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A relevant issue in time series analysis is the estimation of long-range dependence, that is, how much
future values of a time series depend on current values. One of the ways to verify this dependence is by
estimating the Hurst exponent using methods such as detrended fluctuation analysis. Here, we propose
a new methodology to estimate the Hurst exponent, named leave one out detrended fluctuation analysis.
Furthermore, based on this new estimator for the Hurst exponent, we propose the noise reduction by
the leave one out detrended fluctuation analysis method. We apply this new denoising method to
electrocardiogram noise reduction. The results presented in this work show that this new methodology

(2023)

outperforms the SureShrink and universal noise reduction methods.
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1. Introduction

This paper addresses two issues related to time
series analysis and digital signal processing re-
search, i.e., long-range dependency estimation and
electrocardiogram (ECG) signal denoising. The de-
trended fluctuation analysis (DFA), proposed by
Peng et al. [1], is a method capable of estimating
the Hurst exponent, which describes the long-range
correlation between time series. Several research ar-
eas apply the DFA method, such as arrhythmia de-
tection [2], seismic trace analysis [3], and econo-
physics [4].

There are also several studies related to the
scale range that aim to verify the variation of
the scale range according to the signal character-
istics, such as the length of the time series and the
consideration of uncorrelated data. This approach
goes beyond the scope of our paper; see [5] for
details.

The second issue addressed by this paper is the
ECG signal denoising. The quality of the ECG sig-
nal is directly related to the accuracy of the cardiac
diagnoses. For this reason, there is a frequent propo-
sition of new and better methods to reduce noise in
electrocardiogram signals. In recent years, we can
highlight methods that use fractional wavelet trans-
form [6], empirical mode decomposition and discrete
wavelet transform [7]. We can also highlight Chat-
terjee et al., see [8] for details, who discuss the work-
flow and design principles followed by the recent
ECG denoising methods and classify the state-of-
the-art methods into different categories for mutual
comparison and development of modern methodolo-
gies to reduce ECG noise.
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The discrete wavelet transform is a very effective
tool when we want to mitigate the noise present in
the signal; for this reason, it has been applied not
only in ECG denoising, but also, e.g., in seismic sig-
nal denoising [9] and noise reduction in images [10].
Here, we combine the discrete wavelet transform
and DFA to propose a new ECG denoising method.

DFA estimates the Hurst exponent by a se-
quence of steps. Here we propose a modification
in one of these steps, thus presenting a new es-
timation method. We have denominated this new
method as leave one out detrended fluctuation anal-
ysis (LOO-DFA).

Additionally, we propose an ECG signal noise re-
duction method based on the LOO-DFA method.
We named this new ECG signal denoising method
noise reduction by leave one out detrended fluctu-
ation analysis (NR-LOO-DFA). We compare the
NR-LOO-DFA results with the Universal and
SureShrink wavelet shrinkage methods [11-13].

The paper is organized as follows. We present ba-
sic concepts and methodologies in Sect. 2. Section 3
demonstrates the simulation results, and Sect. 4
shows the conclusions.

2. Methodology

Here, we approach the basic concepts of the
LOO-DFA and NR-LOO-DFA methods.

2.1. Basic concepts

This subsection introduces two fundamental con-
cepts for the LOO-DFA and NR-LOO-DFA meth-
ods, namely the detrended fluctuation analysis
(DFA) and the discrete wavelet transform (DWT).
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2.1.1. Detrended fluctuation analysis

The detrended fluctuation analysis (DFA)
method, proposed by Peng et al. [1], is an approach
that estimates the time series long-memory. Given
the time series {X;}7_;, DFA consists of five steps.

(i) For each t € {1,2,...,n}, we calculate

t
V=) X
j=1

(ii) We divide the time series {Y;};_, into |7]
nonoverlapping blocks, each containing [ ob-
servations, where |- | indicates the integer part

(1)

function.
(iii) For each block, one fits a least-square line to
the data.
(iv) In each block we calculate
Zé =Y - Y;5l7 (2)

where Y,! denotes the adjusted fit on each
block.

(v) Let g(n) be the maximum block size. For
each l € {4,5,...,g(n)}, we calculate the root
mean square fluctuation

If we apply the natural logarithm to each
F(1) and each I, that is, In(F(1)) versus In(l),
we will verify the linear relationship between
these two quantities. The linear coefficient
obtained from the linear regression of these
points is an estimate for Hurst’s exponent.

