
a product state. Hence, we expect that MIT occurs
before APT (i.e., pMIT

c < pAPT
c ) in such a way that

the state can follow the area-law of entanglement
entropy while the system is not yet in an absorb-
ing phase. For instance, the state may host isolated
single-site defects. Such a state is not volume-law
entangled but is still not an absorbing state.

When the global feedback-control operation Actrl

is used, it globally couples all defect regions, cre-
ating long-range entanglement between distant de-
fects, see Fig. 2b. In this case, we expect pMIT

c =
pAPT
c since any arbitrarily separated qubits in a de-

fect state will be correlated by Actrl and only a fully
ordered state hosts no entanglement. This heuristic
discussion was corroborated for d = 1 dimensional
systems in [39]. We confirm this picture with a sys-
tematic numerical analysis for d ≥ 1 in the following
sections.

3. Numerical results

In this section, we discuss numerical results for
the described circuit architecture and various space
dimensions d ≤ 4, considering the average dynamics
reflected by the defect density ndef as well as non-
linear functions of ρt. Specifically, we investigate the
entanglement entropy dynamics SX(t) for setups
with short-range feedback mechanisms and with the
additional global feedback-control operation Actrl.
Lastly, we investigate the system’s entanglement
and average state features at a fixed circuit depth.

477



P. Sierant et al.

Fig. 3. Absorbing state phase transition in d = 2, 3, 4 dimensional circuits. The time evolution of the defect
density ndef was obtained by considering PCA for average dynamics (see text). Panels (a, b, c) show the ndef as
a function of time t for measurement rate below/close to/above APT. Darker colors correspond to increasing
system sizes. For d = 2 (a), we consider L = 100, 400, 800, for d = 3 (b) L = 32, 64, 128, and for d = 4 (c)
L = 16, 32, 64. In the vicinity of APT, we observe characteristic power-law decays ndef ∝ t−δ with exponents
δ close to the exponents for the DP class. The insets show tδndef plotted as functions of t|p − pAPT

c |1/ν ,
demonstrating data collapses with exponents consistent with the DP class, see Table I for exponent values.

3.1. Dynamics of the order parameter

We begin by analyzing the dynamics of the av-
erage state ρt. Following standard techniques, see
e.g. [35, 36, 39, 40], the average dynamics can be
analytically mapped to a probabilistic cellular au-
tomaton. Appendix A2 details a short discussion
about this mapping which we use to calculate quan-
tities depending on ρt, such as the defect density
ndef . Computing the classical average dynamics is
more efficient than calculating the full quantum
dynamics of the circuit with stabilizer formalism,
which allows us to simulate systems in 2 ≤ d ≤ 4.
Focusing on the evolution of the defect density ndef

over time t (circuit depth) close to APT, we average
the results over no less than Nreal = 200 realizations
of the circuit and study the behavior ndef in systems
of size up to L = 800 in d = 2, L = 128 in d = 3,
and L = 64 in d = 4 dimensions. Our results are
summarized in Fig. 3.

Our results for d = 2 and systems of size L ≥ 100
are shown in Fig. 2a. At p = 0.8, the defect den-
sity attains a non-zero stationary value that persists
on time scales that increases exponentially with L,
indicating that the system is in the non-absorbing
phase. In stark contrast, a hallmark of the absorb-
ing phase is visible for p = 0.825 — the defect
density decays to zero exponentially with time t
independently of the system size L. The critical
point that separates the two phases is located at
the measurement rate pAPT

c = 0.8175(2) at which
a power-law decay ndef ∝ t−δ with an exponent
δ = 0.45(1) emerges. This behavior is characteristic
for the DP universality class in dimension d = 2.
Varying the measurement rate around p = pAPT

c ,
we observe a collapse of tδndef plotted as a function

of t|p−pAPT
c |1/ν , see inset in Fig. 3a, with exponent

ν = 1.30(3), which is in agreement with the d = 2
DP universality class [51, 52].

Our results for the average dynamics in d = 3 are
presented in Fig. 3b. In the non-absorbing phase,
the defect density ndef attains a non-zero stationary
value up to a time scale which grows exponentially
with L, as exemplified by the results displayed for
p = 0.9. In the absorbing phase, ndef decreases ex-
ponentially to zero, as demonstrated by the data for
p = 0.92. At APT in d = 3, at pAPT

c = 0.912(1),
we notice a power-law decay ndef ∝ t−δ, with
the exponent δ = −0.73(2), compatible with the
d = 3 DP universality class. Moreover, as the inset
in Fig. 3b illustrates, we find a collapse of tδndef

versus t|p−pAPT
c |1/ν , with ν = 1.11(4) consistently,

within error bars, with the critical exponents for the
d = 3 DP universality class [51, 52].

As shown in Fig. 3c, the defect density ndef in
the d = 4 dimensional system behaves in a quanti-
tatively similar fashion in the non-absorbing phase
(e.g., at p = 0.8) and in the absorbing phase (e.g.,
at p = 0.96). The two phases are separated by a
phase transition at which the power-law decay of
the defect density emerges. At the considered sys-
tem size L = 64, we find that the decay of ndef

is well approximated by a decay with an expo-
nent δ = 0.85(1) at pAPT

c = 0.948(2). However,
by comparing this exponent with the results for
L = 16 and L = 32, we notice a persistent in-
crease of our estimate of δ as L increases. For in-
stance, at L = 16, the power-law decay persists
for the longest time for p = 0.945 with exponent
δ = 0.79(1). Hence, the effects of finite system
size introduce a systematic error into our numerical
analysis, preventing us from quantitatively confirm-
ing the mean-field critical exponents δ = 1 and
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Fig. 4. Entanglement entropy SX without the control operation (a) and with the control operation Actr (b)
close to APT in the d = 2 dimensional system. Panel (c) shows SX for d = 3 with Actrl. Darker (lighter)
tones correspond to L = 60 (L = 40) for d = 2 and L = 24 (L = 16) for d = 3, while the colors represent
the measurement rate p. For d = 2, at p = 0.8175 ≈ pAPT

c , we observe the power-law decays with exponent
δ = 0.45(1) characteristic for the DP class in d = 2. The bottom insets in (a, b) show collapses of data with
exponents consistent with DP class in d = 2, see Table I. The upper insets in (a, b) present the value of
entanglement entropy SX at time t = 4L for p < pAPT

c as a function of the size of the subsystem boundary
∂X, where (a) indicates an area-law SX ∝ |∂X|, while (b) exhibits a volume-law behavior, SX ∝ |X|. For
d = 3 in (c), we find a power law behavior with δ = 0.65(4) around the critical point pAPT

c = 0.912(1). In the
inset, we reveal the emerging volume-law scaling, SX ∝ |X|. Results are averaged over more than 103 circuit
realizations.

TABLE I

Summary of critical exponents characterizing dynamical transitions in flagged Clifford circuits. The column
denoted by “DP class” shows the expectations of the directed percolation theory [51, 52]. The column
“Unitary Dyn.” presents the exponents obtained in studies of the full quantum dynamics of the flagged
stabilizer circuits. At the same time, the column “Average Dyn.” reports the results obtained from the
simulation of the probabilistic cellular automaton and they correspond to the average dynamics of the
flagged stabilizer circuits. The results of our numerical simulations are consistent with the DP universality
class, except for the average dynamics results for d = 4, which are subject to significant system size drifts
and hence are denoted by the asterisks.

DP class Unitary Dyn. Average Dyn.
d δ ν δ ν δ ν

2 0.450(5) 1.295(6) 0.45(2) 1.30(5) 0.45(1) 1.30(3)
3 0.73(1) 1.11(1) 0.65(4)∗ − 0.73(2) 1.09(4)
4 1 1 − − 0.85(5)∗ 1.0(1)∗

ν = 1 expected for the DP universality class at
d = 4 [53]. Nevertheless, the trends characterizing
our results suggest that the mean-field critical expo-
nents may describe the considered system when the
time scales and sizes of the system are sufficiently
large.

3.2. Entanglement evolution

Now, we switch to full quantum dynamics of the
circuit and calculate the time-evolved state |Ψt〉. We
focus on non-linear functions of the density matrix
ρt, which grasp physics beyond average state prop-
erties. We consider the average entanglement en-
tropy SX(t) for the subsystem X, which is a hyper
rectangle of dimensions lx ×L/2× . . .×L/2 (recall
that the full system has dimensions L×L/2× . . .×

L/2). We set the value of lx as L/4, which allows
us to distinguish between area-law and volume-law
scaling of entanglement entropy when the system
size L is increased.

Without the feedback-control operationActrl, i.e.,
in the presence of only short-range feedback control,
the system undergoes measurement-induced tran-
sitions (MIT) at pMIT

c = 0.255(3) between phases
with volume-law and area-law entanglement en-
tropy, with properties fully analogous to MIT re-
ported in d = 2 systems without feedback [45].

In Fig. 4a, we present the time evolution of the
entanglement entropy SX(t) at measurement rates
p close to APT, which occurs at pAPT

c = 0.8175(2).
The entanglement entropy SX(t) saturates at
p < pAPT

c to a finite value, decays exponentially
with time t when p > pAPT

c and follows a power-law
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Fig. 5. Properties of the system at time t = 4L as
a function of the measurement rate p for the dimen-
sional system d = 2. Panel (a) presents results with
short-range feedback only (i.e., without the control
Actrl) and demonstrates a volume-law phase of en-
tanglement SA ∝ L2 at p < pMIT

c = 0.255(3) and
an area-law phase SA ∝ L at p > pMIT

c . The or-
der parameter O ≡ 1 − ndef is smaller than unity
for p < pAPT

c = 0.8165(19) and approaches 1 in
the L → ∞ limit for p > pAPT

c . The inset in
panel (a) shows the area-to-area law transition of
the entanglement entropy SX at p = pAPT

c . The
panel (b) presents the same, but in the presence
of the global feedback-control operation Actrl. APT
and MIT merge in a single transition at which the
volume-to-area law entanglement transition accom-
panies the ordering transition reflected by O.

decay when p ' pAPT
c . This behavior is analogous to

the behavior of the defect density ndef near APT.
Moreover, as shown in the lower inset of Fig. 4a,
the entanglement entropy has the same dynamical
scaling as ndef , with compatible critical exponents,
see Table I. Importantly, the entanglement entropy
presents an area-law behavior and scales propor-
tionally to the number of sites at the boundary ∂X
of the region X, SX ∝ |∂X| at any measurement
probability p > pAPT

c , as illustrated in the upper
inset in Fig. 4a. Consequently, at p = pAPT

c , there is
an area-to-area law entanglement transition at time
t ∝ L, in full analogy with the d = 1 case [39].

