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Fractal structures appearing in solutions of certain quantum problems are investigated. We prove the
previously announced results concerning the existence and properties of fractal states for the Schrödinger
equation in the infinite one-dimensional well. In particular, we show that for this problem, there exist
solutions in the form of fractal quantum carpets: the probability density P (x, t) forms a fractal surface
with dimension Dxy, while its cross-sections Pt(x) and Px(t) typically form fractal graphs with dimen-
sions Dx and Dt respectively, where Dxy = 2 +Dx/2 and Dt = 1 +Dx/2 (almost everywhere).
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1. Introduction

Fractals are sets and measures of non-integer
dimension [1, 2]. They are good models of phe-
nomena and objects in various areas of science.
Their ubiquity in dynamical systems theory as
attractors, repellers, and attractor boundaries is
well-known [2, 3]. They are often connected with
non-equilibrium problems of growth [4] and trans-
port [5, 6]. Fractal properties of hydrodynamic
modes have been shown to be connected with
transport coefficients [7, 8]. Fractal dimensions are
used in many nonlinear time series analysis meth-
ods [9, 10].

Fractals have also been found in quantum me-
chanics [11–14]. For instance, quantum models re-
lated to the problem of chaotic scattering often re-
veal fractal structures [15–17] relevant for quantum
transport [18]. Fractal structures play a prominent
role in studies of the quantum dynamics of a re-
duced density operator [19]. Spectroscopic charac-
terization of the electronic wave function inside a
confined structure with fractal geometry was dis-
cussed in [20]. Quantum field theories in fractal
spacetimes were also analyzed [21, 22], and fractal

structures were reported in models of quantum
gravity [23, 24]. Fractional calculus was found useful
to describe the dynamics of quantum particles [25],
while a Bohmian approach to quantum fractals was
presented in [26].

It was also shown that the Schrödinger equa-
tion for the simplest non-chaotic potentials admits
fractal solutions [27]. The resulting probability dis-
tributions P (x, t) as functions of space and time,
called quantum carpets [28–31], reveal fractal fea-
tures [27, 32, 33]. In this paper, we have two objec-
tives. One is to present the rigorous proofs of frac-
tality of quantum states reported in [32]. The other
is to illustrate a convenient method of calculating
the dimensions of graphs of continuous functions in-
troduced by Claude Tricot [34].

2. Methods

2.1. Box-counting dimension

In this section, we recall several equivalent defi-
nitions of box-counting dimension, state a criterion
for finding the dimension of a continuous function
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of one variable, and prove a connection between the
dimension of the graph of a function of n variables
and the dimensions of its sections. All of this is
known, perhaps with the exception of Theorem 2,
which might be new. We concentrate on the theory
of box-counting dimension for graphs of continuous
functions of one variable. More general theory and
a deeper presentation can be found, for instance,
in [2, 34, 35].

Let A ⊂ Rn be bounded. Consider a grid of
n-dimensional boxes of side δ[
m1δ, (m1+1)δ

]
× · · · ×

[
mnδ, (mn+1)δ

]
. (1)

Let N(δ) be the number of these boxes covering the
set A. It is always finite because A is bounded.

Definition 1. Box-counting dimension of the set A
is the limit

dimB(A) := lim
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] . (1)

If the limit does not exist, one considers upper and
lower box-counting dimensions

dimB(A) := lim sup
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] , (3)

dimB(A) := lim inf
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] , (4)

which always exist and satisfy
dimB(A) ≥ dimB(A). (5)

The box-counting dimension exists if the upper and
lower box-counting dimensions are equal.

Several equivalent definitions are in use
(see [1, 2, 34, 35] for a review). The most
convenient definition to study the fractal properties
of graphs of continuous functions is given in terms
of δ-variations [34]. It is essentially a variant of
the Bouligand definition [36]. We shall restrict our
attention to dimensions of curves being subsets of
a plane.

Let Kδ(x) be a closed ball {y ∈ R2 : |x−y| ≤ δ}.

Definition 2. Minkowski sausage or δ-parallel body
of A ⊂ R2 is
Aδ :=

⋃
x∈A

Kδ(x) = {y ∈ R2 : ∃x ∈ A, |x−y| ≤ δ}.

(6)
Thus the Minkowski sausage of A is the set of all the
points located within δ of A.

Proposition 1. The box-counting dimension of a set
A ⊂ R2 satisfies

dimB(A) = lim
δ→0

(
2−

ln
[
V (Aδ)

]
ln[δ]

)
, (7)

where V (δ) = vol2(Aδ) is the area of the Minkowski
sausage of A.

Proof. Every square from the δ-grid containing
x ∈ A is included in K√2δ(x). On the other hand,
every closed ball of radius

√
2δ can be covered by

at most 16 squares from the grid. Therefore,
δ2N(ε) ≤ V

(
A√2δ

)
≤ 16δ2N(ε). (8)

Consider a continuous function on a closed in-
terval f : [a, b] → R. Its graph is a curve in the
plane. To find its box-counting dimension, estimate
the number of boxes N(δ) intersecting the graph.
Choose column {(x, y) :x ∈ [nδ, (n + 1)δ]}. Since
the curve is continuous, the number of the boxes in
this column intersecting the graph of f is at least

1

δ

[
sup

x∈[nδ,(n+1)δ]

f(x)− inf
x∈[nδ,(n+1)δ]

f(x)

]
(9)

and no more than the same plus 2. If f was a record
of a signal, then the difference between the maxi-
mum and minimum value of f on the given interval
quantifies how the signal oscillates on this interval.
That’s why it is called δ-oscillation.

Definition 3. δ-oscillation of f at x is

oscδ(x)(f) := sup
|y−x|≤δ

f(y)− inf
|y−x|≤δ

f(y) =

sup
{
|f(y)−f(z)| : y, z ∈ [a, b] ∩ [x−δ, x+δ]

}
.

(10)

We will skip (f) if it is clear from the context
which function we consider.