2.1.2. Discrete wavelet transform

The wavelet theory consists of the approximation
of functions by a linear combination of functions
called wavelets. The mother and father wavelets,
respectively given by (-) and ¢(-), are real func-
tions with respect to ¢ and ¢; ¢ € L?(R) N LY(R),
Jp dt(t) =0 and [, dt¢(t) = 1.

Usually, the mother wavelet is bounded and cen-
tered at the origin, and () — 0 when | t |— oo.
Considering j, k € Z, these functions relate to each
other with the equations (t) = V2", hip(2t — k)
and ¢(t) = V23, grd(2t — k), where gj, and hy, are
the respective low-pass filter and high-pass filter co-
efficients satisfying hy, = (—1)*g;_4.

From there on, it is possible to build a wavelet
sequence given by

byn(t) = 25 (27t — k),

b n(t) = 2% p(2t — k).

(4)
(5)

Definition 1 (DWT) If y = (y0,¥1,---,Un-1)
is a signal with length N, such that N =27, J € N.
Then, DWT of y, according to its mother wavelet

Y(+), is given by
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N-1
ik =Y ybin(), (6)
t=0

where j =0,1,2,...,J—1land k =0,1,2,...,2/ —1.

Definition 1 formalizes a construction that maps
the data from the time domain to the wavelet do-
main.

In practice, we calculate DWT using the pyramid
algorithm given by Meyer [14] instead of the defini-
tion 1. This algorithm consists of an iterative appli-
cation of high-pass and low-pass filters that return
a detail wavelet coefficients set {d; ,}. To minimize
or remove a noise signal, we need to decide which
one of these detail wavelet coefficients should have
their magnitude reduced or eliminated. Then, we
need to apply the inverse discrete wavelet transform
(IDWT) in these previously processed coefficients.

2.2. LOO-DFA methodology

The LOO-DFA approach proposes a way to min-
imize the impact caused by random data errors by
removing a single data at a time, aiming to prevent
overfitting and allowing greater generalization for
the estimators. To apply the LOO-DFA method,
we changed the last step of DFA (see Sect. 2.1.1).
In addition to the usual linear regression of In(F(1))
over In(l) with I € {4,5,...,9(n)}, we calculate
another g(n) — 3 linear regressions, leaving out
one | per time. We denote: a; — slope of linear
regression considering all I € {4,5,...,9(n)}
values, ag — slope of linear regression considering
l€{5,6,7,...,9(n)}, ag — slope of linear regres-
sion considering I € {4,6,7,...,9(n)}, and so on,
up t0 vg(n)—2, which is the slope of linear regression
considering | € {4,5,6,...,g(n) — 1}. Then, we
obtain the Hurst exponent (denoted by H ) by the
following equation

R g(n)—2
H = argmin a; — S 7
gain | 3 I (™

2.3. NR-LOO-DFA methodology

To build the NR-LOO-DFA method, we need the
pre-processing stage detailed below.

2.3.1. Pre-processing stage

The pre-processing related to the NR-LOO-DFA
method consists of three hundred iterations, each of
which comprehends the following steps.

(i) Randomly choose a size signal N € N.

(ii) Generate a random N-length additive white
Gaussian noise (AWGN) e. Then, the noise e
is applied in the clean ECG synthetic signal
x to obtain the noisy signal y.

(iii) Apply DWT in the noisy signal y (see
Sect. 2.1.2) and estimate the standard devi-
ation of the noise 6 with
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& =median({d;_1x: k=0,1,...,27 71 —1}).

(8)
See [11-13] for details.

(iv) Let A € R be the threshold. Let ng(d; x, A) be
the soft-thresholding function. Let & be the
signal obtained when we apply IDWT with
ns(djk, A) instead of d; ;. In the fourth step,

we find the threshold )\ that satisfies

) o i |d
nS(dj,lm)\) — Sgn(d]7k) (|dj7k| )\)7 1 ‘d],k:‘.> )\’
0, otherwise.

(9)

N
° 1
A = argmin | — x; —&5)%. 10
gin [ 57 3 (s =)’ (10)
(v) Let &5 be the signal obtained when we ap-

ply IDWT over ns(d; i, A). In the fifth step,
we estimate the Hurst exponent Hg using the
LOO-DFA method (see Sect. 2.2 for details)
for the noise estimate é. It is given as

Hs = LOO-DFA(é), where é=y—z;.

