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We present nonrelativistic frozen-core and fully-correlated configuration interaction calculations for the
ground and lowest excited terms of N+(3P and 1D) and N(4So and 2Do) belonging to the 2s22pn

configuration with n = 2 and n = 3 for N+ and N, respectively. Both the a priori selected configuration
interaction with truncation energy error and configuration interaction by parts techniques are employed
to manage the wave function expansion and to handle the configuration interaction eigenvalue prob-
lem, respectively. Systematic comparisons between the frozen-core and fully-correlated configuration
interaction energies and the corresponding excitation energies and the related ionization potential con-
vergence with respect to the configuration interaction excitation level are reported. Comparison of our
results for the total nonrelativistic energies, excitation energies, and ionization potential displays good
improvement over previous theoretical results and very good agreement with the experiment.
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1. Introduction

Recently, one of us [1] has calculated excitation
energies, ionization potential, and binding energies
related to the ground state and the two lowest ex-
cited states belonging to P+, P, and P−, using
nonrelativistic and relativistic configuration inter-
action (CI) method. From both chemical and phys-
ical points of view, both N and P have the same
ns2np3 valence shell electron configuration and,
consequently, the same term multiplet. On the other
hand, emission lines of N-like ions are highly ben-
eficial for diagnosing the temperature, density, and
composition of solar, astrophysical, and fusion plas-
mas [2]. In order to interpret their line intensity ra-
tios, an accurate atomic parameter such as energy
levels, ionization potentials, transition probabilities,
and collision strengths is required. Calculation of
the heat of various reactions and physical changes
requires the determination of the ionization poten-
tial, which is an important issue for both theoretical
and experimental interests. In this work, the nonrel-
ativistic CI method has been utilized to report that
both the ground 3P term and the lowest excited 1D
term belong to the 2s22p2 configuration of N+, and
both the ground 4So term and the lowest excited
2Do term belong to the 2s22p3 configuration of N.
In Sect. 2, we review the main features of the nonrel-
ativistic CI theory. In Sect. 3, we give an outline of
the frozen-core approximation employed to reduce
the large CI expansion. Section 4 deals with the con-

struction of atomic orbitals in terms of a primitive
function set, while Sect. 5 displays and discusses
the present results. Finally, the conclusions are pre-
sented in Sect. 6.

2. Outline of CI theory

In the nonrelativistic CI method, an atomic
bound state labeled µ and carrying total orbital
angular momentum L and total spin S, as well as
a given parity, can be described by the wave func-
tion Ψµ expressed as [3–5]

Ψµ =

Kx∑
K=1

gK∑
g=1

FgK CgK , (1)

where FgK is the many-electron basis functions re-
ferred to as configuration state functions (CSFs).
Now FgK can be expressed as a successively orthog-
onalized linear combination of nK Slater determi-
nants DiK , obtained upon applying the symmetric
projection operator O(Γ , γ) [6]. Therefore,

FgK = O(Γ , γ)

g∑
i=1

DiK b
g
i =

nK∑
i=1

DiK c
g
i , (2)

where Γ is the pertinent symmetry for either L2

or S2 operators for a given irreducible representa-
tion γ. The indexes K and g are labels of configura-
tion and degenerate element, respectively. The set
of all excited FgK formed by the set of all ordered
configurations differing just in the labels of the cor-
relation orbitals of each irreducible representation is
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called a subclass, while the set of subclasses that re-
main invariant upon nonsingular transformations of
the correlation orbitals is called a class [7]. Within
a subclass, the bgi and cgi coefficients in (2) are the
same — in magnitude and sign.