In the presence of the feedback-control opera-
tion Actrl, the dynamical behavior of the entan-
glement entropy SX(t) at a fixed subsystem size
is entirely analogous to the short-range feedback

case, as shown in Fig. 4b. However, in the presence
of Actrl, the entanglement entropy has the volume-
law scaling with the subsystem size at all p < pAPT

c .
This is demonstrated in the upper inset in Fig. 4b,
which shows that SX/|X| approaches a constant as
the subsystem size increases. Thus, at measurement
rate p = pAPT

c , the system undergoes an entan-
glement transition between volume-law scaling and
area-law scaling of entanglement entropy at time
t ∝ L (see the next section for further discussion of
this point).

Finally, the results for d = 3, presented in Fig. 4c,
exhibit an analogous behavior. We note that the
power-law decay of SX/|X| close to APT is gov-
erned by an exponent δ ≈ 0.65(4), slightly smaller
than the value for the DP class for d = 3. This is
a finite-size effect caused by the limitations of the
largest system size, L = 24, available to our full
quantum dynamics simulation. In contrast, calcula-
tions of average dynamics were performed for sys-
tems of size up to L = 128 at d = 3 and yielded
the result consistent with the DP class in d = 3.
The presence of the feedback-control operation Actrl

ensures that the entanglement entropy follows a
volume-law SX ∝ |X|, as indicated by the satu-
ration of the curves shown in the inset of Fig. 4c.
Consequently, at t ∝ L, the system undergoes an
entanglement transition between volume-law and
area-law scaling of the entanglement entropy.

The critical features of the entanglement entropy
dynamics reported in this section for systems in di-
mensions d = 2 and d = 3 are entirely analogous
to the results for d = 1 discussed in [39]. By anal-
ogy, we expect similar results to extend to d = 4,
the upper critical dimension for the DP universality
class [53]. Nevertheless, our present capabilities of
the simulation of Clifford circuits prevent us from a
quantitative confirmation of this conjecture.

3.3. Absorbing and entanglement phase transition
at time t ∝ L

As we argued in Sect. 2.2, the presence of a
feedback mechanism in our system implies that
limt→∞ ρt = |ABS〉〈ABS| in any finite system
size L. In other words, if the limit of large time
is taken, we will always find our system in the triv-
ial, ordered, product state |ABS〉〈ABS|. However,
fixing a specific time scale at which we observe the
system, for instance, setting t = 4L (which we will
use henceforth in this section), allows us to uncover
manifestations of the dynamical phase transitions
described above.

In Fig. 5, we compare the results for d = 2 by
considering both short-range feedback and includ-
ing the global feedback-control operation Actrl. A
clear signature of APT is the fact that the order pa-
rameter O ≡ 1−ndef approaches its maximal value
O → 1 at p > pAPT

c when the system size increases,
while O < 1 for p < pAPT

c , as demonstrated by the
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red lines in Fig. 5. We reiterate that the behavior of
the order parameter is the same in the presence and
absence of Actrl by the construction of our feedback
mechanism.

In the presence of the short-range feedback only,
see the top panel in Fig. 5, we observe two separate
transitions, namely (i) MIT between phases with
volume-law and area-law entanglement entropy at
the measurement rate p = pMIT

c = 0.255(3) and (ii)
APT at p = pAPT

c . We note that area-law scaling for
d = 2 implies that SX ∝ L. Notably, at p = pAPT

c ,
there is a second entanglement transition between
the area-law phase characterized by SX ∝ L and
the area-law phase with SX → 0 as demonstrated
by the inset in the top panel of Fig. 5.

However, when the global feedback-control oper-
ation Actrl is present, the entanglement entropy SX
behavior parallels that of the defect number ndef .
Consequently, in that case, there is only a single
volume-law to area-law entanglement transition in
our system at p = pAPT

c , as shown in the lower panel
of Fig. 5.

The behavior of entanglement entropy presented
at time t = 4L has its roots in the separation of
time scales of the approach to the absorbing state
that occurs at APT. Since the dynamical behav-
ior of entanglement entropy in d = 3 is parallel to
the results for d = 2, the entanglement entropy has
analogous behavior to that presented in Fig. 5 in the
presence and absence of the global feedback control
operation in d = 3 at time t ∝ L (data not shown).

4. Conclusions

In this work, we analyzed the role of dimensional-
ity in the dynamics of monitored stabilizer circuits
with a feedback control mechanism introduced by
classical labels (flags), which gives rise to an ab-
sorbing state of the dynamics. While dimensional-
ity changes the universal content of APT and MIT,
the phenomenological understanding presented of
one-dimensional circuits is generalized straightfor-
wardly to higher dimensions d. In particular, simi-
larly to the d = 1 dimensional case [39], the range
of feedback-control operations is a crucial ingredi-
ent for the interplay between entanglement and ab-
sorbing state transition. We find that circuits with
short-range feedback control exhibit two entangle-
ment transitions at circuit depths proportional to
the system size, namely a volume-to-area law tran-
sition at the MIT critical point and an area-to-
area law transition at the APT transition point. In-
stead, when global feedback-control operations are
present, there is only a single volume-to-area MIT
which coincides with APT. For the employed global
unitary operation, MIT inherits the properties of
the underlying APT universality class. In our imple-
mentation, the latter is unaffected by the feedback
control operations range and always leads to the
critical behavior described by directed percolation

universality class in d dimensions, as summarized in
Table I. The average dynamics results are consistent
with the expectation that d = 4 is the upper criti-
cal dimension beyond which the mean-field critical
exponents capture the properties of APT. In con-
trast, the upper critical dimension for MIT in setups
without feedback mechanisms is dc = 6 [45].

Similarly to the one-dimensional case, our work
concludes that the post-selection problem can be
mitigated if appropriate feedback-control opera-
tions are chosen. The behavior of the entangle-
ment entropy at the area-to-area law phase transi-
tion in the setup with short-range feedback control
and the volume-to-area law phase transition in the
setup with global control operation can be observed
by measurements of the defect density, which does
not require the post-selection. However, the crucial
caveat is that the correspondence between the dy-
namics defect density and the entanglement entropy
does not generally hold but requires the choice of
a sufficiently strongly entangling control operation
(see [39] for explicit examples). In other words, the
post-selection problem is mitigated only by meeting
stringent control operations requirements. More-
over, introducing global control operations may sig-
nificantly alter the trajectory ensemble. As a result,
feedback control drives the original measurement-
induced transition (present in the system without
feedback control) onto a different universality class.
We expect similar conclusions to hold for generic
(Haar) circuits. While numerical methods are in-
effective, a generalization of the arguments in [40]
may lead to a formal proof of the distinct APT and
MIT when q � 1 dimensional qudits are considered.
Similarly, we expect that our arguments general-
ize to a monitored fermionic model with conditional
feedback control in higher dimensions and variable-
range interactions, which we will extensively discuss
in a future contribution [54]. An interesting future
direction is to enhance our understanding of the in-
terplay between absorbing states, topological state
preparation, and shallow circuits [55–62]. We leave
these questions as subjects of further explorations.
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Appendix:
Additional details

For self-consistency, this appendix presents ad-
ditional technical details. After a more formal dis-
cussion on flagged Clifford circuits, we discuss the

mapping of average dynamics to the classical model.
We briefly review the Gottesman–Knill theorem
and how stabilizer simulations are performed.

A1. Flagged Clifford circuits

Our discussion follows closely the paper [39], to
which we refer for additional details. At a formal
level, flagged Clifford circuits extend our many-
body quantum state to |Ψ〉 7→ |Φ〉 = |Ψ〉 ⊗ |F〉.
The flag vector |F〉 = ⊗m∈Λ|fm〉 registers the post-
measurement polarizations and determines the ac-
tion of the unitary gates at each time step. As in
the main text, we fix |ABS〉 = |1m〉 as the absorbing
state.

The key idea is that flagged sites m (i.e., for
which fm = 1) are unchanged by the measurement
layer M and by the global unitary A. Furthermore,
depending on the nearest neighbors flags fn, two-
body gates Um,n act trivially or as a random Clif-
ford transformation. (Here n = m + êµ, with êµ
being the versor in the randomly chosen direction
µ = 1, . . . , d.)

In the doubled Hilbert space, the absorbing state
|Φabs〉 = |ABS〉 ⊗ |1m〉⊗m is the fixed point of
the dynamics, while the initial state is |Φ0〉 =
|Ψ0〉 ⊗ |0m〉⊗m . The non-trivial control operation
Actrl, when present, is given by

Actrl|Φ〉 =
(
C{m:fm=0}|Ψ〉

)
⊗ |F〉 (5)

with C{m:fm=0} being a global Clifford unitary act-
ing only on unflagged sites. On the other hand,
the projective measurement and two-body gates are
given respectively by

Pm|Φ〉 =


1
√
p−

(
1− Zm

2
|Ψ〉
)
⊗
[(
Xm − iYm

)fm |F〉] , outcome − 1,

1
√
p+

(
1 + Zm

2
|Ψ〉
)
⊗
[(
Xm + iYm

)1−fm |F〉] , otherwise,

(6)

and

Um,n|Φ〉 =

 Cm,n|Ψ〉 ⊗
[(
Xm − iYm

)fm(
Xn − iYn

)fn |F〉] , if fmfn = 0,

|Φ〉, otherwise,
(7)

for the nearest neighboring sites m and n.

A2. Mapping of average dynamics to
classical model

As discussed in the previous section, the flagged
Clifford circuit acts in a formally doubled Hilbert
space. We now discuss the dynamics of the av-
erage state over Clifford gates. More importantly,
the average dynamics of the observables linear in
a state, such as ndef , is fully encoded in the mean

state Rt = EClifford[|Φt〉〈Φt|], with t — depth/time
of the circuit. The core idea is that the average
dynamics over the Clifford unitaries corresponds to
a probabilistic cellular automaton (PCA). The av-
erage state requires independently drawn Clifford
operations C, each of them acting on a single bra
and ket, namely

I ≡
∫

Clifford

dC C|Ψ〉〈Ψ |C†. (8)
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However, the integral I is easily performed using
the 2-design property of the Clifford group [63] as
the Haar integral

I =

∫
Haar

dC C|Ψ〉〈Ψ |C† = 1

2w
11C ⊗ P⊥|Ψ〉〈Ψ |P⊥,

(9)
where 11C is the sites where C acts non-trivially, and
P⊥ is the projection on its complementary space.
By introducing the indices km = 0,±1, the on-site
mixed state ρ(0)

m = 1
211m, and the on-site projectors

ρ
(±1)
m = 1

2 (11m ± Zm), it follows that the Clifford
averaged state is

Rt = EClifford[|Φt〉〈Φt|] =(⊗
m∈Λ

ρ(fm)
m

)
⊗

(⊗
m∈Λ

ρ(−1)fm+1

m

)
. (10)

Since the physical state and the flags are in one-
to-one correspondence, the average dynamics corre-
spond to a probabilistic cellular automaton of the
flags. The average dynamics over measurement loca-
tions, measurement outcomes, and unitary locations
can be written down analogously. This corresponds
to a discrete master equation for Rt, that we do not
detail for presentation purposes, cf. also [39].