(11)

This gives us one training set row composed of N,
0, Hg. Repeating this procedure, we obtain a three-
hundred-size training set (Fig. 1 illustrates this pro-
cess). It is possible to correlate the values N and &
with the value Hg, as shown below as

Hs=A+B6+CN, (12)
where A = 6.292107!, B = —1.038107', and
C = 7.0931077. We use this equation in the NR-
LOO-DFA method.

We kept the set with three hundred rows because
we noticed that the parameters A, B, and C in (12)
present changes from the sixth decimal point as
more data is added, which in our view indicated
their convergence.

tep 1: Random Generatioi
of an N-length signal

Step 4: Find ﬁ and process

Step 2: Random Generation
of the noise e

y=x+e

Step 3: Apply the DWT over
the noisy signal y
and estimate the 6

the detail wavelet coefficients
by M(dj1)

IDWT

Step 5: estimate the noise & Add one more row

and find the Hurst exponent Ha to the training set

NO Does the training

set have 300 rows?

Fig. 1. Flowchart illustrating a training set build-
ing.

2.3.2. NR-LOO-DFA

Let y be an N-length noisy signal obtained from
the addition of the additive white Gaussian noise e
to the clean signal . The method NR-LOO-DFA
consists of the following steps.

First, we apply DWT in the noisy signal y (see
Sect. 2.1.2) and estimate the standard deviation of
the noise 6 by (8). Then, we find the value of Hs
by (12).

The value Hg is the expected Hurst exponent
value for the noise estimate. We need to do the same
evaluation as in the current denoising process. The
current noise estimate é. is given by

éc =Y - z,écv (13)
where & is the clean signal estimate for the current
denoising process, obtained when we apply IDWT
with ng(d;, A) instead of d; .

In the second step, we estimate the Hurst expo-
nent Hg, by the LOO-DFA method.

In the third step, we find A using
Hg — He_|.

A = argmin
AER

(14)

Thus, A. guarantees the best approximation
between the two estimates for Hurst’s exponents
Hs and Hs,. We interpret it as an agreement be-
tween the value expected for Hurst’s exponent, Hg,
and the value we estimate for this same exponent
in the current problem, Hg_ . The Ao value that
approximates these values as close as possible will
be the chosen threshold, then we obtain the clean
signal estimate & by

& = IDWT(ns(dj ik, Ac))- (15)

3. Simulation results

This section presents simulations results for the
methods LOO-DFA and NR-LOO-DFA.

3.1. LOO-DFA simulation results

In this subsection, we compare the performance
of the LOO-DFA method with the traditional DFA
method. To make this comparison we use a process
known as Monte Carlo simulation.

Monte Carlo simulation is an approach that seeks
to find a populational parameter based on a signif-
icant sample. In our case, we will estimate the bias
parameter.

To investigate the LOO-DFA performance com-
pared to the traditional DFA method, we gen-
erate time series from fractional Gaussian noise
(FGN) models, with 100 replications and length
n € {1000, 5000, 10000, 15000}. Here, we adopt the
largest window as g(n) = [In(n)?]; see |15] for de-
tails. For each method, we calculate the empirical
values of the mean, the bias, the mean square error
(MSE), and the variance (Var) values. Tables I-IV
present the experiment results.
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TABLE I

New leave one out DFA compared with the traditional DFA, fractional Gaussian noise with length n = 1000.