From (9) we obtain the following estimate on the
total number of boxes covering the graph of f ,

M∑
m=1

oscδ/2(xm)

δ
≤ N(δ) ≤ 2M +

M∑
m=1

oscδ/2(xm)

δ
,

(11)

where xm = a+(m− 1
2 )δ is the middle of the m-th

column from the cover of the graph andM = d b−aδ e
is the number of columns in the cover (dxe stands
for the smallest integer greater or equal to x). Thus,

N(δ) ≈M oscδ/2/δ. (12)

If the graph of f has the box-counting dimension D,
N(δ) scales as δ−D. This implies the following scal-
ing of the oscillations

oscδ/2 ≈ N(δ) δ/M ∝ δ2−D. (13)
We have thus suggested a connection between the
box-counting dimension of the graph and the scaling
exponent of the average oscillation of the function f .

Definition 4. δ-variation of function f is

Varδ(f) :=
∫ b

a

dx oscδ(x)(f) =: (b−a) oscδ(f).
(14)

Geometrically, variation is the area of the set
scanned by the graph of f moved horizontally ±δ
and truncated at x = a and x = b, thus, it is a kind
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of Minkowski sausage constructed with horizontal
intervals of length 2δ. This observation leads to a
convenient technique for calculating dimensions.

Theorem 1. Let f(x) be a non-constant continuous
function on [a, b], then

dimB graphf = lim
δ→0

(
2−

ln
[
Varδ(f)

]
ln[δ]

)
. (15)

The proof consists of showing equivalence of
Varδ(f) with the Minkowski sausage and follows
from inequality ([34], p. 130–132, 148–149)

Varδ(f) ≤ V (Aδ) ≤ cVarδ(f), (16)
where

A = graphf,
c = c1 + c2/s,

s =
[

sup
x∈[a,b]

f(x)− inf
x∈[a,b]

f(x)
]
.

(17)
This is where the assumption of non-constancy of
f comes in. Derivation of (16) is not difficult but
rather lengthy and will be omitted.

This theorem is the main tool to prove Theorem 3
in Sect. 3. In order to find the dimensions, we will
look for estimates of δ-variation. They will usually
take the following form:
Proposition 2

1. oscδ(x)f(x) ≤ c δ2−s ⇒ dimB graph f ≤ s.

2. W :=
∫ b
a
dx

∣∣f(x+δ)−f(x−δ)∣∣ ≥ c δ2−s ⇒
dimB graph f ≥ s.

Proof. puste pole

1. Varδf =
∫ b
a
dx oscδ(x)(f) ≤ (b−a)c δ2−s .

2. osc2δ(x)f ≥
∣∣f(x+δ)−(x−δ)∣∣ ⇒ Varδf ≥

(b−a)c (δ/2)2−s.

To prove the last point of Theorem 3, we need
to know what is the dimension of the graph of
f : Rn → R, given all the dimensions of its one-
variable restrictions.

Theorem 2. Let f ∈ C0([a1, b1]×· · ·× [an, bn]). For
every point x = (x1, . . . , xn) ∈ [a1, b1]×· · ·× [an, bn]
define x̃i := (x1, . . . , xi−1, xi+1, . . . , xn). Then

fi[x̃
i
0](x

i) := f(x10, . . . , x
i−1
0 , xi, xi+1

0 , . . . , xn0 )

(18)
is a restriction of f to a line parallel to i-th axis going
through x0 and fi[x̃i0] ∈ C0([ai, bi]).
(1) If ∀x : oscδfi[x̃i] ≤ ciδHi , then
dimB graph f(x1, . . ., xn) ≤ n+1−min{H1, . . ., Hn}.

(19)
(2) If Varδfi[x̃i0] ≥ ci δ

Hi for a dense set x̃i0 ∈ A ⊂
A = [a1, b1]× . . .× [ai−1, bi−1]× [ai+1, bi+1]× . . .×
[an, bn], then

dimB graphf(x1, . . ., xn) ≥ n+1−min{H1, . . ., Hn}.
(20)

(3) If all of the above conditions are satisfied, then

dimB graphf(x1, . . ., xn)=n+1−min{H1, . . ., Hn}=

n−1+max{s1, . . ., sn}, (21)

where si = supx̃i dimB graph fi[x̃i](xi).

In other words, the strongest oscillations along
any direction determine the box-counting dimension
of the whole n+1-dimensional graph.

Proof. We will show the theorem for n = 2 for no-
tational simplicity. Generalization to arbitrary n
is immediate. Let f : [a1, b1] × [a2, b2] → R. Di-
vide the domain into squares Xi × Yj of side δ.
This gives rise to K columns Aij of δ-grid in R3,
1 ≤ K δ2

(b1−a1)(b2−a2) ≤ 2.

(1). The number of δ-cubes having a common
point with the graph of f in column Aij is not
greater than 1

δ (supAij f− infAij f)+2. But∣∣f(x1, y1)− f(x2, y2)∣∣ =∣∣f(x1, y1)−f(x1, y2) + f(x1, y2)−f(x2, y2)
∣∣

≤
∣∣f(x1, y1)−f(x1, y2)∣∣+ ∣∣f(x1, y2)−f(x2, y2)∣∣.