The matrix representation of Schrödinger’s equa-
tion obtained upon variation of the total energy
with respect to expansion coefficients Cµ is

HCµ = EFCI
µ Cµ, (3)

where H is the representation of the Hamiltonian
operator in terms of CSFs or Slater determinants
constructed from a given orbital basis set, Cµ is the
variational expansion vector, and EFCI

µ is the full CI
(FCI) energy. The nonrelativistic energy Enrµ (exact
eigenvalue of Schrödinger’s equation) is related to
EFCI
µ through the relation [8]

Enrµ = EFCI
µ + ∆EOBI

µ + ∆ECI
µ , (4)

where ∆EOBI
µ is the error due to orbital basis incom-

pleteness (OBI) [9], and ∆ECI
µ represents the error

due to any simplification of the frozen-core CI (FCI)
computation effected in the evaluation of Enrµ [10].
Calculation of FCI energy, even with a small sys-
tem, is computationally difficult due to the huge CI
size. Therefore, the FCI space should be reduced in
some way to, hopefully, handle the corresponding CI
eigenvalue problem. To manage large CI wave func-
tion, we use the following procedure. First, a priori
selected CI (SCI) with truncation energy error [11]
takes place to reduce the CI size; however, the re-
sulting CI space may still be too huge for tradi-
tional CI and needs to be further truncated into
a selected space (S-space). Second, we perform CI
by parts (CIBP) [12] in which the S-space is par-
titioned into several subspaces (S0, S1, S2,. . . , Sr)
of different dimensions (d0, d1, d2,. . . , dr), respec-
tively. All CI coefficients in the reference space S0
are always variational, and all other subspaces Si,
i = 1, 2, . . . , r will be taken up variationally one af-
ter the other. The theoretical basis of a priori SCI
with truncation energy error and CIBP has been
widely discussed elsewhere [11, 12], and we will not
go into its details here.

3. Frozen-core approximation

The highly correlated CI method (i.e., CI wave
function expansion includes CSFs beyond singles
and doubles excitations) suffers from exponentially
increasing of CSFs as successively higher excitations
from the reference configuration are included, par-
ticularly so in cases in which the FCI calculation
could be performed. This is the main factor proba-
bly hindering comprehensive CI calculations of elec-
tronic wavefunctions with large basis sets. In prac-
tice, however, it may, hopefully, be more convenient
to reduce the number of CSFs in the CI expansion
to reduce the computational cost. The CI size re-
duction can be performed by assuming that the in-
active core orbitals are frozen “or fixed.” In fact, the

advantage of the frozen-core approximation is that
it reduces not only the number of CSFs, but also the
computational effort required to evaluate the matrix
elements associated with the remaining CSFs. In the
frozen-core approximation, the lowest-lying atomic
orbitals, occupied by the inner-shell electrons, are
constrained to remain doubly-occupied in all con-
figurations. A justification for this approximation
is that the inner-shell electrons of an atom are less
sensitive to their environment than the valence elec-
trons. Nevertheless, the correlation effects involving
the electrons in the low-lying core orbitals are ne-
glected. As a result, when transitioning from fully
correlated CI (no frozen-core) to frozen-core calcu-
lation, core–core and core–valence correlations are
no longer considered. Frozen-core CI calculations
can be performed practically by allowing only suc-
cessful CSFs outside He, Ne, Ar,. . . to generate. The
accuracy and efficiency of this approximation are
well controlled by a single parameter, i.e., the num-
ber of frozen orbitals. In fact, there are two main
reasons to employ the frozen-core approximation.
The first is that most of the basis sets commonly
used in ab initio calculations do not provide suffi-
cient flexibility in the core region to accurately de-
scribe the correlation of the core electrons [13]. The
second reason is motivated by the fact that many
experimental observables are related to energy dif-
ferences, i.e., ionization potential, electron affinity,
etc. However, the errors resulting from this approxi-
mation are generally comparable to those associated
with basis set incompleteness.