Largest .
. Hurst Leave one out DFA Traditional DFA
window
exponent
g(n) Mean Bias MSE Var Mean Bias MSE Var
0.10 |0.169632179|0.069632179|0.004972196|0.000124804 |0.170018356 |0.070018356| 0.00502968 |0.000128393
0.15 ]0.210162786|0.060162786|0.003812454|0.000194841|0.210965187|0.060965187|0.003916466 | 0.000201729
0.20 |0.251784569|0.051784569|0.002953657|0.000274763 |0.253060705 | 0.053060705|0.003098374 | 0.000285794
0.25 ]0.294424126|0.044476698|0.002330928|0.000361036 | 0.29620223 |0.046264597|0.002507832|0.000376955
0.30 ]0.338003008|0.039011171|0.001891823|0.000452115|0.340289927|0.041183502|0.002090619 | 0.000472062
0.35 0.38242132 |0.035140492|0.001590635 | 0.000544942 | 0.385228294 | 0.037729622|0.001803823 | 0.000568475
0.40 ]0.427600344|0.032154136|0.001391903|0.000636489 |0.430927267 | 0.03509653 |0.001613928|0.000664073
0.45 ]0.473454447|0.029876695|0.001268712| 0.00072586 |0.477302938|0.033039273[0.001495101|0.000757223
I 5 0.50 0.519906437|0.028410436| 0.00119976 | 0.00081161 |0.524277938|0.031685127[0.001427694 (0.000846743
n(n) 0.55 ]0.566883982|0.027603171| 0.00116945 |0.000893314|0.571781586|0.030888562|0.001396953 |0.000931834
0.60 ]0.614323813|0.027363692|0.001165876|0.000970409 |0.619749898|0.030435598|0.001391914|0.001011975
0.65 0.66216876 |0.027665811|0.001180181|0.001042527{0.668125763|0.030426111|0.001404421|0.001086745
0.70 ]0.710370808|0.028187062|0.001204843|0.001108373|0.716860117| 0.03071319 |0.001428151|0.001155442
0.75 ]0.758898978|0.028668347|0.001234383| 0.00116686 | 0.76591772 | 0.03116731 |0.001457324|0.001216112
0.80 0.807762807|0.029024615|0.001260448 {0.001212309|0.815305769|0.031663722| 0.00148407 [0.001262428
0.85 ]0.858320267| 0.03381749 |0.001714681|0.001662075| 0.86670731 |0.036578122|0.002004313|0.001742604
0.90 ]0.907033676|0.034126624|0.001746118|0.001713783|0.915950668 | 0.036879297|0.002024431 |0.001787886
0.95 0.955951777|0.034286532|0.001775008 {0.001757156 |0.965404237|0.037136398 | 0.002041381 {0.001822314

TABLE II

New leave one out DFA compared with the traditional DFA, fractional Gaussian noise with length n = 5000.

Traditional DFA

Var

Mean

Bias

MSE

Var

Largest
window Hurst Leave one out DFA
exponent
g(n) Mean Bias MSE
0.10 |0.154747391|0.054747391|0.003021767
0.15 ]0.197836942|0.047836942| 0.00232913
0.20 [0.241813488(0.041813488(0.001807914
0.25 ]0.286604752|0.036604752|0.001420081
0.30 {0.332109084|0.032109084|0.001133167
0.35 0.37822876 | 0.02822876 [0.000921974
0.40 ]0.424883476|0.024957713|0.000767749
0.45 ]0.4719993170.022516378|0.000656162
| 5 0.50 0.51951038 [0.020968895|0.000576475
n(n) 0.55 0.567360045|0.019830949|0.000520595
0.60 |0.615498728| 0.01913246 |0.000482446
0.65 [0.663885883(0.018560489(0.000457576
0.70 0.712484178|0.018082363|0.000442528
0.75 ]0.761261516|0.017780921|0.000434951
0.80 0.81018874 [0.017699325|0.000433657
0.85 0.857220669 |0.016386888|0.000416016
0.90 [0.906746355(0.016337252(0.000417358
0.95 ]0.956412874|0.016254587|0.000419451

Figures 2-5 show the bias for the individual ex-

0.000024737
0.000041168
0.000060147
0.000080983
0.000103206
0.000126375
0.000150062
0.000173931
0.000197798
0.000221439
0.000244683
0.000267433
0.000289569
0.000311242
0.000333178
0.000367554
0.000375601
0.000382148

0.155052562
0.198414266
0.2427076
0.287817753
0.333639791
0.380079144
0.427051575
0.474482787
0.522307784
0.570470095
0.618920906
0.667618136
0.716525347
0.76561019
0.814841588
0.862187326
0.912028652
0.962012757

0.055052562
0.048414266
0.0427076
0.037817753
0.033639791
0.030079144
0.027091137
0.024678811
0.023207751
0.022181496
0.021427067
0.02096944
0.020652982
0.020403563
0.020229914
0.018176942
0.01817276
0.018241546

0.003055754
0.002385542
0.001884834
0.001512283
0.00123627
0.001032797
0.000883746
0.000775497
0.000697827
0.000643073
0.000605487
0.000580764
0.000565711
0.000558076
0.0005567
0.000519017
0.000522979
0.000529024