(22)
Therefore
sup
Aij

f − inf
Aij

f = sup
(x1,y1),(x2,y2)∈Aij

|f(x1, y1)−f(x2, y2)|

≤ sup
x∈Xi

sup
y∈Yj

f(x, y) + sup
y∈Yj

sup
x∈Xi

f(x, y)

≤ sup
x∈Xi

oscδ/2 f1[x] + sup
y∈Yj

oscδ/2 f2[y]

≤ c δmin{H1,H2}. (23)

Thus
dimB graph f(x1, x2) ≤ lim

δ→0

ln[Kc δmin{H1,H2}/δ]
ln [1/δ]

≤ 3−min{H1, H2}. (24)

(2). Set x ∈ Xi. From (8) and (16) it follows that
the number Ni(δ) of δ-cubes in columns Aij cov-
ering the graph of f2[x](y) and the variation of f2
satisfy

Varδf2[x] ≤ c δ2Ni(δ). (25)
Thus

Ni(δ) ≥ c sup
x∈Xi

Varδf2[x]/δ2 ≥ c δH2−2. (26)

Therefore, the number N(δ) of boxes covering the
whole graph of f satisfies

N(δ) ≥ c
∑M

i=1
sup
x∈Xi

Varδf2[x]/δ2 ≥ c1δH2−3. (27)

The same can be repeated for any direction, thus
N(δ) ≥ c2 δmin{H1,H2}−3. (28)

(3). An immediate corollary.
Generalization to arbitrary n is achieved by ob-

serving that Kδn ≈ const.
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Another definition, which has some conve-
nient technical properties, is the Hausdorff dimen-
sion [37–39], however, it is often too difficult to cal-
culate. For instance, as far as we know, there is still
no proof that the Hausdorff dimension of the Weier-
strass function is equal to its box-counting dimen-
sion. Thus in practice, one usually uses the (upper)
box-counting dimension. This is also our present ap-
proach. It is often assumed that the box-counting
dimension and the Hausdorff dimension are equal.
A general characterization of situations when this
conjecture really holds is also lacking.

2.2. Fractal functions

One of the oldest fractals is a graph of the Weier-
strass function [40, 41]

W (x) =
∑∞

n=0
an cos(bnxπ), (29)

introduced as an example of an everywhere con-
tinuous, nowhere differentiable function by Karl
Weierstrass around 1872. The maximum range of
parameters, for which the above series has required
properties was found by Godfrey Harold Hardy
in 1916 [42], who also showed that

sup
{
|f(x)−f(y)| : |x−y| ≤ δ

}
∼ δH , (30)

where H = ln(1/a)
ln(b) . From this it easily follows

(see below) that the box-counting dimension of the
graph of the Weierstrass function W (x) is

DW = 2+H = 2+
ln(a)

ln(b)
= 2−

∣∣∣∣ ln(a)ln(b)

∣∣∣∣ . (31)

Functions whose graphs have non-integer box-
counting dimension are called fractal functions.
Even though the box-counting dimension of the
Weierstrass function is easy to calculate [34], the
proof that its Hausdorff dimension has the same
value is still lacking, as far as we know. Lower
bounds on the Hausdorff dimension of the graph
were found by Mauldin [43, 44]. Graphs of random
Weierstrass functions were shown to have the same
Hausdorff and box-counting dimensions for almost
every distribution of phases [45].

3. Results

The construction of the Weierstrass function,
(29), can easily be realized in quantum mechanics.
Consider solutions of the Schrödinger equation

i∂tΨ(x, t) = −∇2Ψ(x, t) (32)
for a particle in the one-dimensional infinite po-
tential well. The general solutions satisfying the
boundary conditions Ψ(0, t) = 0 = Ψ(π, t) have
the form

Ψ(x, t) =
∑∞

n=1
an sin(nx)e

− in2t, (33)
where

an =
2

π

∫ π

0

dx sin(nx)Ψ(x, 0). (34)

Weierstrass quantum fractals are wave functions
of the form

ΨM (x, t) = NM
∑M

n=0
qn(s−2) sin(qnx)e− iq2nt,

(35)
where q = 2, 3, . . . , s ∈ (0, 2).

In the physically interesting case of finite M , the
wave function ΨM is a solution of the Schrödinger
equation. The limiting case

Ψ(x, t) := lim
M→∞

ΨM (x, t) =

N
∑∞

n=0
qn(s−2) sin(qnx)e− iq2nt, (36)

with the normalization constant
N=

√
2
π

√
1−q2(s−2), is continuous but nowhere

differentiable. It is a weak solution of the
Schrödinger equation. Note that (36) converges for
(|qs−2| < 1 ≡ s < 2. Since the probability density
of wave function (36) shows fractal features for
s > 0 (see below), the interesting range of s is
(0, 2).

The main results announced in [32], which we
prove here, are that not only the real part of the
wave function Ψ(x, t), but also the physically im-
portant probability density P (x, t) := |Ψ(x, t)|2 ex-
hibit fractal nature. This is not obvious, because
|Ψ(x, t)|2 is the sum of squares of the real and imag-
inary parts having usually equal dimensions. One
can easily show that the dimension of the graph of
a sum of functions whose graphs have the same di-
mensions D can be anything† from 1 to D.

Our main results are given by Theorem 3.

Theorem 3. Let P (x, t) denote the probability den-
sity of a Weierstrass-like wave function (36). Then

1. at the initial time t = 0, the probability density
P0(x) = P (x, 0) forms a fractal graph in the
space variable (i.e., space fractal) of dimension
Dx = max{s, 1};

2. the dimension Dx of graph of Pt(x) = P (x, t =
const) does not change in time;

3. for almost every x inside the well, the probability
density, Px(t) = P (x = const, t), forms a frac-
tal graph in the time variable (i.e., time fractal)
of dimension Dt(x) = Dt := 1+s/2;

4. for a discrete, dense set of points xd, Pxd(t) =
P (xd, t) is smooth, and thus Dt(xd) = 1;

5. for even q, the average velocity d〈x〉
dt (t) is fractal

with the dimension of its graph equal to Dv =
max{(1 + s)/2, 1};

6. the surface P (x, t) has dimension Dxy =
2+s/2.

†1Let f1 and f2 be functions with graphs having dimen-
sions, respectively, 1 ≤ D1 < D2 ≤ 2. Let g1 = f1 + f2,
g2 = f1 − f2. Then the box-counting dimension of both the
graph of g1 and g2 is D2, but the dimension of the graph of
their sum g1 + g2 = 2f1 is D1 ∈ [1, D2].
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The physical meaning of Theorem 3 has been
discussed in [32]. Here we only emphasize that to
generate a fractal wave function with exact mathe-
matically rigorous fractal features with infinite scal-
ing properties, infinite energy is required. However,
even a few terms in the series defining the function
(36) can lead to physically interesting effects.