4. One-electron basis set

A bound electron’s wave function φi`mms (x) can
be written as a product of a radial function Ri`,
normalized spherical harmonics Y`m(θ, ϕ) [14], and
the usual spin function δms(ω) describing the state
of the electron (ms = ±12), i.e.,

φi`mms
(x) = Ri`(r)Y`m (θ, ϕ) δms

(ω) , (5)
where x indicates both space (r, θ, ϕ) and spin (ω)
coordinates, respectively. Here Ri` is chosen to be
a linear combination of energy-optimized Slater-
type orbitals (STOs) Sj` [7],

Ri` =
∑
j

Sj` aj`i, (6)

Sj` =
(2ζj`)

(nj`+
1
2 )√

(2nj`)!
r(nj`−1) exp (−ζj`r) , (7)

where n is the principal quantum number, aj`n
is the orbital expansion coefficient, and ζj` is the
nonlinear parameter orbital exponent. In our cal-
culation, two types of nonrelativistic CI calcula-
tions were performed. The first one is the CI cal-
culation of the valence energy, in which the core-
correlation effect is neglected (frozen-core approxi-
mation). The second type of CI calculation is the
fully-correlated energy, in which all electron corre-
lation contributions within a certain basis set are
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TABLE I

Number of STOs per orbital symmetry for N+(2s22p2) 3P and 1D states in both frozen-core and fully-correlated
calculations at the CISD level of approximation.

Approximation Term Basis set composition No. of STOs

frozen-core
3P 10s 9p 6d 5f 5g 4h 4i 3k 2l 2m 1n 51
1D 10s 9p 7d 6f 5g 5h 4i 3k 3l 2m 2n 56

fully-correlated
3P 9s 8p 6d 4f 2g 1h 1i 31
1D 9s 8p 6d 5f 2g 2h 1i 33

TABLE II

Number of STOs per orbital symmetry for N(2s22p3) 4So and 2Do states in both frozen-core and fully-correlated
calculations at the CISD level of approximation.

Approximation Term Basis set composition No. of STOs
frozen-core 4So 10s 9p 7d 6f 5g 5h 4i 3k 3l 2m 1n 55

2Do 11s 9p 8d 7f 5g 5h 4i 4k 3l 3m 2n 61
fully-correlated 4So 8s 8p 6d 5f 2g 2h 1i 32

2Do 9s 8p 6d 5f 3g 2h 1i 34

taken into account. In both cases, N+(3P, 1D) and
N(4So, 2Do), the orbitals 1s and 2s are initially
represented by 7 STOs of the s-type, while the
2p orbital is represented by 5 STOs of the p-type.
This basis set is composed to satisfy the Hartee–
Fock (HF) energy [15] of the considered state. For
each irreducible representation (irrep), a new STO
is introduced in the form of a set of trial primi-
tives (Nt). Optimization process of Nt trial prim-
itives in the sense of obtaining the lowest energy
is at CI limited to single (S) and double (D) exci-
tations (CISD) level of approximation. Thereafter,
the orbital space of the wave function is expanded
by including all possible CSFs at SD excitations
outside the He core, up to the orbital harmonic
` = 10. The STOs basis is automatically optimized
until saturation is reached within a prescribed en-
ergy threshold decrement (cut-off = 20 µhartree),
and one can reach reasonable convergence for a cer-
tain type of orbital symmetry. It should be noted
that only CSFs interacting with their correspond-
ing reference configuration (HF configuration) are
involved during automatic optimization. These “HF
interacting spaces” [7] yield the largest contribu-
tions to the correlation energy as well as reduce the
CPU time for automatic optimization. Likewise, the
fully-correlated CI calculations employed the same
initial STOs basis as the frozen-core CI calculations
except for the fact that automatic optimization was
performed on configuration lists including all pos-
sible CSFs at SD excitations up to the orbital har-
monic ` = 6, within the prescribed energy threshold
decrements (cut-off = 400 µhartree). Eventually,
the automatic optimization ended with a basis set of
energy-optimized STOs, later to be used to compute
the corresponding variational upper bound for both
valence correlation and fully-correlated CI energies
up to triple (T) excitations (CISDT), quadruple

(Q) excitations (CISDTQ), quintuple (Qn) excita-
tions (CISDTQQn), sextuple (Se) excitations (CIS-
DTQQnSe) and septuple (Sp) excitations (CIS-
DTQQnSeSp).