A3. Brief review on the simulation of
stabilizer circuits

We conclude by briefly reviewing ideas for sta-
bilizer simulations and refer to [42, 45] for addi-
tional details. The stabilizer state on the lattice Λ is
fixed by Ld independent Pauli strings gm such that
gm|Ψ〉 = |Ψ〉. Each Pauli string is parametrizes as

gm = e iπφm

∏
j∈Λ

(XaimZb
i
m) (11)

where φm, aim, bim = 0, 1 are the Z2 numbers. The
group G generated by the Pauli strings gm is abelian
and fixes the state as |Ψ〉〈Ψ | =

∑
g∈G g/2

Ld

. There-
fore, the state is completely determined by the ma-
trix G = (φm|aim, bim), whose rows fix the genera-
tors of the group G.

Stabilizer circuits involve stabilizer states that
evolve under the Clifford gates and projective mea-
surements. By definition, Clifford unitaries trans-
form a Pauli string into a single Pauli string. Hence,
they correspond to a transformation of the Ld ×
(Ld + 1) matrix G to the new matrix G′ [42]. Sim-
ilarly, projective measurements onto Pauli strings
transform G in a new matrix G′′. If the project-
ing Pauli string g∗ is already in the group G, then
G 7→ G. (Finding the measurement outcome re-
quires a Gaussian elimination, cf. [42].) Viceversa,
if the operator g∗ is not in the group G, then there
exist a set Ianti of anticommuting operators gµ such
that {g∗, gµ} = 0 for each µ ∈ Ianti. The measure-
ment outcome is randomly and uniformly ±1, and
the state collapses after the measurement onto the

resulting string ±g∗. One can verify that the up-
dated matrix G 7→ G′′ is given by gν such that
[g∗, gν ] = 0, together with g∗ and the transformed
set gµ̃ · gµ for µ̃ ∈ Ianti and µ ∈ Ianti/{µ̃}. The
above statement summarizes the Gottesman–Knill
theorem and illustrates how the system is efficiently
simulable with polynomial classical resources of the
number of N qubits. Lastly, given a bipartition
X ∪Xc, the entanglement of a stabilizer state |Ψ〉
can be computed efficiently [64, 65] using

SX(|Ψ〉) = |X| − log2 |GX |, (12)
where GX is a subgroup of all elements in G that
act trivially on Xc, and |X| is the number of qubits
in X. The calculation of log2 |GX | reduces to the
calculation of the rank of the appropriate submatrix
of the matrix G over the Z2 field for which we use
the algorithm of [48–50]. We note that participation
entropies of stabilizer states can be calculated in a
similar way, see [14].
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For layered metamaterial devices, the reflection and transmission coefficients at an interface typically
depend on the properties of the coupling between different layers. In this paper, we set out to engineer
the reflection/transmission behaviour at boundaries to obtain desirable properties such as achieving
total reflection and transmission. Based on the quantum graph formulation for modelling metamaterials
developed in Sci. Rep. 12(1), 18006 (2022), we tailor the interface reflection and transmission coefficients
by patterning the boundary with resonant elements at each interface vertex. By tuning the internal
lengths of the resonant elements, we demonstrate both minimization and maximization of the reflection
coefficient via a scattering formulation. In addition, we present an interface set-up incorporating beyond-
nearest-neighbour connections, which yields narrow-band transmission for certain angles only, creating
an angular filtering interface.

topics: quantum graph theory, wave scattering, metamaterials, wave propagation

1. Introduction

Over recent decades, the field of metamaterial re-
search has grown rapidly with the intent of engi-
neering materials with special electromagnetic and
acoustic wave properties, see for example [1] for
an overview. Typically, metamaterial properties are
given by a unit cell resonant or phase modulating
characteristics. Recently, also non-local or beyond-
nearest-neighbour interactions [2] have been inves-
tigated. These structures have additional coupling
terms due to connections that extend beyond the
periodic unit cell; numerical and experimental real-
isations have been studied both in an acoustics and
elasticity setting [3–6]. Customisation procedures
have been developed to engineer the dispersion be-
haviour of metamaterials using competing channels
of the power flowing through the structure [7]. In
numerical simulations, the governing models have,
so far, been based on analogies to systems of coupled
masses and springs akin to the canonical model used
by Brillouin [8]. In this paper, we model metamate-
rials via quantum graph theory instead, first intro-
duced by Lawrie et al. [9]. The wave dynamics takes
place here along one-dimensional edges coupled at
vertices on an infinite periodic graph network. Res-
onant characteristics can be introduced in the form
of vertex scattering conditions. The model provides
a fast and flexible tool for designing metamaterials
and for uncovering new and interesting wave phe-
nomena.

Quantum graph theory was initially formulated
by Kottos and Smilansky [10] in order to study
the quantum mechanical properties of complex sys-
tems; for a comprehensive introduction, see [11, 12].
The simple mathematical construction of quantum
graphs naturally leads to a great number of in-
terdisciplinary applications, such as the study of
quantum chaos [11], modelling the vibrations of
coupled plates [13], formulating quantum random
walks [14, 15] and quantum search algorithms [16].
The graph formalism allows the eigenvalue condi-
tions to be written in terms of a secular equa-
tion for a matrix of finite dimension. Similarly, the
scattering matrix of an open quantum graph can
be given as a closed-form expression involving fi-
nite dimensional matrices. Closed-form expressions
of the Green’s function of a quantum graph have
been given in [17]. Infinite periodic quantum graphs
allow for a spectral analysis where an underlying
graph “decoration” can be chosen to create spec-
tral gaps [18]. For such infinite periodic graph struc-
tures, it has furthermore been shown by Exner et
al. [19] that the spectrum of the graph Hamiltonian
converges to the corresponding Schrödinger opera-
tor on the Euclidean space in the continuum limit.
This makes the mathematical language of quantum
graph theory an ideal tool for modelling metamate-
rial set-ups using a continuum limit formulation.

Describing wave coupling between different media
is a key problem in metamaterial research and the
motivation for this work. The ability to efficiently
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model such an interface permits an additional de-
gree of freedom for metamaterial design, which has
recently received attention in the context of ho-
mogenisation [20]. At a metamaterial interface, the
boundary reflection coefficients depend strongly on
the properties of the interface layer connecting the
two metamaterials. In order to tune the reflection
behaviour, we use and expand on tools introduced
in [9]. We tailor the interface scattering coefficients
by decorating the boundary with resonant elements
at each interface vertex. By varying the underlying
graph structure, we demonstrate the tunability of
the reflection/transmission behaviour ranging from
total reflection to total transmission. This formula-
tion is then used to construct a beam splitting and
steering device with minimal reflection — a prim-
itive cloak. In addition, we present scattering ef-
fects when introducing a beyond-nearest-neighbour
structure at the boundary. We find rapid switching
between full reflection and transmission as a func-
tion of the angle of incident, that is, the interface
acts as an angular filtering device.

The paper is structured as follows: In Sect. 2, we
introduce the general quantum graph formalism for
modelling metamaterials based on the theory devel-
oped in [9]. In Sect. 2.1, the wave dynamics on the
graph is defined, and in Sect. 2.2, it is shown how
the compact portions of the graph at each vertex are
reduced to simple frequency-dependent point scat-
terers. The eigenfunction solutions on the periodic
quantum graph are introduced in Sect. 2.3 and com-
bined to form Gaussian beam solutions in Sect. 2.4.
In Sect. 3, we derive the scattering matrix for a
boundary layer or interface connecting two meta-
materials. We demonstrated the efficiency and flex-
ibility of the quantum graph approach by showing
various example set-ups in Sect. 3.2. In particular,
modifications for obtaining resonant interfaces giv-
ing zero and full reflection, as well as a configuration
displaying both beam splitting and reconfiguration,
are shown in Sect. 3.2.1. Finally, in Sect. 3.2.2, the
effects of introducing a beyond-nearest-neighbour
interface are formulated, showing interesting angle
filtering properties.

2. Metamaterials:
The quantum graph formalism

2.1. General set-up

We will provide a brief introduction to the
quantum graph model for metamaterials here; for
more details, see [9]. Typically, metamaterials are
constructed from a periodic arrangement of sub-
wavelength resonant elements. We consider each
such element as an open quantum graph Γ (V, E , L),
where V is a finite set of vertices with imposed
boundary conditions connected by a finite set of
bidirectional edges E with metric length L = {`j :
j ∈ E}. Edges of finite length will be called bonds

Fig. 1. Six examples of sub-wavelength resonant
or phase modulating elements are shown labelled
here as Γx, Γy, Γ0, Γ1, Γres, and Γphase. The bond
lengths are shown as `x,res, `y,res, `res, and `y. In
turn, the lead directions are given by l, r, d, u, i, and
o. The graph in (c) represents a phase modulator,
the graph in (d) represents a resonator on a vertex,
and (e) and (f) resonant resonators on an edge.

B with coordinate zj = [0, `j ] with reverted edge
coordinate given by z̃j = `j − zj . Edges of infi-
nite length will be called leads L with coordinate
zj = [0,∞) and no reverted edge coordinate. Nat-
urally, E = B ∪ L. The resonant characteristics of
an element are determined by treating the compact
portion of the graph as a scattering site, as shown
in Fig. 1. The construction of the corresponding
scattering matrix is described in Sect. 2.2. The open
graphs are then arranged and connected to form a
mesh with square periodic topology embedded in
R2 and discussed in more detail in Sect. 2.3. For
this construction, four leads L = Ll,Lr,Ld,Lu are
imposed on the compact portion of the graph in the
left (l), right (r), down (d), and up (u) directions.
In the example in Fig. 1b, two additional leads, Li
and Lo, have been added, heading in (i) and out
(o) of the plane and allowing for beyond-nearest-
neighbour connections discussed in more detail in
Sect. 3.1. All edges in E are endowed with the
Helmholtz wave equation with wave number k, i.e.,(

∂2

∂z2j
+ k2

)
ψj(zj) = 0. (1)

The solutions are given as a superposition of
counter-propagating plane waves on a given edge
j ∈ E , i.e.,

ψj(zj) = e ikzjaoutj + e− ikzjainj . (2)
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Here, aout/inj represents the complex wave ampli-
tudes heading out of or into a vertex. The edge so-
lutions can then be concatenated to form the vector
Ψ(Ẑ) = (ΨL(Ẑ),ΨB(Ẑ))

T of all lead and bond so-
lutions, where

Ψ(Ẑ) = e ikẐaout + e− ikẐain. (3)
Here, aout/in = (a

out/in
L ,a

out/in
B )T represents the

vector of all complex wave amplitudes, and Ẑ is a
diagonal matrix of all edge coordinates. Given the
general solutions, we can treat the compact portion
of the graph as a scattering site and thus derive
a resonant element scattering matrix ŜΓ .