0.000025222
0.000042021
0.000061510
0.000082930
0.000105692
0.000129335
0.000153494
0.000177869
0.000202212
0.000226311
0.000249986
0.000273097
0.000295579
0.000317574
0.000339825
0.000374229
0.000382112
0.000388604

We can see that the LOO-DFA method presents

ecutions, the DFA method in the horizontal axis,
and the LOO-DFA method in the vertical axis.
We can see that most of the points are below the
identity line (gray line), indicating a lower bias
value for the LOO-DFA method. For n = 1000,
n = 5000, n = 10000, and n = 15000, 77.61%,
86.88%, 90%, and 93.5% of the executions, re-
spectively, showed a DFA bias greater than the
LOO-DFA bias.

the best performance compared to the traditional
DFA method. We can resort to the ANOVA test
to ensure a significant difference between method
performances; see [16] and [17] for details.

The results of this analysis show that there is
a significant difference between the LOO-DFA bias
when compared to the DFA bias. Table V shows
a p value less than 0.05, which means a difference
between the groups.
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TABLE III

New leave one out DFA compared with the traditional DFA, fractional Gaussian noise with length n = 10000.

Largest
window Hurst Leave one out DFA Traditional DFA
exponent

9(n) Mean Bias MSE Var Mean Bias MSE Var
0.10 0.14847571 | 0.04847571 |0.002366881|0.000017158|0.148754658 |0.048754658(0.002394289|0.0000174471
0.15 |0.191958353|0.041958353|0.001789245|0.000029032| 0.19247952 | 0.04247952 |0.001833765|0.0000295508
0.20 |0.236371835|0.036371835|0.001365115|0.000042631 |0.237164892|0.037164892|0.001424273|0.0000434782
0.25 |0.281618247(0.031618247|0.001056593 |0.000057454 |0.282687201|0.032687201|0.001126496 | 0.000058630
0.30 {0.327591805|0.027591805|0.000833591 |0.000073013 | 0.328934400|0.028934400 | 0.000910999 | 0.000074545
0.35 |0.3741915690.024214199|0.000673336 | 0.000088994 | 0.375806297|0.025806297 | 0.000755923 | 0.000090867
0.40 |0.421329026|0.021588285|0.000559018 |0.000105143|0.423214337|0.023412759|0.000645148 | 0.000107316
0.45 |0.468927727(0.019474147|0.000478240|0.000121193|0.471080994 |0.021532355 | 0.000566844 | 0.000123672

In(n)? 0.50 |0.516919489{0.017786878|0.000421916|0.000137017|0.519338920|0.020052287|0.000512361 | 0.000139764
0.55 0.565245525|0.016486940|0.000383378(0.000152477|0.567929941 |0.018905322|0.000475388 | 0.000155460
0.60 |0.613855530(0.015677813|0.000357762|0.000167461|0.616803899|0.018052666 | 0.000451323| 0.000170659
0.65 0.662706797|0.015230659|0.000341516{0.000181872|0.665917243|0.017547238|0.000436788 | 0.000185283
0.70 |0.711759932{0.014981687|0.000331962|0.000195623|0.715230870|0.017273016 | 0.000429238 | 0.000199251
0.75 0.760975126|0.014852554 1 0.000326944 | 0.000208577 |0.764705720|0.017174421|0.000426559 | 0.000212425
0.80 |0.810301426{0.014761404|0.000324294 |0.000220378|0.814291072|0.017141093|0.000426434 | 0.000224443
0.85 [0.8582090690.012727241|0.000270590|0.000205254 | 0.862441356 | 0.014866938|0.000361170| 0.000208467
0.90 |0.907835716(0.012782651|0.000276950|0.000217728|0.912319327|0.015000363 | 0.000370455 | 0.000220898
0.95 ]0.957574223|0.012987327|0.000285562|0.000230498 |0.962307902|0.015179477|0.000382819| 0.000233671

TABLE IV

New leave one out DFA compared with the traditional DFA, fractional Gaussian noise with length n = 15000.