In this investigation, we maintain a systematic
procedure for the CI calculation in which each exci-
tation level incorporates the same maximum orbital
harmonic for each state. Table I presents the num-
ber of energy-optimized STOs per each orbital sym-
metry (column 3), for each term (column 2) of N+

and for both frozen-core and fully-correlated (col-
umn 1) CI calculations. The energy optimization of
the ground 3P term is finished with 51 and 31 STOs
for valence correlation and fully-correlated CI cal-
culations, respectively. The excited 1D term takes
relatively higher additional STOs of 56 and 33 for
frozen-core and fully-correlated CI calculations, re-
spectively.

Similarly, Table II represents the counterpart of
Table I for the ground 4So and excited 2Do terms
of N. The energy-optimized STOs for both 4So and
2Do terms proceed in a similar manner to both
3P and 1D terms of N+. However, both 4So and
2Do terms reported more additional STOs per or-
bital symmetry in each of the frozen-core and fully-
correlated approaches with respect to 3P and 1D
terms of N+.

5. Results and discussion

In this section, we will report the results of
nonrelativistic CI calculations carried out into two
schemes: the first is the frozen-core, in which CI ex-
pansion includes CSFs generated from outside He
core orbitals up to quadruple and quintuple ex-
citation levels for both N+(2s22p2) 3P , 1D and
N(2s22p3) 4So,2Do terms, respectively. The second
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TABLE III

Angular momentum-energy convergence for 3P and 1D terms of N+(2s22p2). Valence energies E [hartree] and
energy-convergence ∆E [µhartree].

` E(3P ) ∆E No. of CSFs E(1D) ∆E No. of CSFs
1 −53.93503510467438 634 −53.85521500207359 434

2 −53.98639128024172 −51356.18 1291 −53.91025400035096 −55039.00 1274

3 −53.99273979911247 −6348.51 1781 −53.92189469731616 −11640.69 2168

4 −53.99418343616381 −1443.64 2196 −53.92417626570334 −2281.57 2853

5 −53.99469434932637 −510.91 2490 −53.92496505753687 −788.79 3458

6 −53.99492152773623 −227.18 2760 −53.92530794452659 −342.89 3882

7 −53.99503259019177 −111.07 2934 −53.92547333404052 −165.39 4158

8 −53.99508652347738 −53.93 3027 −53.92556443555691 −91.1 4392

9 −53.99511820422974 −31.68 3100 −53.92561078422519 −46.35 4520

10 −53.99513137119369 −13.17 3127 −53.92563941720704 −28.63 4630

TABLE IV

Angular momentum-energy convergence for 3P and 1D terms of N+(2s22p2). Total energies E [hartree] and
energy-convergence ∆E [µhartree].

` E(3P ) ∆E No. of CSFs E(1D) ∆E No. of CSFs
1 −53.97954587954785 1811 −53.89979705822890 1061
2 −54.03875556762288 −59209.69 3914 −53.96242392874697 −62626.80 2933
3 −54.04633508371431 −7579.52 5200 −53.97537804031013 −12954.12 4943
4 −54.04772902429686 −1393.94 5643 −53.97757913427841 −2201.09 5591
5 −54.04810174993989 −372.72 5775 −53.97830252560567 −723.39 6101
6 −54.04825762428462 −155.88 5855 −53.97852968136614 −227.16 6247

scheme will concern fully-correlated CI calculations
in which all possible generated CSFs up to sextuple
and septuple excitation levels are taken into account
for both N+(2s22p2) 3P , 1D and N(2s22p3) 4So,
2Do terms, respectively.

5.1. The 3P and 1D terms of N+(2s22p2)

Table III shows the angular momentum-energy
pattern of convergence and the corresponding num-
ber of CSFs calculated for frozen-core CI calculation
of the ground 3P and excited 1D terms belonging to
N+(2s22p2) at SD excitation level of approximation
up to ` = 10.