2.2. The unit cell scattering matrix

Wave transport along each bond can be modelled
by mapping the outgoing wave amplitudes at ver-
tices to the incoming wave amplitudes at adjacent
vertices by a matrix P̂ (k;L),

ain
B = P̂ (k;L)aout

B . (4)
The matrix elements of P̂ take account of the phase
e ik`j accumulated by the wave as it travels along
a given bond j. The wave amplitudes on different
edges are mapped from incoming to outgoing wave
amplitudes at the vertices via a vertex scattering
matrix σ̂ that satisfies the imposed vertex bound-
ary conditions, i.e.,

aout = σ̂ ain, or in block form(
aout
L

aout
B

)
=

(
σ̂LL σ̂LB

σ̂BL σ̂BB

)(
ain
L

ain
B

)
.

(5)

For this work, we assume Neumann–Kirchhoff
boundary conditions [11] at each vertex, giving the
pq-th matrix element of σ̂ associated with vertex Vj
as [

σ̂
Vj

]
pq

=
2

v
Vj

− δpq. (6)

Note that the index j runs now over the number of
vertices V in Γ . Here, δpq is the Kronecker delta,
and v

Vj
is the valency (number of attached edges)

at vertex Vj . From here, a graph scattering matrix
ŜΓ can be determined, which performs the mapping
between the leads only, i.e.,

aout
L = ŜΓ (k;L)a

in
L . (7)

Now, ŜΓ can be constructed from σ̂ and P̂ by

ŜΓ (k;L)=σ̂LL+σ̂LB

[
Î−P̂ (k;L)σ̂BB

]−1
P̂ (k;L)σ̂BL,

(8)
where Î is the identity matrix; see [9] for more de-
tails.

Below are the results of solving (8) for each reso-
nant element shown in Fig. 1, i.e.,

ŜΓ0
= 1

2 Ê
(4×4) − Î(4×4), (9)

ŜΓ1
= 1

3 Ê
(6×6) − Î(6×6), (10)

ŜΓphase(k; `y) =
1
2


−1 1 e

ik`y
2 e

ik`y
2

1 −1 e
ik`y
2 e

ik`y
2

e
ik`y
2 e

ik`y
2 −e ik`y e ik`y

e
ik`y
2 e

ik`y
2 e ik`y −e ik`y

,
(11)

ŜΓres(k; `res)=
2 cos(k`res)

3 cos(k`res)+e− ik`res
Ê(4×4) − Î(4×4),

(12)

ŜΓx(k; `x,res)=
2 cos(k`x,res)

cos(k`x,res)+e− ik`x,res
Ê(2×2)−Î(2×2),

(13)

ŜΓy (k; `y,res)=
2 cos(k`y,res)

cos(k`y,res)+e− ik`y,res
Ê(2×2)−Î(2×2).

(14)
Here, Ê(n×n) represents a square matrix of all ones
of dimension n. Having defined the scattering ma-
trices associated with each resonant element, one
can now construct the full metamaterial.

2.3. Eigenfunction solutions of the periodic graph

From here, the compact portions of the above
graphs are treated simply as frequency-dependent
point scatterers. Each scatterer is arranged into a
square periodic 2D mesh, where the open leads of
each resonant element are truncated to form con-
nections of length ` between each compact graph.
In addition, resonant elements of the type Γx and
Γy, as shown in Fig. 1, can be placed halfway along
an edge in the x- and y-direction, respectively (see
Fig. 2). This allows for more freedom in construct-
ing interesting wave dispersion curves. The periodic
construction means that all wave solutions at the
central vertex of any unit cell nm are translationally
invariant up to a phase obeying Bloch’s theorem [8],

Ψnm(0) = e i (κxn+κmm)`Ψ(0). (15)
Here, κx and κy represent the quasi-momentum.
The symmetry in each connecting edge allows the
horizontal and vertical edge scattering due to Γx
and Γy to be evaluated at zr = `/2 and zu = `/2,
respectively, and we obtain(

ainl
ainr

)
= M̂x(k; `res)

(
aoutl

aoutr

)
,

(
aind
ainu

)
= M̂y(k; `res)

(
aoutd

aoutu

)
,

(16)
where

M̂j(k; `j,res) :=

e ik`

(
e− iκj` 0

0 1

)
ŜΓj (k; `j,res)

(
e iκj` 0

0 1

)
(17)
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Fig. 2. Panel (a) shows the square periodic ar-
rangement of some arbitrary graph Γ (such as the
examples Γ0, Γphase, or Γres) with mesh indices n,
m, spaced by edges of length `. Resonators Γx and
Γy may be placed on both the horizontal and verti-
cal edges. Panel (b) shows the local edge wave am-
plitudes aout/inj represented by blue arrows in the
neighbourhood of the central vertex.

with j = x or y and `j,res is the resonator length
of the edge scattering elements Γj . By substitution
of (16) into (7), one obtains[

Î− Û(k, κx, κy;L)
]
ain
L (k, κx, κy;L) = 0, (18)

where Û represents the quantum map and is explic-
itly given as

Û :=

M̂x 0

0 M̂y

 ŜΓ . (19)

The spectrum of dispersion curves relating k, κx,
and κy are given by solving the secular equation

det
[
Î− Û(k, κx;κy, L)

]
= 0. (20)

Note that Û is implicitly a function of the chosen
graph metric L. By varying these metric parame-
ters and by changing the topology of the graph Γ ,
one has great control over the possible wave prop-
erties of the metamaterial. We will briefly discuss
the examples shown in Fig. 1. A metamaterial con-
structed purely of elements Γ0 (i.e., `j,res = 0 for
j = x and y) has in the low-frequency limit an
approximately circular dispersion curve modelling
free space propagation. As the frequency increases,
the underlying square periodic topology becomes
“noticeable”, leading to square iso-frequency con-
tours and directional band gaps. The properties
of a metamaterial constructed purely of elements
Γres are similar in shape to that of Γ0, however,
the presence of the edge of length `res opens band
gaps, thus forcing high-frequency material proper-
ties into the low-frequency domain. The same can
be said for the elements Γx and Γy, where the open-
ing of band gaps is then directional. As for graphs
constructed from elements Γphase, waves travelling
from down(up) to up(down) accumulate an addi-
tional phase e ik`y . This can be thought of as com-
pressing a lattice of period ` by ` + `y to a lattice
of period ` by `, while maintaining the edge lengths
between cells, see Fig. 3. Such a construction breaks
the vertex scattering symmetry and allows for neg-
ative refraction without relying on resonant charac-
teristics as shown in [9].

2.4. Gaussian beams from graph eigenfunctions

To construct the allowed eigenfunction solu-
tions, we consider a single frequency k and wave
number κy, leaving in general a choice of two
wave numbers κx. Naturally, this choice defines
the direction of the energy flow. To delineate be-
tween waves travelling in opposite horizontal di-
rections, the following notation is used: Eigen-
function solutions with energy flux Jx pointing
in the positive x-direction are given an index →,
and the corresponding eigenvector in (18) is re-
defined as aout/in := aout/in(k, κ→x , κy). Eigen-
function solutions with energy flux Jx pointing in
the negative x-direction are given an index ←,
and the corresponding eigenvector in (18) is rede-
fined as bout/in := aout/in(k, κ←x , κy). Explicitly, we
write

Ψnm :=

 Ψ→nm(Ẑ; k, κy) = e i (κ
→
x n+κym)

(
e ikẐaout + e− ikẐain

)
, Jx > 0,

Ψ←nm(Ẑ; k, κy) = e i (κ
←
x n+κym)

(
e ikẐbout + e− ikẐbin

)
, Jx < 0.

(21)

For fixed k and κy, we thus obtain an eigenfunction solution on the mesh as

Υnm(Ẑ; k, κy) = A(k, κy)Ψ
→
nm(Ẑ;κy, k) +B(k, κy)Ψ

←
nm(Ẑ;κy, k), (22)
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where A and B are wave amplitudes associated
with right-hand and left-hand moving waves, re-
spectively. They are both functions of k and κy as
they will later represent incident and scattered field
amplitudes at an interface.

From here, one can construct Gaussian beam so-
lutions Φnm by integrating over the Brillouin zone
(BZ) of a given metamaterial

Φnm(z; k) =
1√
2π

∫
BZ

dκy α(κy)Υnm(Ẑ, κy; k),

(23)
where α is a κy-dependent expansion coefficient cho-
sen here to give a Gaussian mode profile, and is de-
fined as

α(κy;κ
′
y, w) = γ exp

[
−
(
κy − κ′y

)2
2w2

]
. (24)

Here, κ′y determines the direction of the beam rel-
ative to the x, y coordinate system, w defines the
width of the beam, and γ is a normalisation con-
stant.

3. Wave behaviour at interfaces

3.1. Engineering interface boundary conditions

In previous work [9], the boundary conditions be-
tween two different metamaterials modelled by pe-
riodic quantum graphs were fixed by satisfying an
equivalence condition on the joining edges. In this
section, we will demonstrate how to influence the
reflection and transmission behaviour at such an in-
terface by introducing an additional boundary layer
B, as illustrated in Fig. 4a. For this, we consider two
infinite half-spaces, each constructed from a square
periodic quantum graph with an identical period,
as defined in the previous section.

The left half-space represents metamaterial 1
with unit cell Γ (1), while the right half-space rep-
resents metamaterial 2 with unit cell Γ (2). The two
metamaterials are coupled via a periodic bound-
ary along the y-direction constructed from either
Γ (B) = Γres and Γ (B) = Γy,res or a simple
point scatterer with beyond-nearest-neighbour con-
nections, Γ (B) = Γ (1), as discussed in [2], see
Fig. 4b and c.

The wave properties of the boundary are defined
by a scattering matrix ŜB(k, κy;L), which performs
the horizontal (H) mapping,

aout
H = ŜB(k, κy;L)a

in
H . (25)

Fig. 3. Illustration of the relationship between the
vertex and edge length scale in the case of Γphase
giving rise to non-trivial wave effects.

Here, aout/in
H = (α

out/in
l , α

out/in
r )T represents the (to

be determined) vector wave amplitudes heading out
of or into the boundary vertex on the left (l) or
right (r). The boundary scattering matrix is con-
structed from the underlying vertex scattering ma-
trix as defined in (7), along with the vertical peri-
odicity conditions defined in (16). By decomposing
(7) into horizontal (H) and vertical (V ) dynamics,
one can write(

aout
H

aout
V

)
=

(
ŜHH ŜHV

ŜV H ŜV V

)(
ain
H

ain
V

)
. (26)

One obtains

ŜB = ŜHH + ŜHV

[
Î− M̂yŜV V

]−1
M̂yŜV H .