Our proof of Theorem 3 is based on the power-law
behavior of the average δ-oscillation of the infinite
double sum present in P (x, t) = |Ψ(x, t)|2 (see (122)
in Appendix). Some fundamental concepts and facts
used in the proof are given in Sect. 2.1. Calculations
of probability density and average velocity are pro-
vided in the Appendix. Positive real constants are
denoted by c, c1, c2, . . .

4. Proof of Theorem 3

1. At the initial time t = 0, the probability den-
sity, P0(x) = P (x, 0), forms a fractal graph in
the space variable (i.e., space fractal) of di-
mension Dx = max{s, 1}.

2. The dimension Dx of graph of Pt(x) =
P (x, t = const) does not change in time.

We will show that for every fixed t, the graph of
the probability density |Ψ |2 (see (122) in Appendix)
as a function of x has the box-counting dimension s.

(a) Fix t. Let

Pn(x) :=
∑n
k=0 q

k(s−2)∑k
l=0 sin(q

lx) sin(qk−lx)

× cos
[(
q2l − q2(k−l)

)
t
]
, (37)

q = 2, 3, . . . It is a smooth function whose derivative
at every point satisfies

|P ′n(x)| ≤ 2
n∑
k=0

qk(s−2)
k∑
l=0

ql
∣∣∣ cos (qlx) sin (qk−lx)∣∣∣

≤ 2
n∑
k=0

qk+1

q−1 qk(s−2) ≤ d1(s, q) qn(s−1), (38)

where

d1(s, q) =
2qs

(q − 1)(qs−1 − 1)
. (39)

Let δ = q−n. Then

oscδ(x)Pn ≤ 2δ sup
x∈[0,π]

|P ′n(x)| ≤ 2d1(s, q)δ
2−s.

(40)

On the other hand, for
Rn(x) := P (x)−Pn(x) =

∑∞
k=n+1 q

k(s−2)

×
∑k
l=0 sin(q

lx) sin(qk−lx) cos
[
(q2l−q2(k−l))t

]
,

(41)
we have

oscδ(x)Rn ≤ 2

∞∑
k=n+1

qk(s−2)(k+1) ≤ 4q(n+1)(s−2)n

(1− qs−2)2
.

(42)
Polynomial growth is slower than exponential,
therefore for arbitrarily small ε there is some M
such that ∀n > M :n < (qε)n. This leads to the
following estimate of the oscillation of Rn,

oscδ(x)Rn ≤ d2(s, q) δ2−s−ε, (43)

where

d2(s, q) =
4qs−2

(1− qs−2)2
. (44)

Thus for all x and δ=q−n, where ln(n)
n <ε ln(q), we

have
oscδ(x)P ≤ oscδ(x)Pn+oscδ(x)Rn

≤
(
2d1 + d2

)
δ2−s−ε. (45)

From Proposition 2 it follows that
dimB graphPt(x) ≤ 2− (2−s−ε) = s+ε→ε→0 s.

(b) Fix t. Let f(x)=P (x, t). We want to show that

W :=

∫ b

a

dx
∣∣f(x+δ)− f(x−δ)∣∣ ≥ c δ2−s.

(46)
Take a=0, b=π. Notice that (we skip the normal-
ization constant)

W =

∫ π

0

dx
∣∣f(x+δ)−f(x−δ)∣∣ =∫ π

0

dx
∣∣∣∑∞

k=0
qk(s−2)

∑k

l=0

{
sin
[
ql(x+δ)

]
sin[qk−l(x+δ)]− sin[ql(x−δ)] sin[qk−l(x−δ)]

}
akl

∣∣∣ =∫ π

0

dx

∣∣∣∣∑∞

k=0
qk(s−2)

∑k

l=0

{
cos(qlx) sin(qk−lx) sin(qlδ) cos(qk−lδ)

}
akl

∣∣∣∣ , (47)

where akl = cos[(q2k−q2l)t]. Take |h(x)| ≤ 1. Observe that

b∫
a

dx
∣∣∣∑
i

fi(x)
∣∣∣ ≥ b∫

a

dx |h(x)|
∣∣∣∑
i

fi(x)
∣∣∣ ≥ ∣∣∣ b∫

a

dx
∑
i

h(x)fi(x)
∣∣∣ ≥ ∣∣∣ b∫

a

dx h(x)fk(x)
∣∣∣−∑

i 6=k

∣∣∣ b∫
a

dx h(x)fi(x)
∣∣∣.

(48)
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One can interchange the order of summation and integration because f(x) is absolutely convergent. Let us
take δ=q−N , h(x) = sin(qmx) cos(qnx). After substitution in (47) using (48) we obtain

W ≥
∣∣∣∣ ∞∑
k=0

qk(s−2)
k∑
l=0

sin(ql−N ) sin(qk−l−N )

π∫
0

dx sin(qlx) cos(qk−lx) cos(qmx) cos(qnx) akl

∣∣∣∣ =
π

4
q(m+n)(s−2)

∣∣∣cos(qm−N ) sin(qn−N ) cos
[
(q2(m+n)−q2m)t

]∣∣∣ =:
π

4
W̃ . (49)

We will now prove that ∃c : W̃ = q(m+n)(s−2) ×
| cos(qm−N ) sin(qn−N ) cos[(q2(m+n) − q2m)t]| ≥
cqN(s−2), for arbitrary real t. We will take advan-
tage of the fact that q is an integer.

Let N = m + n. Then W̃ = qN(s−2) ×
| cos(qm−N ) sin(q−m) cos[(q2N−q2m)t]|. It is enough
to consider t ∈ [0, π].