The 3P term shows a faster energy convergence
pattern with respect to the 1D term; this result is
confirmed in Fig. 1, where the 3P term displays the
lowest number of determinants relative to the 1D
term. At the CISD level, however, the number of
CSFs of the 3P term still exceeds that of the 1D
term for ` ≤ 2 at the CISD level.

Similarly, Table IV represents the counterpart of
Table III for fully-correlated CI calculation at SD
excitation levels up to ` = 6. The 3P term contin-
ues to exhibit faster energy convergence, with a sig-
nificantly increasing number of CSFs up to ` = 6.
Furthermore, a comparison of Tables III and IV

Fig. 1. Energy convergence of the ground 3P and
exited 1D terms of N+ with respect to number of
determinants (logarithmic scale).

at ` = 6 reveals a shift from frozen-core to fully-
correlated CI calculation increased the number of
CSFs by approximately 53% and 38% for 3P and
1D terms, respectively.
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TABLE V

Valence energies (in hartree) and valence correlation energy ∆E [µhartree] of 3P and 1D terms of N+(2s22p2),
at different CI excitation levels, and the corresponding contributions to excitation energy EE(1D−3P ) [cm−1]
compared with experiment.

Approximation E(3P ) ∆E E(1D) ∆E EE(1D − 3P )
HF(numerical) −53.88800498 −53.80740693 17689.277

HF −53.8880044114 −53.8074059169 17689.325

CISD −53.9951313711 107126.960 −53.9256394172 118233.500 15251.721

CISDT −53.9962289088 1097.538 −53.9269202447 1280.828 15211.493

CISDTQ −53.9962912298 62.321 −53.9270429547 122.71 15198.240

∆EOBI −0.000057756 −0.000093043 -7.745

Enr (this work) −53.9963489858 −53.9271359977 15190.495

Experimenta 15316.2
a Ref. [17]

TABLE VI

Total energies (in hartree) and correlation energy ∆E [µhartree) of 3P and 1D terms of N+(2s22p2), at different
CI excitation levels, and the corresponding contributions to excitation energy EE(1D − 3P ) [cm−1] compared
with best previous work and experiment.

Approximation E(3P ) ∆E E(1D) ∆E EE(1D − 3P )

HF(numerical) −53.88800498 −53.80740693 17689.277
HF −53.8880044114 −53.8074059169 17689.325
CISD −54.0482576243 160253.213 −53.9785296814 171123.765 15303.514
CISDT -54.0503485226 2090.898 −53.9807302257 2200.544 15279.450
CISDTQ −54.0512891862 940.664 −53.9818469741 1116.748 15240.804
CISDTQQn −54.0512900535 0.867 −53.9818484077 1.434 15240.680
CISDTQQnSe −54.0512900953 0.042 −53.9818485288 0.121 15240.662
∆EOBI −0.000168266 −0.000209976 −9.154

Enr (this work) 54.0514583613 −53.9820585048 15231.508
Enr, a −54.04674 −53.97732 15235.929
Experimentb 15316.2
aRef. [21]; bRef. [17]

Eventually, the values of the angular momentum-
energy pattern can be used to deduce the effect of
truncation of the virtual correlation space, which
can be represented by the orbital basis incomplete
error ∆EOBI, obtained as an extrapolation of both
the valence and total CISD energy up to ` = 400, as
a function of the angular momentum of the energy
functional,

∆E (`) =
∑
i

[
Ei (`) − Epatti (`)

]2
, (8)

where Epatti is based on Schwartz’s law [16] given
by

Epatti (`) = a0 (`+ δ)
−4
, (9)

where a0 and δ are adjustable parameters.