(27)
From this definition, we can determine how the
boundary scatters the global wave fields of inci-
dent amplitude A(1), B(2) to give the global scat-
tered field of amplitude A(2), B(1). To do this, we
construct the global boundary scattering matrix
Σ̂B(k, κy;L), which performs the mapping,(

B(1)

A(2)

)
= Σ̂B

(
A(1)

B(2)

)
. (28)

To do this, one substitutes the x component of the
eigenfunction solutions (22) on the left and right
side of the interface, i.e., at zl = zr = 0 at the loca-
tion of the boundary n = nB for any m, that is,

α
out/in
l = A(1) e i (κ

(1)→
x nB+κym)`a

(1)out/in
l

+B(1) e i (κ
(1)←
x nB+κym)`b

(1)out/in
l ,

α
out/in
r = A(2) e i (κ

(2)→
x nB+κym)`a

(2)out/in
r

+B(2) e i (κ
(2)←
x nB+κym)`b

(2)out/in
r , (29)

into (25). After some algebra, we get

Σ̂B =

(
e− iκ(1)nB` 0

0 e iκ
(2)nB`

)[(
a
(1)out
l 0

0 b
(2)out
r

)
− ŜB

(
a
(1)in
l 0

0 b
(2)in
r

)]−1

×

[
ŜB

(
b
(1)in
l 0

0 a
(2)in
r

)
−

(
b
(1)out
l 0

0 a
(2)out
r

)](
e− iκ(1)nB` 0

0 e iκ
(2)nB`

)
. (30)
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Fig. 4. (a) The boundary region between metamaterials 1 and 2 with amplitudes αout/in
l and αout/in

r related
by the boundary scattering matrix ŜB. (b) Boundary constructed of resonators Γres and Γy. (c) Boundary
with beyond-nearest-neighbour connections with lµ, the length of this connection, and µ giving the distance
in terms of unit cells; (in the example shown, µ = 2).

3.2. Examples

In the following, we will discuss a few exam-
ples leading to interesting reflection/transmission
behaviour at interfaces.

3.2.1. Non-reflecting boundaries, beam splitting
and steering

In the first example, we will consider how to con-
struct non-reflective interfaces using boundary ele-
ments, as shown in Fig. 4b. Here, metamaterial 1
is constructed from elements defined by Γ0, while
metamaterial 2 is constructed from elements de-
fined by Γres for lres = 1.1995`. The corresponding
dispersion curves of the two materials are shown
in Fig. 5a at k = 1. Note that the particular value
of lres leads to a square-like dispersion pattern of
material 2 with singular behaviour for vanishing κx
or κy. The third plot in Fig. 5a shows the chosen
expansion coefficient α giving rise to a beam with
width w = 0.0575 centred at κ′y = 1, which yields an
incident Gaussian beam angle of θ′ = π/4. The cho-
sen boundary is constructed exclusively from Γres,
for lres = 0`, lres = 0.9667`, and lres = π`/2 in
Fig. 5b–d, respectively.

The transmission |A(2)|2 and reflection coeffi-
cients |B(1)|2 of the beam Ψnm are shown on the
RHS of Fig. 5 for panels (b), (c), and (d) as a func-
tion of the incident angle θ. This demonstrates that
we can obtain both complete transmission and total
internal reflection by varying the boundary proper-
ties in terms of lres. In particular, total internal re-
flection happens when lres = π/(2k). At this length,
the vertex is in resonance, and the boundary con-
ditions reduce to Dirichlet Ŝres = −Î, making the
boundary completely reflective.

With this knowledge, we set out to construct a
layered metamaterial set-up that will allow us to
steer an incoming beam at normal incident around
an object. We can do this with minimal reflec-
tion at the boundaries using the techniques de-
scribed above. The example shown in Fig. 6 is
made up of four different metamaterials connected
by interface layers of the type used in the exam-
ple shown in Fig. 5. Metamaterials 1 and 4 are
identical and are made up of resonant elements
Γres with `res = 0.725`. The corresponding dis-
persion curves at k = 1 are shown in Fig. 6a.
Metamaterial 2 is constructed from both Γ0 and
Γy with `y,res = 0.909175`; note that the material
exhibits a corner singularity in its dispersion curve
for normal incident giving rise to the beam split-
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Fig. 5. (a) Isofrequency contours associated with
metamaterial 1 and 2 for k = 1 together with
the Gaussian beam expansion coefficients α. (b)–
(d) Reflection behaviour of the beam for different
lres chosen at the boundary, see text for details.

Fig. 6. The plots in (a) show the isofrequency con-
tours associated with metamaterials 1, 2, 3, and 4,
while the 5th plot shows the chosen expansion coef-
ficient α for the incident beam. The plot in (b) dis-
plays the resulting norm squared wave amplitude
of the incoming and scattered beam |Φnm|2. The
material interfaces are optimized to give minimal
reflection.

Fig. 7. (a) Dispersion curves of metamaterials 1
and 2 together with the beam shape α for the beam
incoming from the LHS. (b)–(e) Wave patterns
given by |Φnm|2, for different configurations (left)
and the reflection/transmission coefficients at the
interface as function of the incoming angle θ (right);
the parameters are (b) µ = 3, lµ=3 = 6.32757`; (c)
µ = 6, lµ=6 = 9.3`; (d) µ = 10, lµ=10 = 12.41818`;
(e) µ = 12, lµ=12 = 15.96`.

ting behaviour observed in Fig. 6b. Metamaterial 3
is constructed from Γphase and Γx for `y = 4.64`
and `x,res = 2.7955`. The metamaterial is designed
in such a way as to reverse the beam splitting be-
haviour yielding negative reflection (see the relevant
dispersion curve). We may regard such a device as
a primitive cloak in the sense that one can hide or
shield an object from normal incidence.

3.2.2. An angle filtering boundary

In the previous example, only nearest-neighbour
coupling has been used in the vertical direction of
the boundary such as shown in Fig. 4b, that is, a
cell m is coupled to cells m ± 1 only. We will now
study the properties of an interface boundary made
up of the elements shown in Fig. 4c, i.e., we con-
sider Γ (B) = Γ1, and we connect up the vertices by
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using beyond-nearest-neighbour interaction. In the
example in Fig. 4c, the next-to-nearest-neighbour
coupling is used, that is, in addition to the nearest
neighbours, cell m is also coupled to cellsm±µ with
µ = 2, here. We will later also consider µ > 2.

By introducing the additional coupling, the va-
lency of a boundary vertex increases by two. The
vertex conditions are then given by the vertex scat-
tering matrix ŜΓ1

in (10) with Γ1 shown in Fig. 1b.
To obtain ŜB, we must now redefine M̂y to include

the additional coupling. The structure inherits the
same Bloch phase as the unit cell has, and the wave
amplitudes as such obey the following conditions

ainu = e ik` e− iκy`aoutd

aind = e ik` e iκy`aoutu

aini = e ik`µ e− iκyµ`aouto

aino = e ik`µ e iκyµ`aouti (31)
and M̂y becomes

M̂y =


0 e i (k−κy)` 0 0

e i (k+κy)` 0 0 0

0 0 0 e i (k`µ−κyµ`)

0 0 e i (k`µ+κyµ`) 0

 .

(32)

Here, lµ represents the length of the lead connecting
elementm to elementm±µ. Naturally `µ ≥ µ`. This
is a free parameter that alters the phase accumula-
tion for the wave propagation along the y-direction.
In Fig. 7, we show various examples of the wave
behaviour at such an interface. In all cases, meta-
materials 1 and 2 are identical here and given by
simple point scatters Γ0, as shown in Fig. 1a. We
have chosen a relatively broad beam profile of the
incoming beam, covering a wide range of κy val-
ues and giving the beam a cone-like appearance. A
range of µ and corresponding `µ values are tested.

Surprisingly, the interface acts as an invisible
aperture or angle filtering device, letting the in-
coming wave pass only at certain angles of incident.
The number of incoming directions able to pass the
interface increases with the connectivity index µ,
as demonstrated in Fig. 7b–e; see the figure cap-
tion for details regarding the chosen parameters µ
and `µ. The filtering behaviour is brought about by
a transmission function being zero for most angles
θ apart from narrow-band transmission windows,
see the RHS of Fig. 7. Note that these transmis-
sion windows exist here although there are no res-
onant elements present at either vertices or edges
and seem to be an interference effect of the compet-
ing vertical channels. We report this behaviour here
without further analysis, which will be provided in
a forthcoming publication.

4. Conclusions

We have demonstrated applications of a quantum
graph approach to modelling metamaterials cou-
pled through structured interfaces, thus providing
a fast and efficient tool for aiding the design pro-
cess for layered metamaterial devices. The reflection
and transmission coefficients of complex interfaces
can be explicitly calculated in our approach, and

the freedom in choosing the vertex scattering ma-
trices and edge lengths provides a large parameter
space for constructing desired material properties.
We show in particular that interfaces with minimal
reflection or transmission can be designed. Beyond-
nearest-neighbour coupling along the interface has
been incorporated, which can be used as a single-
frequency angular filter, allowing for energy trans-
mission only at specific angles and potentially pro-
viding a possibility for a tunable aperture or filter.
The examples highlight the potential of quantum
graph-based metamaterial and interface design. The
tuning of edge lengths and the freedom in assign-
ing the vertex scattering matrices are unique to the
graph model presented here and enable an open sys-
tem description that is cumbersome in other con-
ventional mass-spring models, where either the con-
struction of Green’s function or a full time-domain
simulation is required.
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We present numerical simulations of the light emitted by a source and scattered by surrounding electric
dipoles with Zeeman splitting. We calculate the leakage of electromagnetic angular momentum to
infinity.

topics: radiative transfer, magneto-optics

1. Introduction

Optical sources radiate electromagnetic energy at
a rate that depends on the local density of radia-
tive states (LDOS) near the source and at the emit-
ted frequency of the source [1, 2]. This statement
is classically true and recalls Fermi’s golden rule in
quantum mechanics [3]. LDOS is affected by the en-
vironment and can be either dielectric, structured,
gapped in frequency, or disordered. If the environ-
ment is magneto-active, induced by the presence of
an externally applied magnetic field B0, the source
can also radiate angular momentum (AM) with di-
rection B0 into space.

The first study of this phenomenon [4] used the
phenomenological concept of radiative transfer and,
in particular, the role of the radiative boundary
layer of an optically thick medium to argue that
the Poynting vector has two components in the far
field. The first is the usual energy flux, purely ra-
dial, that decays with distance r from the object
as 1/r2. The second is magneto-transverse and cir-
culates energy around the object (see Fig. 1). This
component decays faster, as 1/r3, but has finite an-
gular momentum constant with distance that trav-
els away from the object. Our second study [5]
demonstrated that this leakage is not restricted to
multiple scattering and also exists when a homoge-
neous magneto-birefringent environment surrounds
the source. In this case: (i) the radiation of AM
results in a torque on the source and not on the
environment, (ii) it depends sensitively on the na-
ture of the source with huge differences between,
e.g., an electric dipole source and a magnetic dipole
source; and (iii) geometric “Mie” resonances can en-
hance the effect much like the Purcell effect does in
nano-antennas [6, 7].

Fig. 1. The geometry considered in this work. A
source emits light into a disordered environment
containing N electric dipole scatterers. In the pres-
ence of a magnetic field B0, a magneto-transverse
component Sφ of the Poynting vector appears out-
side the medium that carries electromagnetic an-
gular momentum. This angular momentum propa-
gates to infinity, and a torque is exerted on scatter-
ers and source.