Let us write t/π in q

t

π
=
a1
q

+
a2
q2

+
a3
q3

+ · · · =
∞∑
k=1

ak
qk
, (50)

where ak ∈ {0, 1, . . . , q − 1}, so that t/π can be
written as

t

π
= 0.a1a2 . . . aK

(
aK+1 . . . aK+T

)
. (51)

Therefore,

cos
[
(q2N−q2m)t

]
= cos

[
π(q2N−1a1 + q2N−2a2

+ · · ·+ a2N + q−1a2N+1 + · · ·+ q2m−1a1

+q2m−2a2 + · · ·+ a2m + q−1a2m+1 + . . . )
]
=

cos
[
π
(
a2N+1−a2m+1

q +a2N+2−a2m+2

q2 + . . .
)]
.
(52)

If we could only choose m so that the first two
terms in this series cancel out, we would have a
lower estimate on the cosine, because, in this case,∣∣∣∣a2N+3−a2m+3

q3
+. . .

∣∣∣∣ ≤ (q−1)
(

1

q3
+

1

q4
+. . .

)
=

1

q2
.

(53)
Thus,

cos
[(
q2N−q2m

)
t
]
≥ cos

( π
q2

)
≥ cos

(π
4

)
. (54)

Let A be the set of all the two-element sequences
with elements from the set {0, 1, . . . , q−1}. Thus

A =
{
{0, 0}, {0, 1}, . . . , {0, q−1}, {1, 0}, . . . ,

. . . , {q−1, q−1}
}
, (55)

and we write Ak,l := {k, l}, k, l ∈ {0, 1, . . . , q − 1}.
Consider all the pairs of consecutive q-digits of t/π
of the form{

a2m+1, a2m+2

}
, (56)

i.e., {a1, a2}, {a3, a4} etc. Every such pair is equal
to some Ak,l. Let Nk,l be the first such m, for which

Ak,l =
{
a2m+1, a2m+2

}
. (57)

If Ak,l for given k, l doesn’t appear in the sequence
of all the pairs (56), we set Nk,l = 0. Let

M = sup
k,l

Nk,l. (58)

Thus if n>M , the sequence {a2n+1, a2n+2}
has appeared at least once among the pairs
{a1, a2}, {a3, a4}, . . . , {a2M+1, a2M+2}. Therefore,
for everyN>M we can find such anm ∈ 1, 2, . . . ,M
that∣∣∣∣cos [(q2N−q2m)

t

π
π

]∣∣∣∣≥ cos

(
π

q2

)
≥ cos

(π
4

)
=

√
2

2
.

(59)
Also

sin(q−m) ≥ sin(q−M ),

cos(qm−N ) ≥ cos(qM−N ) ≥ cos(1),
(60)

which leads to

W̃ ≥
√
2

2
qN(s−2) sin(q−M ) cos(1)=const qN(s−2).

(61)
We have thus shown that for every t, for natu-

ral q, and for δ = q−N

W ≥ const δ2−s, (62)
therefore (Proposition 2)

dimB graphPt(x) ≥ 2− (2−s) = s. (63)

3. For almost every x, Dt(x) =
dimB graphPx(t) = Dt := 1+s/2.

We will use the form (123) given in Appendix of
the probability density. It is enough to analyze the
dimension of

P̃ (t) :=

∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2)

× sin(qc−dx) cos[(q2c−q2(c−d))t]. (64)

(a) Let

Pn(t) :=

n∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2)

× sin(qc−dx) cos[(q2c−q2(c−d))t]. (65)
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Then

|P ′n(t)| =

∣∣∣∣∣
n∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)(q2c−q2(c−d)) sin
[
(q2c−q2(c−d))t

]∣∣∣∣∣ ≤
n∑
c=1

q2c(s−2)
c∑

d=1

q−d(s−2)
(
q2c−q2(c−d)

)
=

n∑
c=1

q2c(s−2+1)
c∑

d=1

q−d(s−2)(1− q−2d) =

q2−s

q2−s − 1

[
qs
qns − 1

qs − 1
− q2(s−1) q

2n(s−1) − 1

q2(s−1) − 1

]
− q−s

q−s − 1

[
qs−2

qn(s−2) − 1

qs−2 − 1
− q2(s−1) q

2n(s−1) − 1

q2(s−1) − 1

]
. (66)

Therefore, for n large enough,
|P ′n(t)| ≤ c1 qnmax{s,2(s−1),s−2} = c qns. (67)

Let δ = q−αn. Then qn = δ−1/α and
oscδ(t)Pn ≤ 2c1 δq

ns = 2c1 δ
1−s/α. (68)

Let
Rn(t) := P̃ (t)− Pn(t). (69)

Then

oscδ(t)Rn ≤ 2

∞∑
c=n+1

q2c(s−2)
c∑

d=1

q−d(s−2)

≤ 2q2−s

q2−s−1

∞∑
c=n+1

q2c(s−2)+c(2−s)=c2 δ
(s−2)/α.

(70)

To obtain a consistent estimate we must set

1− s

α
=

2

α
− s

α
, (71)

which gives α = 2. Thus
oscδ(t)P̃ ≤ (2c1+c2) δ

1−s/2. (72)

(b) Now we want to show that

W =

∫ b

a

dt
∣∣∣P̃ (t+δ)− P̃ (t−δ)∣∣∣ ≥ c δ1−s/2. (73)

Set a = 0, b = 2π for convenience. Then

W =

2π∫
0

dt

∣∣∣∣∣
∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)
{
cos[(q2c−q2(c−d))(t+δ)]− cos[(q2c−q2(c−d))(t−δ)]

}∣∣∣∣∣=
2π∫
0

dt

∣∣∣∣∣
∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)
{
−2 sin[(q2c−q2(c−d))t] sin[(q2c−q2(c−d))δ]

}∣∣∣∣∣ . (74)

Using our standard arguments, we multiply the in-
tegrand by a suitable function smaller or equal to 1,

W ≥
2π∫
0

dt |h(t)|
∣∣P̃ (t+δ)− P̃ (t−δ)∣∣ ≥

∣∣∣ 2π∫
0

dt h(t)
[
P̃ (t+δ)− P̃ (t−δ)

]∣∣∣. (75)

We choose h(t) = sin[(q2c−q2(c−d))t] and set
δ = q−2N . It follows that

W ≥ 2πq(2c−d)(s−2)

×
∣∣∣sin(qcx) sin(qc−dx) sin(q2c−q2(c−d)) q−2N ∣∣∣ .