Largest .
window Hurst Leave one out DFA Traditional DFA
exponent
g(n) Mean Bias MSE Var Mean Bias MSE Var

0.10 |0.145836997|0.045836997|0.002113188|0.000012280|0.146075016|0.046075016 |0.002135204 |0.000012421
0.15 0.18966781 | 0.03966781 [0.001594057 [0.000020729|0.190120623|0.040120623|0.001630431 |0.000020977
0.20 |0.234391315|0.034391315{0.001212722|0.000030262|0.235085422|0.035085422|0.001261316 |0.000030635
0.25 {0.279914771|0.029914771|0.000934940 |0.000040451 | 0.280846270|0.030846270|0.000992020 | 0.000040937
0.30 {0.326123363|0.026123363|0.000732872|0.000050951 |0.327292611|0.027292611|0.000795927|0.000051556
0.35 {0.372920694 |0.022920694 | 0.000586262 | 0.000061519|0.374326500|0.024326500 | 0.000653417 | 0.000062261
0.40 |0.420219405|0.020276411|0.000480132|0.000072028|0.421862123|0.021896263|0.000550112|0.000072888
0.45 |0.467946019|0.018107776|0.000403580 [0.000082344 | 0.469824989|0.019934439|0.000475521 |0.000083324

In(n)? 0.50 |0.516036796|0.016342081 |0.000348635 |0.000092380|0.518150945|0.018390687|0.000422013|0.000093491
0.55 |0.564436984|0.014900823|0.000309490 |0.000102085|0.566785122|0.017142207|0.000384043|0.000103336
0.60 |0.613100436|0.013826350|0.000281944 0.000111437|0.615680923|0.016148801|0.000357585|0.000112822
0.65 |0.661987278|0.013022499|0.000262907 |0.000120416|0.664799145|0.015468195|0.000339717|0.000121922
0.70 |0.711065201|0.012454252{0.000250120|0.0001289710.714107423|0.014960195|0.000328313|0.000130600
0.75 |0.760309094|0.012033125|0.000241937|0.000137030|0.763580484|0.014633589|0.000321817|0.000138775
0.80 0.809703994|0.011805027|0.000237091 {0.000144367|0.813202831|0.0144551080.000319073|0.000146221
0.85 |0.857428248|0.010611263|0.000194738[0.0001409690.861205610|0.013107460|0.000268281|0.000144157
0.90 0.907061755|0.010702423|0.0001978440.000149470|0.911068167|0.013178433|0.000273977|0.000153003
0.95 [0.956798307|0.010903995 |0.000202965 |0.000158332|0.961033938|0.013319697|0.000282301 |0.000162175

ANOVA considering LOO-DFA and DFA bias. Here df stands for degrees of freedom. TABLE V
Source of variation Sum of squares df Mean squares F Sig
Between the groups 0.014 1 0.013958 41.89 9.99 x 107"
Within the groups 4.798 14398 0.000333
Total 4.812 14399
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Here, we consider the bias for all Hurst exponents
that generate the consolidated data in Table I, that
is, 18000 points representing the 100 replications
for each of the 18 estimates for the Hurst exponent
(which range from 0.10 to 0.95, considering a step
of 0.05).

LOO-DFA
0.03 0.04 0.05 0.06
| 1

0.02
1

0.01
1

0.00
|

T T T T T T T
0.00 0.01 0.02 0.03 004 0.05 0.06

DFA

Fig. 3. Bias value for each execution, n = 5000.
Here, we consider the bias for all Hurst exponents
that generate the consolidated data in Table II, that
is, 18000 points representing the 100 replications
for each of the 18 estimates for the Hurst exponent
(which range from 0.10 to 0.95, considering a step
of 0.05).
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Electrocardiogram denoising results. TABLE VI
Standard
.. Mean squared error average Mean squared error variance
deviation
of noise " gy reShirink Universal | NR-LOO-DFA SureShirink Universal NR-LOO-DFA
0.025 0.000271374 | 0.001306042 | 0.000254775 | 0.000000000759 | 0.000000008046 | 0.000000000402
0.050 0.000945719 | 0.003674543 | 0.000900410 | 0.000000008110 | 0.000000081021 | 0.000000004751
0.075 0.001879179 | 0.006591046 | 0.001865236 | 0.000000037633 | 0.000000250311 | 0.000000023306
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Fig. 2. Bias value for each execution, n = 1000. Fig. 4. Bias value for each execution, n = 10000.