Our latest study [8] considered numerically a
spherical environment filled with small resonant
electric dipole scatterers. When the optical thick-
ness increases at a fixed frequency, the total leakage
rate of AM is seen to increase. Upon varying the op-
tical thickness, we investigated separately the role
of photonic spin and orbital momentum, the two es-
sential constituents of electromagnetic AM [9], and
found both to co-exist. The torque on the source
was also seen to increase with dipole density but
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hardly with optical thickness. In this work, we study
the frequency dependence of the dipole scatterers.
Especially for large detuning from their resonance,
the scattering from one dipole becomes weak, so
to keep reasonable optical thicknesses, we require
more dipoles, typically thousands, and this takes
more CPU time and memory.

2. Leakage of angular momentum

For a monochromatic electric dipole source with
electric dipole moment d at frequency ω = kc0, po-
sitioned at r = 0, the radiated electric field at po-
sition r is given by
E(r, ω) = −4πk2G

(
r, 0, ω+i0

)
· d(ω) (1)

with Gkk′(r, r
′, ω), the vector Green’s function,

associated with the Helmholtz equation for the
electric field. This Green’s function contains full
information about the environment. The slightly
positive imaginary part of the frequency ω + i0
guarantees outward propagation of the light. The
power P (radiated energy per second) radiated by
the electric dipole is equal to its dissipation rate
Re(J∗ ·E)/2 [10]. Since J = − iωd, we find, after
averaging over the orientation of the dipole source,
that

P = −2π

3
k3c0

∣∣d∣∣2 Im
[
TrG(0, 0)

]
. (2)

We recognize ρ(k) ∼ −Im[ TrG(0, 0)] as LDOS at
the source position. The balance equation for the
angular momentum can be written as [5]

d

dt
Ji,mec = Mi =

R3

8π
εijk Re

[∫
4π

dr̂ r̂lr̂j
(
E∗l Ek +B∗l Bk

)
(Rr̂)

]
,

(3)
with Jmec being the mechanical AM of the mat-
ter and with implicit summation over repeated in-
dices. This formula expresses that the torque M
exerted on the matter is radiated away as AM to
infinity (r > R), thereby assuming a source that
has been constant during a time longer than R/c0.
In this picture, the radiative AM inside the en-
vironment enclosed by the sphere of radius R is
constant in time, and AM leaks to infinity some-
where around r(t) ∼ c0t > R. The cycle-averaged
torque acts on both the source and its environment,
M = MS +ME . The latter is

ME =
1

2
Re

[ ∫
d3r (P ∗ ×E + P ∗m(r ×∇)Em)

]
.

(4)
This torque vanishes for a rotationally-invariant en-
vironment around the source but not when this
symmetry is broken by structural heterogeneity, as
will be discussed here. The torque on a source with
an electric dipole moment d(ω) is given by [10]

MS =
1

2
Re
[
(d∗ ×E)

]
. (5)

With the electric field given by (1), an expression
similar to (2) can be obtained, i.e.,

MS,i = −2π

3
k2
∣∣d∣∣2 Re

[
εijkGkj(0, 0)

]
. (6)

This torque vanishes for an (on average) spherical
environment with isotropic optical response [11].

Alternatively, the leak of AM given by the right-
hand side of (3) can be split up into parts associated
with photonic spin and orbital momentum [9]

M =
R2

8πk
Im

 ∫
r=R

d2r̂ (E∗×E + E∗m(r×∇)Em)

 .
(7)

In particular, the existence of orbital AM expressed
by the second term is interesting since polarized ra-
diation by a source subjected to a magnetic field
may be more intuitive to accept in view of the Fara-
day effect.

3. Environment of N dipoles
with Zeeman shift

The Helmholtz Green’s function for light scatter-
ing from N electric dipoles can be found in the liter-
ature [12–14]. Because of the point-like nature of the
dipoles, it reduces to a 3N×3N complex-symmetric
non-hermitian matrix. The magnetic response of the
dipoles — due to the Zeeman splitting of their in-
ternal resonance — can be extracted in linear order
so that the AM linear in the external field can be
calculated numerically, given the N positions of the
dipoles. The polarizability of a single dipole is given
by

α(ω,B0) = α(0)
ω2

0

ω2
0 − (ω+ωc iε · B̂0)2 − iγω

(8)
in terms of the radiative damping rate γ, the res-
onant frequency ω0 and the cyclotron frequency
ωc = eB0/(2mc0). The second rank operator iε · B̂0

has three eigenvalues 0,±1 corresponding to 3 Zee-
man levels that make the environment linearly
magneto-birefringent. The external magnetic field
B0 is assumed homogeneous across the environ-
ment, but this can easily be altered in future
work, e.g., to describe an environment surround-
ing a magnetic dipole. The detuning parameter
is defined as δ ≡ (ω − ω0)/γ. It is also use-
ful to introduce the dimensionless material pa-
rameter µ = (12π/(α(0)k3))× ωc/ω0 that quanti-
fies the magnetic birefringence induced by one
dipole and typically small (for the 1S–2P tran-
sition in atomic hydrogen one can estimate µ ∼
7 · 10−5 Gauss−1). The mean free path ` is an-
other important length scale and follows from 1/` =
nk Im[α(ω)] if we neglect recurrent scattering, with
n = 3N/(4πa3) the density of dipoles. Without a
magnetic field, the polarizability can be written as
α = −(3π/k3)/(δ + i/2).
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The leak of AM is calculated by performing the
surface integral in (3) numerically for different real-
izations in which dipole positions are averaged over
a sphere with a given radius a at homogeneous av-
erage density throughout the sphere. For more de-
tails we refer to [8]. It was explicitly checked that
the surface integral did not depend on the choice
of R > a as required by the conservation of AM.
Once verified, it is convenient to evaluate (3) in the
far field R � a where the fields simplify. Our code
was also tested on flux conservation and obeys the
optical theorem.

4. Numerical results

In this paper, we focus on numerical results ob-
tained for different detunings δ and relatively large
optical depths τ ≡ a/` in the hope of seeing ma-
jor trends that can be extrapolated to even larger
detunings. This regime becomes rapidly challeng-
ing since τ ∼ 9

4N/(ka × δ)2, so for δ � 1 and
τ � 1 we need a large N . Typically, for δ = 2,
the best we have done so far, and τ = 5, we al-
ready need N = 2000 in a sphere of 13 inverse
wave numbers in radius (ka = 13). These num-
bers imply a value for the number of dipoles per
optical volume η ≡ 4πn/k3 = 3N/(ka)3 ∼ 2.5,
i.e., the dipoles are largely located in each other’s
near field. Nevertheless, for a detuning δ = 2,
dipoles still scatter more or less independently be-
cause k` ∼ 2δ2/η = 3 > 1 [15], but this is no longer
true for η = 6. This implies that completely un-
known effects, such as weak localization, may affect
the radiative transfer of AM.

After an ideal average over all N dipole positions,
the magnetic field is the only orientation left in the
problem, and we expect that M = κB̂0 with κ a
real-valued scalar to be calculated that can have
both signs. Following earlier works [4, 5, 8], we nor-
malize the leakage of AM by the radiated amount of
energy and introduce the dimensionless AM κω/P ,
with P being the radiated amount of energy per
second. This number is linear in the material pa-
rameter µ introduced earlier and can directly be
related to the Hall angle of the Poynting vector in
the far field of the sphere. Alternatively, the number
quantifies the amount of leaked angular momentum
expressed in ~, normalized per emitted photon.

In Figs. 2 and 3, we show the normalized AM
leakage for an optically thin sphere as a function of
detuning. The bars in all figures denote the typical
support of the full probability distribution function
(PDF) when calculating the torque for 1000 differ-
ent realizations of the dipole positions. Except for
the spin leakage rate, they are large, and all AM re-
lated to source and orbital momentum are genuine
mesoscopic parameters. The optical depth τ = 1.9
and average density η = 0.3 are kept constant,
which means that both the number N of dipoles
and the radius a of the sphere change as δ is var-
ied. It is seen that the dimensionless AM depends

Fig. 2. Total normalized leakage rate of angular
momentum (blue) as a function of detuning δ =
(ω−ω0)/γ from the dipole resonance, separated into
torque on the source(orange) and torque on the en-
vironment (green). The optical depth is τ = 1.9,
and the dimensionless dipole density is η = 0.3.

Fig. 3. As in previous figure with same fixed pa-
rameters τ = 1.9 and η = 0.3, but this time, the
total leakage has been split up into leakage of or-
bital angular momentum (green) and leakage of spin
(orange).

significantly on detuning and changes sign near the
resonance at δ = 0. In this weakly scattering regime,
single scattering is still dominant. For a thin layer
in the far field of the source, we can derive a profile
κω/P ∼ η Im[α2] ∼ −ηδ/(δ2 + 1/4)2 independent
of distance. This corresponds more or less to the
observed profile of total AM in Figs. 2 and 3 that
are nevertheless affected by higher-order scattering
events. Both figures also show how total AM leak-
age splits up into either spin + orbital AM (Fig. 2)
or torque on source + torque on the environment
(Fig. 3). All are of the same order of magnitude but
are not always of same sign. In particular, for this
set of parameters, both decompositions have oppo-
site signs.

The picture changes significantly in the multiple
scattering regime. Figures 4 and 5 show the same
normalized leakage of AM for optical depth τ = 4.6
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Fig. 4. Total leakage of optical angular momen-
tum (blue) as a function of detuning. The orange
and green curves represent spin and orbital momen-
tum. The optical depth and average density are kept
constant (τ = 4.6 and η = 6). The calculations have
been done only for δ > 0, i.e., blue-shifted from the
resonance.

Fig. 5. As in Fig. 4, for clarity only the torque on
the source has been shown. Bars denote the support
of the full probability distribution (PDF) over 1000
realizations.

and dimensionless density as large as η = 6. Going
to smaller values of η would require too large a value
for N . The total leakage is now negative for all (pos-
itive) detunings, and spin leakage and orbital leak-
age have the same sign. Except for near resonance,
it is dominated by leaks in orbital AM. In Fig. 5,
we see that the torque on the source is mainly posi-
tive, but changes sign with detuning near resonance.
This implies again that for most detunings, source
and environment are subject to opposite torques. A
normalized torque on the source around 0.1–0.2 is
not much different than that found for η = 0.3 [8].
For low densities, this torque increased with η but
seems to saturate for η > 0.3. The numbers for to-
tal leakage rate (−0.2±0.1) are almost one order of
magnitude less than what we found for η = 0.03 and
τ ≈ 2 in [8], and one may speculate about the possi-
bility of some process related to “weak localization”
that reduces the transfer of angular momentum.