The reason for carrying out extrapolation, par-
ticularly at the CISD level, comes from the fact
that the CISD wave function is dominant, leading
to maximum energy correlation contribution among
other CI excitation levels. In Table V, we present

the valence CI energies at different excitation lev-
els up to SDTQ excitation of approximation for 3P
and 1D terms of N+(2s22p2) and the correspond-
ing contribution to the excitation energy EE(1D–
3P ). Also, we show the valence correlation energy
contributions (columns 3 and 5 for 3P and 1D, re-
spectively) for each excitation level, calculated as
follows: for CISD, it is equal to the difference be-
tween the CISD energy and the HF energy; for
CISDT, it is equal to E(CISDT)−E(CISD), and so
on. Furthermore, in Table V, we listed two values of
HF energies for comparison, calculated in two dif-
ferent approaches. The first approach uses a pro-
gram developed by C. Froese Fischer [18] based
on a solution of the HF equation that uses a nu-
merical basis set. The other approach uses Brown’s
formula [19],

∆EgK = (E −HgK,gK)
C2
gK(

1 − C2
gK

) . (10)

320



Frozen-Core versus Fully-Correlated Configuration Interaction. . .

TABLE VII

Angular momentum-energy convergence for 4So and 2Do terms of N(2s22p3). Valence energies E [hartree] and
energy-convergence ∆E [µhartree].

` E(4So) ∆E No. of CSFs E(2Do) ∆E No. of CSFs
1 −54.44786015516434 453 −54.34643593039574 968

2 −54.51253533805678 −64675.18 866 −54.41632622100514 −69890.29 3332

3 −54.52267134480346 −10136.01 1175 −54.43228850902040 −15962.28 6139

4 −54.52485088131397 −2179.54 1395 −54.43562025739601 −3331.75 8069

5 −54.52560525931290 −754.37 1590 −54.43672916709740 −1108.91 9714

6 −54.52593071712582 −325.46 1732 −54.43720131932312 −472.15 10836

7 −54.52608614094897 −155.43 1819 −54.43743790218403 −236.59 11818

8 −54.52617147169921 −85.33 1891 −54.43756044880467 −122.54 12463

9 −54.52621474427465 −43.27 1932 −54.43763255115464 −72.11 13030

10 −54.52623234033580 −17.6 1946 −54.43767022664217 −37.67 13351

Note that (10) can only be applied after CISD cal-
culation has been completed. The purpose of the
comparison between both HF values is to guaran-
tee that our calculated HF energy reaches the HF
limit. The agreement of both HF values up to six
significant figures confirms the quality of our em-
ployed basis. We see that the HF energies account
for 99.8% of the nonrelativistic valence CI energies
for both 3P and 1D terms. On the other hand, the
valence correlation energy contribution at the CISD
excitation level recovers the majority contribution
of the valence correlation energy of 98.9%, 1% for
CISDT, and 0.06% for CISDTQ of the 3P term.
This is a consequence of what is called Brillouin’s
theory [20]. One can expect that doubly excited de-
terminants provide the leading and most important
correlation contribution to HF energy. However, one
should mention that singles, triples, and quadruples
could have contributed to the valence correlation
energy through indirect interaction with HF deter-
minants through mixing with the doubly excited de-
terminants. For the excited 1D term, although the
valence correlation energy contribution for different
CI excitation levels behaves in the same spirit as the
ground 3P term, there is, however, a little bit of in-
crement on both the CISDT and CISDTQ energy
contributions.

Table VI displays the counterpart of Table V for
fully-correlated CI calculations, where the total CI
energy is illustrated by systematically increasing the
excitation level up to SDTQQnSe with the corre-
sponding contribution to the excitation energy.

We can see that the correlation energy contri-
butions for CISDTQQn and CISDTQQnSe clearly
converge roughly below 1 µhartree, at least for the
3P term, whereas it is only a little bit above the
1 µhartree for 1D term. On the other hand, the con-
vergence of the excitation energy from CISDTQ to
CISDTQQnSe stabilized at 15240 cm−1. As a con-
sequence, limiting the maximum excitation level to
about a quintuple is usually sufficient to get fairly

good accuracy. Our nonrelativistic energy is com-
pared with the best previous nonrelativistic ener-
gies [21] for the 3P and 1D terms and the corre-
sponding ionization potential, as well as with the
experiment [17].