Here, we consider the bias for all Hurst exponents
that generate the consolidated data in Table III,
that is, 18000 points representing the 100 replica-
tions for each of the 18 estimates for the Hurst ex-
ponent (which range from 0.10 to 0.95, considering
a step of 0.05).

0.03
|

LOO-DFA

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

DFA

Fig. 5. Bias value for each execution, n = 15000.
Here, we consider the bias for all Hurst exponents
that generate the consolidated data in Table IV,
that is, 18000 points representing the 100 replica-
tions for each of the 18 estimates for the Hurst ex-
ponent (which range from 0.10 to 0.95, considering
a step of 0.05).



Leave One Out Detrended Fluctuation Analysis

TABLE VII
ANOVA considering NR-LOO-DFA, SureShrink and Universal mean squared errors. Here df stands for degrees
of freedom.
Source of variation Sum of squares df Mean squares F Sig
Between the groups 0.0016 2 0.001 423 2.6 x 107130
Within the groups 0.0017 897 1.9x107°
Total 0.0033 899
z 3.2. NR-LOO-DFA simulation results
= () —
—_— This subsection presents the simulation results
e — for the method NR-LOO-DFA. This simulation uses
= synthetic ECG signals corrupted by additive white
Gaussian noises (AWGN) with standard deviations
w S of 0.025, 0.050, and 0.075. We compare NR-LOO-
2 2 DFA with the SureShrink and Universal wavelet
- shrinkage methods. Table VI shows the simulation
g results taking into account the average and vari-
°© . ° ance of the mean squared error of the denoising
| : | |'—" | processes. For each standard deviation, we generate
= : one hundred AWGN noises. Figure 6a, 6b and 6c¢
; : | shows the box plot for each method considering
NR-LOO-DFA  SureShrink UNIVERSAL the standard deviations 0.025, 0.050, and 0.075,
Method
3 | JE— z _
= — 3 31
S : é P :<a)‘ y !
e < T T T T T
0 1 2 3 4
S Time [s]
wog .
%) E 1!
P 3 _'_ < < _<b)| — — — T
b ! — 0 1 2 3 4
I:I R— Time [s]
T T T
NR-LOO-DFA SURE UNIVERSAL Fig. 7. (a) Simulation of a noisy signal (gray) and
Method a clean signal (black). (b) Noisy signal smoothed by
2 the NR-LOO-DFA method with a synthetic ECG
g @ ; signal.
= — ) -
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S 2 o o« P e
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NR-LOO-DFA SURE UNIVERSAL S e s .
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0.00022 0.00026 0.00030 0.00034
Fig. 6. Box plot considering a noice standard de- SureShrink
viation equal to (a) 0.025, (b) 0.050 and (c) 0.075
(see Table VI). Fig. 8. MSE value for each execution, sd = 0.025.
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Fig. 9. MSE value for each execution, sd = 0.050.
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Fig. 10. MSE value for each execution, sd = 0.075.

respectively. Figure 7 shows an example of ECG
noise reduction using the NR-LOO-DFA method.
The analysis of variance presented in Table VII
shows significant differences between the groups
since the p value is less than 0.05.

Figures 8-10 show MSE for individual executions,
the SureShrink method on the horizontal axis, and
the NR-LOO-DFA method on the vertical axis. We
can see that most of the points are below the iden-
tity line (gray line), indicating a lower MSE value
for the NR-LOO-DFA method. For sd = 0.025,
sd = 0.050, and sd = 0.075, respectively 82%, 70%,
and 51% of executions showed SureShrink MSE big-
ger than NR-LOO-DFA MSE.

4. Conclusions

Here, we presented a new estimation method for
Hurst’s exponent (i.e., LOO-DFA) and a new ECG
denoising method (i.e., NR-LOO-DFA).

Variance analysis and individual performance
verification show that the LOO-DFA method
presents a better performance compared to the tra-
ditional DFA method.

54

Regarding the ECG denoising context, we ob-
served, by Monte Carlo simulation, that the
NR-LOO-DFA method outperforms the SureShrink
and Universal wavelet shrinkage methods, which are
two methods already established in the denoising
literature.

We also verified this best performance of the
NR-LOO-DFA method using boxplot graphics and
individual performance verification in each execu-
tion.

These results reinforce our point of view about
the possibility of using these methods in research
areas of the long-range dependence analysis and the
ECG signal denoising.
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