To get an order of magnitude for this effect, we
consider a homogenous gas with atoms of mass
Z mH in a sphere of size a. For an ideal gas at
room temperature, the density is roughly n0 =
40 mol/m3. If we assume that all leaked angular
momentum after a time interval ∆t is transferred
homogeneously to the mechanical momentum of the
sphere, we can estimate that its angular velocity is

Ω

[
rad

s

]
= 5.7

κω

Pµ

µ

Z

(
P

10 W

) (
λ

500 nm

) (
∆t

days

)
(

a
1 cm

)5 ( n
n0

) .

(9)
For κω/Pµ = 0.3, µ/Z ∼ 10−5, the angular rota-
tion is typically of the order of 1 mrad/s after 100
days.

5. Conclusions

In this work, we have reported an exact numeri-
cal study of the radiation of electromagnetic angular
momentum by a light source imbedded in a disor-
dered and magneto-active environment described by
resonant electric dipoles with Zeeman splitting that
scatter light elastically. The angular momentum is
directed along the magnetic field, and its transfer is
directed radially outward from the source. It is, in
general, composed of both spin transport and trans-
port of orbital angular momentum. The first implies
polarization of radiated light, the second is related
to an energy flux circulating around the object and
the magnetic field. Leakage of angular momentum
has been quantified by a dimensionless parameter
that is essentially the ratio of angular momentum
leakage rate (with physical unit Joule) and the en-
ergy of the source emitted during one optical cy-
cle. The number can be seen to be equal to the
angular momentum, expressed in ~, transferred per
emitted photon to the source and environment. It is
proportional to the product of a pure material pa-
rameter µ associated with the magneto-scattering
of the dipoles and the numbers that can be found
in the figures that result from scattering. By con-
servation of angular momentum, this transfer gives
rise to torques on both the emitting source and the
scattering environment. All parameters are seen to
be of the same order, can have mutually opposite
signs, and depend on the detuning from the reso-
nance.

The regime of Thompson scattering is interest-
ing for astrophysical applications and is a major
scattering mechanism in our Sun. It corresponds
to large detunings, where the phase shift between
the incident and scattered field becomes negligible.
The out-of-phase response seems essential for the
leakage to exist, even for large optical depths. The
amount of multiple scattering, quantified by optical
depth, certainly affects the radiative transfer of an-
gular momentum, but it is difficult at this point to
deduce general trends. Our simulations are clearly
in need of a radiative transport theory for angular
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momentum in magnetic fields, which, to our knowl-
edge, does not exist. From our simulations, we sus-
pect that different parts of the environment undergo
different torques. We also expect that as the optical
thickness of the environment increases, the precise
nature of the source becomes of less importance,
quite opposite to what was found for a homogeneous
environment.

Indeed, this picture may possibly apply to stel-
lar atmospheres, globally exposed to the magnetic
dipole fields of their nuclei. Although all ingredients
are present for leakage of angular momentum to ex-
ist, lots of extra complications, such as broadband
radiation, Doppler broadening, etc., make quantita-
tive predictions difficult.
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While quantum multifractality has been widely studied in the physics literature and is by now well
understood from the point of view of physics, there is little work on this subject in the mathemat-
ical literature. I will report on the proof of multifractal scaling laws for arithmetic S̆eba billiards. I
will explain the mathematical approach to defining the Rényi entropy associated with a sequence of
eigenfunctions and sketch how arithmetic methods permit us to obtain a precise asymptotic in the
semiclassical regime and how this allows us to compute the fractal exponents explicitly. Moreover, I
will discuss how the symmetry relation for the fractal exponent is related to the functional equation of
certain zeta functions.

topics: quantum multifractality, intermediate systems, Seba billiard

1. Introduction

Many dynamical systems are in a state of transi-
tion between two regimes. In models of the brain,
such as neural networks, the firing patterns of neu-
rons may undergo a transition from isolated firing to
avalanches of firing neurons. In the quantum physics
of disordered electronic systems, the system may be
in an insulating or a conducting phase. The former
phase corresponds to electronic states, which are
localized (no transport), whereas the latter phase
corresponds to extended states (diffusive dynam-
ics). The study of phase transitions, and in par-
ticular the critical states at the transition between
these different regimes, is central to understand-
ing important phenomena such as the functioning
of our brain or the properties of semi-conducting
materials.

One of the key features of systems in a criti-
cal state is that they often display a self-similarity
in a certain scaling regime, which is so complex
that it cannot be captured by a single fractal
exponent but only by a continuous spectrum of
fractal exponents. This phenomenon is known as
multifractality.

Multifractality in quantum systems has been
studied in the physics literature since the 1980s and
has become an extremely active field in theoretical
and experimental physics [1–8]. However, the abun-
dance of results in the physics literature is in stark
contrast with a glaring absence of rigorous math-
ematical results. One of the key difficulties in ob-
taining a mathematical proof is to formulate the
problem in a concise mathematical way and then
develop the mathematical methods which permit its
resolution.

In joint work with Keating, we recently proved
the existence of multifractal eigenfunctions for
arithmetic S̆eba billiards [9] as well as quantum
star graphs [10]. The key idea which permitted this
advance was an approach to associate a quantity,
known as Rényi’s entropy — in some sense, a gener-
alization of Shannon’s entropy — with each eigen-
function. We were able to obtain asymptotic esti-
mates of the Rényi entropy along a typical sequence
of eigenfunctions. This permitted the derivation of
explicit formulae for the fractal exponents and led
to the derivation of a multifractal scaling law for
this system.

Multifractal self-similarity typically emerges at
the transition between two physical regimes. Ex-
amples of such intermediate quantum systems are
disordered systems at the Anderson or quantum
Hall transitions from a localized to a delocalized
phase [1, 2]. In the field of quantum chaos, pseudo-
integrable systems [11] are intermediate between in-
tegrability and chaos in the sense that their dy-
namics in phase space is not constrained to tori
but rather to handled spheres (e.g., rational polyg-
onal billiards). One often includes in this class
toy models of pseudointegrable dynamics such as
parabolic automorphisms of the torus [12], quantum
star graphs [13–16], and S̆eba billiards (rectangular
billiards with a Dirac delta potential) [17].

The morphology of eigenfunctions with multifrac-
tal self-similar structures is far more complex than
being purely localized or delocalized. Numerical and
experimental studies of a large class of quantum
systems have resulted in numerous conjectures in
the physics literature [4, 6–8], such as predictions
of a symmetry relation for the fractal exponents Dq

around the critical value q = 1/4.
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2. The gap between localization
and delocalization

Much of the mathematical literature on quantum
chaos over the past 40 years has focused on the clas-
sification of limit measures which arise in the high-
frequency limit from eigenfunctions of quantized
chaotic systems. One of the key results of the field
is the quantum ergodicity theorem, which states
that on a Riemannian manifold without bound-
ary, whose geodesic flow is ergodic with respect
to the Liouville measure, a typical sequence of
eigenfunctions gives rise to Liouville measure as
the only semiclassical defect measure along this
sequence.

Quantum ergodicity (QE) was first proved in the
1980s by Zelditch and Colin de Verdière [18, 19],
who completed the earlier work of Snirelman [20].
QE was later generalized to manifolds with
boundary by Gérard–Leichtnam [21] and Zelditch–
Zworski [22]. The quantum unique ergodicity
(QUE) conjecture put forward by Rudnick and
Sarnak in 1994 [23] asserts that the only such
measure should be the Liouville measure. Linden-
strauss [24] proved this conjecture in 2006 for arith-
metic hyperbolic surfaces and was awarded the
Fields Medal for his work. Moreover, Ananthara-
man [25] ruled out localization on points or geodesic
segments for Anosov manifolds. De Bièvre–Faure–
Nonnenmacher [26] demonstrated the existence of
partially localized limit measures for the eigenstates
of quantized hyperbolic automorphisms of tori with
minimal periods.

While rigorous mathematical work has largely
focused on the proof of localization and delocal-
ization results for the probability densities which
arise from quantum eigenfunctions (Q(U)E, scar-
ring, Anderson localization), the key feature of in-
termediate quantum systems is the multifractal self-
similarity of their eigenfunctions. This feature to
this day remains poorly understood from a mathe-
matical point of view.

3. Multifractality for quantum billiards

Consider the Dirichlet problem for the positive
Laplacian −∆ = −∂2x − ∂2y on a compact domain
D ⊂ R2 with a piece-wise smooth boundary. We
have discrete spectrum accumulating at infinity as-
sociated with eigenfunctions ψj

(∆+ λj)ψj = 0, ψj |∂D = 0, (1)

where 0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · → +∞.
Our goal is to prove a multifractal scaling law

for a subsequence of eigenfunctions {λjk}∞k=0, as
λjk → +∞. The general idea is to embed the do-
main in a rectangle and expand with respect to an
eigenbasis of complex exponentials. The key point
is that the scaling law should be independent of ro-
tations and scaling of the rectangle in which the do-
main is embedded. The scaling parameter will then

Fig. 1. The measure µλ is concentrated on lattice
points, which lie inside a thin annulus of central
radius

√
λ. The width of this annulus grows with λ

on a logarithmic scale. The number of lattice points
inside the annulus is subject to subtle fluctuations.

arise from the number of O(1) contributions in this
expansion, as the eigenvalue tends to infinity.

We will illustrate this in detail using the case of
toral Schrödinger operators. Let Td = 2πRd/Zd and
V ∈ C0(Td). We consider L2-normalized solutions
of the stationary Schrödinger equation on Td,

(−∆+ V )ψλ = λψλ, ||ψλ||L2(Td) = 1.

(2)
We can expand the eigenfunctions into Fourier se-
ries

ψλ(x) =
1

2π

∑
ξ∈Zd

ψ̂λ(ξ)e
iξx. (3)

By Parseval’s identity, we obtain a discrete proba-
bility measure on Zd, namely µλ(ξ) := |ψ̂λ(ξ)|2.

For q > 1, we define the moment sum

Mq(µλ) =
∑
ξ∈Zd

µλ(ξ)
q. (4)

A fractal scaling law, in the semiclassical limit
λ→∞, is a power law

Mq(µλ) ∼ N
(1−q)Dq

λ , (5)
where Nλ denotes the number of O(1)-contributions
in (4), as λ→∞, and Dq denotes the fractal expo-
nent.