To the best of our knowledge, our upper bound
energies for 3P and 1D terms of N+, calculated
at CISD, CISDT, CISDTQ, CISDTQQn, and CIS-
DTQQnSe, are the best among available published
results.

In both Tables V and VI, we also give ∆EOBI,
which we eventually combine with the correspond-
ing CI energy associated with the maximum excita-
tion CI level (full CI energy EFCI) to get the non-
relativistic energies Enr of both frozen-core (Ta-
ble V) and fully-correlated CI (Table VI) calcu-
lations. A comparison of both nonrelativistic va-
lence and total energies in Tables V and VI, re-
spectively, reveals that the fully-correlated CI cal-
culations yield an estimation for excitation energy
closer to the experiment than the frozen-core ap-
proximation by about 41 cm−1. However, even with
taking core-correlation and core–valence contribu-
tions [1] into account, the nonrelativistic theory is
not always sufficient to achieve better agreement
with the experiment. The relativistic effect is ex-
pected to be rigorous. According to spectroscopic
data [17], the ground 3P term has three levels that
appear, with J = 0, 1 and 2, respectively. The corre-
sponding state associated with the excited 1D term
is J = 2. Thus, excitation energy should be taken
as EE(1D − 3P ) = EE(1D2 − 3P0).

According to recently published results [1] on
phosphorus and two of its ions, both P and P+ pos-
sess an electronic structure similar to N and N+,
respectively. A relativistic correction contribution
to the excitation energy EE(1D2 − 3P0) of P+ is
reported to be 344 cm−1. However, according to
preliminary relativistic calculations, we expect that
the relativistic contribution to the EE(1D2 − 3P0)
of N+ will not exceed 100 cm−1.
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TABLE VIII

Angular momentum-energy convergence for 4So and 2Do terms of N(2s22p3). Total energies E [hartree] and
energy-convergence ∆E (µhartree].

` E(4So) ∆E No. of CSFs E(2Do) ∆E No. of CSFs
1 −54.49257869126328 1053 −54.39141141736441 2143
2 −54.56586373010639 −73285.04 2028 −54.46939860404672 −77987.19 6223
3 −54.57743846301825 −11574.73 2763 −54.48663363674719 −17235.03 10733
4 −54.57953202089847 −2093.56 2960 −54.49002138638421 −3387.75 13160
5 −54.58022034510598 −688.32 3097 −54.49102318563767 −1001.8 14396
6 −54.58043570767940 −215.36 3136 −54.49132914093828 −305.96 14801

TABLE IX

Valence energies (in hartree) and energy-convergence ∆E [µhartree] of 4So and 2Do terms of N(2s22p3), at
different CI excitation levels, and the corresponding contributions to excitation energy EE(2Do − 4So) [cm−1]
compared with experiment.

Approximation E(4So) ∆E E(2Do) ∆E EE(2Do − 4So)

HF(numerical) −54.40093419 −54.29616933 22993.229
HF −54.4009341541 −54.2961668390 22993.768
CISD −54.5262323403 125298.186 −54.4376702267 141503.388 19437.137
CISDT −54.5292463335 3013.993 −54.4415659898 3895.763 19243.611
CISDTQ −54.5297735272 527.194 −54.4423357925 769.803 19190.364
CISDTQQn −54.5297827086 9.1814 −54.4423515685 15.776 19188.917
∆EOBI −0.000072963 −0.000086894 −3.058

Enr (this work) −54.5298556716 −54.4424384625 19185.860
Experiment b 19224.464
aRef. [17]

In Fig. 1, we plot the convergence of both the
valence and total energies of the ground 3P and
excited 1D terms of N+(2s22p2) as a function of
the number of determinants, although the total en-
ergy is shifted much lower than that of the corre-
sponding valence energy for both 3P and 1D terms.
The energy shift between valence and total energy
can be interpreted as the core–core and core–valence
energy correlation contributions. Furthermore, the
sharp drop in CI energies is restricted to the region
in which the number of determinants corresponds
to SD excitation.