(76)
We now want to show that for almost all x

W ≥ c3 δ1−s/2 = c3 q
N(s−2). (77)

Set 2c−d = N . Then
W ≥ 2π qN(s−2)

×
∣∣∣sin(qcx) sin(qN−cx) sin(q2(c−N)−q−2c

)∣∣∣ .
(78)

Thus it is enough to bound∣∣∣sin(qcx) sin(qN−cx) sin[q2(c−N) − q−2c]
∣∣∣ (79)

from below.
Choose rational x/π. All the rational numbers in

a given basis q have finite or periodic expansion. In
the first case (x/π = k/ql), we cannot find the lower
bound on (79). We cannot succeed, because at these
points the function Px(t) is smooth (cf. the proof of
Theorem 3.4).

The other case means that x/π can be written as
x

π
= 0.a1a2 . . . aK

(
aK+1 . . . aK+T

)
, (80)
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where again (aK+1 . . . aK+T ) denotes the pe-
riodic part. Therefore, for every N>K, qnx
mod π can take only one of T values: qK+1x
mod π, . . . , qK+Tx mod π. Let us take c = 1,
N>K. Then | sin(qcx)| = | sin(qx)| > 0 and is a
constant. Note that | sin(qN−1x)| takes one of T
values, none of which is 0, therefore it is always
bounded from below by

inf
l=1,2,...,T

| sin(qK+lx)| > 0. (81)

Also, the last term can be bounded∣∣∣sin (q−2(N−c)−q−2c)∣∣∣ ≥ sin
(
q−2−q−2(N−1)

)
≥

sin(q−3) (82)

for N ≥ 3. Thus for rational x/π with periodic
expansion in q

W ≥ 2π c3 q
N(s−2), (83)

where c3=| sin(qx) sin( xq3 )| inf l=1,2,...,T | sin(qK+lx)|.
Consider now irrational x/π. Inequality (78) for

c = N takes the form
W ≥ 2πqN(s−2) ∣∣sin(qNx) sin(x) sin (1−q−2N)∣∣
≥ c qN(s−2) ∣∣sin(qNx)∣∣ , (84)

for N ≥ 2. Instead of showing it can be bounded
from below, we will use it to prove that for almost
every x

dimB graphPx(t) ≥ 1 + s/2. (85)

Let
xn := qn (x/π) mod 1. (86)

Let
FαN :=

{
x : ∃n≥N

(
xn≤ 1

qNα

)
∨
(
1−xn≤ 1

qNα

)}
,

(87)
where α ∈ [0, 1]. Let

Fα∞ :=

∞⋂
N=1

FαN . (88)

Clearly,
FαN ⊃ FαN+1 ⊃ FαN+2 . . . (89)

Since the Renyi map (86) preserves the Lebesgue
measure, we have

µ(FαN ) ≤ 2

(
1

qNα
+

1

q(N+1)α
+

1

q(N+2)α
+ . . .

)
=

2q

q − 1

1

qNα
. (90)

Therefore
0 ≤ µ(Fα∞) ≤ inf

N
µ(FαN ) = 0. (91)

It follows that for almost every {xn}

lim
n→∞

ln | sinxn|
n

≥ lim
n→∞

ln(q−nα)

n
≥

lim
n→∞

q−nα

2n
≥ −α ln(q). (92)

Thus for every α>0 and for almost every
x/π ∈ [0, 1] we have

dimB graphPx(t) = lim

[
2− ln (VarδPx(t))

ln(q−2N )

]
≥ 2 + lim

ln (VarδPx(t))
2N ln(q)

. (93)

But
VarδPx(t) ≥W, (94)

therefore from (84)
dimB graphPx(t) ≥

2 + lim
ln(c)+N(s−2) ln(q)+ ln

∣∣ sin(xnπ)∣∣
2N ln(q)

=

1 +
s

2
+ lim

ln | sin(xnπ)|
2N ln(q)

≥ 1 +
s

2
− α. (95)

But α is arbitrary, thus
dimB graphPx(t) ≥ 1 + s/2. (96)

4. For a discrete, dense set of points xd,
Dt(xd) = dimB graphPxd(t) = 1.

Let xk,m = mπ
qk

, where k ∈ N,m = 0, 1, . . . , qk−1.
The set {xk,m} is dense in [0, 1]. At these points,
Ψ(xk,m, t) is a sum of a finite number of terms

Ψ

(
mπ

qk
, t

)
=

√
2(1−q−2(2−s))

π

k−1∑
n=0

q(s−2)n

× sin(qn−kmπ) e− iq2nt. (97)
Therefore,

dimB graph
∣∣∣∣Ψ (mπqk , t

)∣∣∣∣2 = 1. (98)

5. For even q the average velocity d〈x(t)〉
dt is frac-

tal with the dimension of its graph equal to
Dv = max{(1 + s)/2, 1}.