We note that, in the case of the torus, the mass of
the probability measure µλ is concentrated on lat-
tice points which lie inside a thin annulus of central
radius

√
λ and whose width depends on the spectral

parameter λ (see Fig. 1). In the semiclassical limit,
as λ → ∞, the number of O(1)-contributions will
grow slowly (in fact on a logarithmic scale) with
λ. However, this number fluctuates a lot, as the
number of lattice points in thin annuli is subject
to strong fluctuations (this is due to the scale of
the width being of much lower order than the error
term in the Gauss circle law). In order to compute
Nλ, as a function of λ, one must perform a spectral
average. This is the first challenge, from a mathe-
matical point of view, to be able to prove a fractal
scaling law. As we will see below, for particularly
simple choices of potential, where the measure µλ
takes a simple and explicit form, it is possible to
perform this calculation. For generic potentials, it
is expected to be a much more challenging task.
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In order to compute the fractal exponent as-
sociated with a sequence of eigenfunctions, we
introduce the Rényi entropy of the measure µλ,
i.e.,

Hq(µλ) =
1

1−q
log
(
Mq(µλ)

)
, q > 1. (6)

The Rényi entropy may be thought of as a gener-
alization of the Shannon entropy, which is familiar
from information theory, in the sense that the
latter is recovered in the limit as q → 1

lim
q→1

Hq(µλ) = −
[
d

dq
log
(
Mq(µλ)

)]
q=1

=

−
∑
ξ∈Zd

µλ(ξ) log
(
µλ(ξ)

)
. (7)

Provided one can obtain an asymptotic for the
Rényi entropy in the limit, λ → ∞, possibly by
restricting oneself to a subsequence of eigenval-
ues, and tackle the problem of determining the
scaling parameter (by averaging out the fluctu-
ations mentioned above), then one might hope
to be able to compute the fractal exponent Dq

for q > 1.
For a generic choice of the potential V , this prob-

lem can be very hard. To give an idea of the chal-
lenges involved: if one picks a potential model of
a disordered system in a scaling regime that corre-
sponds to the thermodynamical limit (e.g., taking a
large torus and scaling back to the standard torus),
the occurrence of multifractal scaling appears to be
related to the onset of a phase transition between
localized and delocalized regimes (in d ≥ 3).

For a simple choice of potential, however, which
allows for explicit expressions of the eigenfunctions
and, thus, the measure µλ, it is possible to overcome
these challenges.

4. Multifractality for an arithmetic
S̆eba billiard

In a 1990 paper [17], Petr S̆eba introduced rect-
angular billiards with a Dirac delta potential placed
in the interior as a toy model for more compli-
cated pseudo-integrable billiards, whose dynamics is
in some sense intermediate between integrable and
chaotic dynamics. In this section, we will consider
a slightly modified version of this billiard, namely
a square torus with a delta potential. We will refer
to this as an arithmetic S̆eba billiard because the
Laplace spectrum is of an arithmetic nature. It is
given, up to a factor, by integers representable as a
sum of two squares:

σ(−∆T2) =
{
n = x2+y2 | (x, y) ∈ Z2

}
. (8)

We note that the Laplace eigenvalues have multi-
plicities, which are given by the arithmetic function

r2(n) = #
{
(x, y) ∈ Z2 | n = x2+y2

}
, (9)

which counts the number of lattice points on the
circle of radius

√
n.

Employing self-adjoint extension theory, one can
show that the spectrum of the S̆eba billiard consists
of two types of eigenvalues. There are old Laplace
eigenvalues, with multiplicity reduced by 1, which
correspond to co-dimension 1 subspaces of eigen-
functions, which vanish at the position of the po-
tential. There are also new eigenvalues, with multi-
plicity 1, corresponding to new eigenfunctions which
feel the potential. These new eigenvalues interlace
with the Laplace eigenvalues.

Moreover, self-adjoint extension theory yields ex-
plicit formulae for these new eigenfunctions, which
in turn give rise to an explicit expression for the
Fourier coefficients and, hence, the measure µλ

µλ(ξ) =

(
|ξ|2−λ

)−2∑
ξ′∈Z2

(
|ξ′|2−λ

)−2 . (10)

Moreover, we note that λ /∈ σ(−∆), because of the
interlacing property of the new eigenvalues.

The moment sums associated with the measure
µλ, for a new eigenvalue λ, are of the form

Mq(µλ) =
ζλ(2q)

ζλ(2)q
, (11)

where we introduce the shifted zeta function

ζλ(s) =
∑
n≥0

r2(n)

|n− λ|s
, <(s) > 1. (12)

4.1. Weak coupling: a monofractal regime

It is instructive to look at the physically trivial
case of weak coupling (fixed self-adjoint extension).
In this regime, λ is typically close to a neighbouring
Laplace eigenvalue m (see [27]). Let us denote by
∆j the distance between a new eigenvalue and the
nearest Laplace eigenvalue.

For a given x � 1, we define the mean distance
up to threshold x as

〈∆j〉x =
1

#{λk ≤ x}
∑
λk≤x

∆k. (13)

In the case of the square torus, we have 〈∆〉x =
O((log(x))−1/2) (which is a special case of a more
general estimate derived in [27]), where we note
that in this case, the average spacing of the Laplace
eigenvalues is of order

√
log(x) due to the multi-

plicities in the Laplace spectrum.
Thus, only one term (or one circle in the lattice

with radius
√
m) contributes. The sum scales as fol-

lows along the subsequence of typical eigenvalues

Mq(µλ) =
ζλ(2q)

ζλ(2)q
∼

r2(m)
∣∣m−λ∣∣−2q

(r2(m)
∣∣m−λ|−2)q = r2(m)1−q.

(14)
The number of terms that contribute is simply

the number of lattice points on the circle |ξ|2 = m.
The Rényi entropy has asymptotics

Hq(µλ) ∼
1

1−q
log
(
r2(m)1−q

)
= log

(
r2(m)

)
.

(15)
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It can be shown that for a full-density subse-
quence of Laplace eigenvalues, we have for any m
(m→ +∞) in this subsequence

r2(m) =
[
log(n)

] 1
2 log(2)+o(1)

. (16)

Hence,

Nλ =
[
log(m)

]log(2)/2
, (17)

which is known as the normal order of r2.
We note that the fluctuations of the arithmetic

function r2(n) are very subtle. It is a classical the-
orem of Landau from 1907 that the number of in-
tegers less or equal than x grows like cx/

√
log(x),

which implies that on average the multiplicities are
of order

√
log(x). The smaller exponent 1

2 log(2)
arises along a typical (as in full density) subse-
quence, because there is a very sparse subsequence,
where r2(n) grows much faster (of order no(1) for
some slowly decaying exponent function). Moreover,
there are also sparse subsequences where r2 remains
bounded.

From the Rényi entropy, one can now readily
obtain the fractal exponent

Dq = lim
λ→∞

Hq(µλ)

log
(
Nλ
) = 1. (18)

In particular, we note that the fractal exponent
does not vary with q, because, due to the weakness
of coupling strength, only the nearest circle con-
tributes.

4.2. Strong coupling: a multifractal regime

The physically interesting regime requires a
renormalization of the extension parameter in
the semiclassical limit. This allows us to con-
sider stronger coupling strength. We can mea-
sure the strength of the perturbation by com-
puting the mean distance between old and new
eigenvalues. For a suitable renormalization, one
obtains
〈∆j〉 =

[
log(x)

]α+o(1)
, α ∈

(
− 1

2 ,
1
2

]
, (19)

where the exponent α is a measure of the strength
of the perturbation.

Because in such regimes the new eigenvalues
lie farther away from the neighbouring Laplace
eigenvalues (on the scale of the mean spac-
ing of the eigenvalues), many more circles con-
tribute. In fact, all lattice points in a thin an-
nulus of central radius

√
λ must be taken into

account.
We have the following theorem, proven jointly

with Keating in [9], which computes the fractal ex-
ponents associated with a full density subsequence
of new eigenvalues in a strong coupling regime. For a
range of exponents q, which depends on the coupling
strength α associated with the subsequence, we de-
rive an explicit formula for the fractal exponent,
which shows how it varies with q, thereby proving
multifractality.

Theorem 1. Let Λ be a sequence of new eigen-
values in a strong coupling regime such that
α(Λ) ∈ ( 14 ,

1
2 ). There exists a full-density sub-

sequence Λ′ ⊂ Λ such that for any q in the
range

1− log(2)

2−4α
< q ≤ 1

2−4α
(20)

we have the following formula for the fractal expo-
nents associated with the sequence Λ′

Dq(Λ
′) =

1

2α

(
1− 1

2q

)
log(2). (21)

4.3. The ground state regime

Instead of studying a high-frequency regime,
where λ → ∞, one might as well consider a low-
frequency regime, where λ → 0. In this regime,
there is no relationship expected between the in-
termediate type of dynamics and the occurrence
of multifractality. Rather, multifractality in such
regimes is expected to occur for a much wider class
of systems.

However, in the case of S̆eba billiards, there is
a very interesting link with Epstein’s zeta function
associated with quadratic forms. This link occurs
for general tori, not just arithmetic ones. We intro-
duce the following modified version of the shifted
zeta function above

ζ∗λ(s) =
∑
n∈N

rQ(n)

|n− λ|s
, <(s) > 1, (22)

where N denotes the Laplace spectrum on a gen-
eral unimodular rectangular tori, given by the set
of values taken by the quadratic form Q(x, y) =
a2x2 + a−2y2; (x, y)2, and a > 0. Moreover, rQ de-
notes the representation number of Q.

We introduce the modified moment sums
M∗q (λ) = ζ∗λ(2q) for q > 1. Note that we
need to remove the first term, as this blows
up in the limit λ → 0. We are, thus, inter-
ested in the fluctuations around this blow-up term,
which motivates the study of the modified moment
sums.

For q > 1 we define the fractal exponents

D∗q =
d∗q − qd∗1
q−1

,

d∗q = lim
λ→0

ζ∗λ(2q) = ζQ(2q), (23)
where we denote Epstein’s zeta function associated
with the quadratic form Q as

ζQ =
∑

(m,n)∈Z2\{0}

Q(m,n)−s, <(s) > 1.

(24)
We also note that we have the following functional
equation

ζQ(1− s) = ϕQ(s)ζQ(s), (25)
where ϕQ denotes a certain meromorphic function
associated with Q.
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The first prediction of symmetry relations for the
fractal exponents of multifractal systems is due to
Mirlin, Fyodorov, Mildenberger, and Evers for the
case of the Anderson model in [28]. The following
symmetry relation was proved in [9].

Theorem 2. The fractal exponent D∗q admits an
analytic continuation to the full complex plane. It
satisfies the following symmetry relation with re-
spect to the critical point q = 1/4

D∗1
2−q

=
1−q
1
2+q

[
D∗q+

logϕQ(2q)+(2q− 1
2 ) log ζQ(2)

1−q

]
.

(26)

5. Conlusions

Multifractal scaling is an important property of
quantum systems that are intermediate between
two physical regimes, and many important systems,
such as the Anderson model and pseudo-integrable
quantum billiards, fall into this category. However,
understanding the rigorous mathematical underpin-
ning of multifractality goes far beyond the study of
intermediate quantum systems. In fact, multifractal
scaling appears to be related to deep and impor-
tant mathematical problems in a number of models
in mathematical physics. Another highly interest-
ing type of models are nonlinear partial differential
equations (PDE), such as the Euler and Navier–
Stokes equations, which model the dynamics of in-
compressible fluids. In this case, it turns out that
the occurrence of multifractal scaling is related to
the deep and difficult question of the regularity or
blow-up of solutions to these nonlinear PDE, which
is the subject of a forthcoming article [29].
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