Heuristically, this is rather obvious, because
d〈x(t)〉

dt
≈
∑∞

k=1

qk(s−1)

q2k
sin(q2kt) =∑∞

k=1
q2k(s−3)/2 sin(q2kt). (99)

Thus the average velocity is essentially a
Weierstrass-like function and the dimension of
its graph should be

2− (3− s)/2 = (1 + s)/2. (100)

It is enough to consider

W (t) :=
∑∞

k=1

qk(s−1)

q2k − 1
sin[(q2k − 1)t]. (101)

(a) Let

Wn(t) :=
∑n

k=1

qk(s−1)

q2k − 1
sin
[
(q2k−1)t

]
. (102)
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Set δ = q−αn. Then

|W ′n(t)| =
∣∣∣∑n

k=1
qk(s−1) cos

[
(q2k−1)t

]∣∣∣
≤
∑n

k=1
qk(s−1) ≤ c1 δ(1−s)/α, (103)

where

c1 =
qs−1

qs−1 − 1
. (104)

Therefore,
oscδ(t)Wn ≤ 2c1 δ

(1−s)/αδ = 2c1 δ
1+(1−s)/α.

(105)
Now, for

Pn(t) :=W (t)−Wn(t), (106)

we have

|Pn(t)| =

∣∣∣∣∣
∞∑

k=n+1

qk(s−1)

q2k − 1
sin
[
(q2k−1)t

]∣∣∣∣∣
≤

∞∑
k=n+1

qk(s−1)

q2k − 1
≤

∞∑
k=n+1

2qk(s−1)

q2k
= c2 δ

−(s−3)/α,

(107)
where

c2 =
2qs−3

1− qs−3
. (108)

Thus
oscδ(t)Pn ≤ 2c2 δ

(3−s)/α. (109)
To obtain consistent estimates for both Pn and Wn

we must set
1 + (1− s)/α = (3− s)/α, (110)

thus α = 2 and δ = q−2N . Therefore,
oscδ(t)W ≤ oscδ(t)Wn + oscδ(t)Pn

≤ 2(c1+c2) δ
2−(s+1)/2. (111)

(b) Consider∫ b

a

dt |W (t+δ)−W (t−δ)| =

∫ b

a

dt

∣∣∣∣ ∞∑
k=1

qk(s−1) cos
[
(q2k−1)t

]
sin[(q2k−1)δ]

q2k − 1

∣∣∣∣
≥
∣∣∣∣ ∫ b

a

dt h(t)fN (t)

∣∣∣∣−∑
k 6=N

∣∣∣∣ ∫ b

a

dt h(t)fk(t)

∣∣∣∣,
(112)

where

fk(t) =
qk(s−1)

q2k − 1
cos
[
(q2k−1)t

]
sin
[
(q2k−1)δ

]
.

(113)

Let h(t) = cos[(q2N − 1)t], δ = q−2N . Then∣∣∣∣∣∣
b∫
a

dt h(t)fN (t)

∣∣∣∣∣∣ = qN(s−1)

q2N − 1
sin
(
1−q−2N

) b∫
a

dt cos2[(q2N−1)t] ≥ qN(s−1)

q2N
sin
(π
6

) b∫
a

dt cos2[(q2N−1)t]

≥ 1

2
qN(s−3)

[
b− a
2

+
sin[2b(q2N−1)]− sin[2a(q2N−1)]

4(q2N − 1)

]
≥ 1

2
δ(3−s)/2

[
b− a
2
− 2 · 2

4q2N

]
=

1

2
δ(3−s)/2

[
1

2
(b− a)− δ

]
≥ 1

8
δ(3−s)/2(b− a). (114)

On the other hand,∣∣∣∣∣∣
b∫
a

dt h(t)fk(t)

∣∣∣∣∣∣ = qk(s−1)

q2k − 1
sin
[
(q2k−1)q−2N

] b∫
a

dt cos[(q2k−1)t] cos[(q2N−1)t]

≤ qk(s−1)

q2k − 1

∣∣∣∣ sin[b(q2N−q2k)]− sin[a(q2N−q2k)]
2(q2N − q2k)

+
sin[b(q2N + q2k)]− sin[a(q2N + q2k)]

2(q2N + q2k)

∣∣∣∣
≤ 2qk(s−3)

[
1

|q2N − q2k|
+

1

q2N + q2k

]
≤ 2qk(s−3)

[
1

q2N − q2(N−1)
+

1

q2N

]
≤ 5qk(s−3)δ. (115)

Therefore,

W ≥ 1

8
δ(3−s)/2(b−a)−

∑
k

5qk(s−3) δ ≥ 1

8
δ(3−s)/2(b−a)− 5qs−3

qs−3 − 1
δ. (116)
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But 1
2 (3−s) < 1, thus for large enough N (small

enough δ) the first term dominates the other, there-
fore

W ≥ c δ2−(1+s)/2, (117)

with c = (b− a)/16, for example.
From Theorem 1 it follows that

Dv =
1 + s

2
. (118)

6. The surface P (x, t) has dimension Dxy =
2+ 1

2s.

Setting x or t constant, we have shown that
oscillations are bounded by cδH , where exponent H
is one of 1, s, s/2. We also showed the lower bound
of variation is always c δH , again with H being one
of 1, s, s/2. What is more, there is a dense set of
points x, for which VarδPx(t) ≥ c δs/2. One can
take, for instance, all rational x/π with periodic
q-expansion. Thus from Theorem 2 we have

Dxt = 1 +max{Dx, Dt} = 2 +
s

2
. (119)

Proof.

5. Conclusions

In this article, we proved a theorem announced
in [32] that a simple textbook problem of quan-
tum theory — the Schröedinger equation describ-
ing a point particle in an infinite potential wall —
admits continuous but nowhere differentiable so-
lutions with fractal structure. The proposed solu-
tions Ψ = Ψ(x, t) display properties of a frac-
tal quantum carpet, i.e., the probability density,
P (x, t) = |Ψ(t, x)|2, forms a fractal surface and its
dimension Dxy is determined by the fractal dimen-
sion Dx of the cross-section Pt(x).
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Appendix: Auxiliary calculations

A1. Probability density

Take the fractal wave function (36),

Ψ(x, t)=

√
2(1−q2(s−2))√

π

∞∑
n=0

qn(s−2) sin(qnx)e− iq2nt.

(120)

Let us calculate two useful forms of the probability
density P (x, t)

P (x, t)=|Ψ(x, t)|2=2(1−q2(s−2))
π

∞∑
m,n=0

q(m+n)(s−2)

× sin(qnx) sin(qmx) e− i (q2n−q2m)t. (121)

Taking k = m+ n, l = n we obtain

P (x, t) = 2
π

(
1− q2(s−2)

) ∞∑
k=0

qk(s−2)

×
k∑
l=0

sin(qlx) sin(qk−lx) e− i (q2l−q2(k−l))t =

2
π

(
1− q2(s−2)

) ∞∑
k=0

qk(s−2)

×
k∑
l=0

sin(qlx) sin(qk−lx) cos[(q2l−q2(k−l))t].

(122)

Substitute c = m, d = m− n to arrive at

P (x, t) =
2(1−q2(s−2))

π

∞∑
m=0

{
q2m(s−2) sin2(qmx) + 2

∑
n<m

q(m+n)(s−2) sin(qnx) sin(qmx) cos[(q2m−q2n)t]
}

=

2(1−q2(s−2))
π

{ ∞∑
m=0

q2m(s−2) sin2(qmx) + 2
∞∑
c=1

c∑
d=1

q(2c−d)(s−2) sin(qcx) sin(qc−dx) cos[(q2c − q2(c−d))t]
}

=

2(1−q2(s−2))
π

{ ∞∑
m=0

q2m(s−2) sin2(qmx) + 2
∞∑
c=1

q2c(s−2) sin(qcx)
c∑

d=1

q−d(s−2) sin(qc−dx)

× cos

[
(q2−1) q2(c−d)

d−1∑
a=0

q2at

]}
=

2(1−q2(s−2))
π

∞∑
m=0

q2m(s−2) sin2(qmx) +
4(1−q2(s−2))

π

∞∑
c=1

q2c(s−2) sin(qcx)

×
c∑

d=1

q−d(s−2) sin(qc−dx) cos[(q2 − 1)(q2(c−1) + · · ·+ q2(c−d))t] =: Px(x) + Pxt(x, t). (123)
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Note that the time-independent part
Px(x) =

2
(
1−q2(s−2)

)
π

∞∑
m=0

q2m(s−2)(1− cos(qm2x))

2
=

1

π
−
(
1−q2(s−2)

)
π

∞∑
m=0

qm(2s−4) cos(qm2x),

1

π
− (1−q2(s−2))

π

∞∑
m=0

qm(2s−4) cos(qm2x), (124)

is a Weierstrass-like function with the dimension
s′ = max{2s−2, 1} ∈ [1, 2) (i.e., for s ∈ [1, 3/2],
s′ = 1). From the equation (123) one immediately
gets the spectrum of P (x, t) — all the frequencies
governing the time evolution are

ωc,d = (q2 − 1)
(
q2(c−1) + · · ·+ q2(c−d)

)
, (125)

where c = 1, 2, . . . , d = 1, 2, . . . , c. Thus all the fre-
quencies divide by q2 − 1 which is also the smallest
frequency, so the fundamental period of P (x, t) is
2π/(q2 − 1).

A2. Average velocity

Let us study the behavior of 〈x〉.

〈x〉 =
∫ π

0

dx x |Ψ |2 =
π

2
− 16

π

(
1− q2(s−2)

)
×
∑∞

k=1

qk(s−1)

(q2k − 1)2
cos[(q2k−1)t]. (126)

The above expression is valid only for even q. For
odd q we have just the first term, which is π/2.

The average x(t) is of class C1, because its
derivative is given by an absolutely convergent
series∣∣∣∣ d〈x〉dt

∣∣∣∣=
∣∣∣∣∣16

(
1−q2(s−2)

)
π

∞∑
k=1

qk(s−1) sin[(q2k−1)t]
q2k − 1

∣∣∣∣∣
≤ 2c

∞∑
k=1

qk(s−1)

q2k
= 2c

qs−3

1− qs−3
. (127)

In Sect. 4 we show that (127) is fractal, while for
odd q the average velocity |d〈x〉/dt|, of course, is
not. This seemingly strange behavior is caused by
the fact that

π∫
0

dx sin(nx) sin(mx) (128)

is non-zero only for m,n of different parity. How-
ever, if one slightly disturbs our function, for in-
stance, by changing an arbitrary number of terms
to the next higher or lower eigenstates, the dimen-
sions Dx and Dt will not be altered, but the average
velocity will become fractal. In other words, with
probability one, independently of the parity of q,
the average velocity of the wave function

Φ0(x, t) =M0

∞∑
n=1

qn(s−2) sin
[
(qn±1)x

]
×e− i (qn±1)2t. (129)

is fractal characterized by the same dimensions Dx

and Dt as the function currently studied.
An explicit example of a similar function for odd q

it is
Φ1(x, t) =M1

[
2s−2 sin(2x)e− i 22t

+

∞∑
n=1

qn(s−2) sin(qnx)e− iq2nt
]
. (130)

One can see the only difference between this exam-
ple and the original one (36) is in the first term. This
difference accounts for the smoothness or roughness
of the average velocity. It is very interesting because
normally one expects that it is the asymptotic be-
havior that determines the fractal dimension. Here
we have an exactly opposite case: a change in the
first term (varying most slowly) of a series changes
the dimension of a complicated function 〈v〉.

The average velocity of the wave packet (130) is
smooth for even q and fractal for odd q. A function,
which gives fractal average velocity for both even
and odd q, is

Φ2(x, t) =M2

[
2s−2 sin(2x)e− i 22t

+

∞∑
n=0

qn(s−2) sin(qnx)e− iq2nt
]
=

M2

[
2s−2 sin(2x)e− i 22t +

1

N
Ψ(x, t)

]
, (131)

where M2 is the normalization constant. On the
other hand,

Φ3(x, t) =M3

∞∑
n=1

qn(s−2) sin(qnx)e− iq2nt

(132)

gives smooth average velocity for both even and
odd q.
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