5.2. The 4So and 2Do terms of N(2s22p3)

Table VII displays the angular momentum-energy
pattern of convergence calculated at the SD excita-
tion level of approximation up to ` = 10 and the cor-
responding number of CSFs, for the frozen-core CI
calculation of the 4So and 2Do terms of N(2s22p3).
The ground 4So term has a faster energy conver-
gence pattern than the excited 2Do term, with the
2Do term having 7 times the number of CSFs as the
4So term at ` = 10. Similarly, Table VIII represents
the counterpart of Table VII for fully-correlated CI
calculations up to ` = 6. The 4So term still dis-
plays faster energy convergence with respect to the
2Do term. Furthermore, a comparison of Tables VI

and VIII at ` = 6 reveals that the number of CSFs
increased by about 45% and 37% for 4So and 2Do

terms, respectively, upon shifting from frozen-core
to fully-correlated CI calculation.

In Table IX, we present the valence CI energies
of both 4So and 2Do terms of N and the corre-
sponding contributions to both energy correlation
∆E and the excitation energy EE(2Do − 4So) as
a function of CI excitation up to the SDTQQn level.
At the HF level of approximation, the calculated
EE(2Do − 4So) and one from the experiment have
a large discrepancy of 3761 cm−1. As seen in Ta-
ble IX, more and more energy correlation is gained
when going from the SD to the SDTQQ excitation
level. However, frozen-core CI calculations still pro-
duce EE(2Do − 4So), and that is nearly 39 cm−1

less than in the experiment.
When we move to fully-correlated CI calculations

shown in Table X, the excitation energy displays
almost stable behavior from CISDTQQn to CIS-
DTQQnSeSp. Furthermore, in Table X, we compare
our estimated nonrelativistic total energies Enr and
the corresponding excitation energy EE(2Do−4So)
with the best previously published results. Our non-
relativistic energies for 4So and 2Do terms rep-
resent the best (lowest) upper bounds, and the
corresponding EE(2Do − 4So) are in much bet-
ter agreement than previous results with respect to
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TABLE X

Total energies (in hartree) of 4So and 2Do terms of N(2s22p3) at different CI excitation levels, and the corre-
sponding contributions to excitation energy [cm−1] compared with best previous calculations and experiment.

Approximation E(4So) ∆E E(2Do) ∆E EE(2Do − 4So)

HF(numerical) −54.40093419 −54.29616933 22993.229

HF −54.4009341541 −54.2961668390 22993.768

CISD −54.5804357077 179501.554 −54.4913291409 195162.302 19556.630

CISDT −54.5843330374 3897.330 −54.4958414081 4512.267 19421.667

CISDTQ −54.5856291684 1296.131 −54.4975602023 1718.794 19328.904

CISDTQQn −54.5856400619 10.894 −54.4975846814 24.4791 19325.922

CISDTQQnSe −54.5856408586 0.797 −54.4975864837 1.8023 19325.701

CISDTQQnSeSp −54.5856408669 0.008 −54.4975864884 0.0047 19325.702

∆EOBI −0.000259622 −0.000278069 −4.0486

Enr (this work) −54.5859004889 −54.4978645574 19321.653

Enr a −54.5812

21333b

Enr c −54.4010 -54.2962 23000.94

Experimentd 19224.464
aRef. [22]; bRef. [23]; cRef. [24]; d Ref. [17]

TABLE XI

Valence energies (in hartree) of 3P term of N+(2s22p2) and 4So term of N(2s22p3), at different CI excitation
levels, and the corresponding contributions to ionization potential (in meV) compared with experiment.

Approximation 3P 4So IP(3P − 4So)

HF(numerical) −53.88800498 −54.40093419 13957.521

HF −53.8880044114 −54.4009341541 13957.536

CISD −53.9951313711 −54.5262323403 14452.000

CISDT −53.9962289088 −54.5292463335 14504.150

CISDTQ −53.9962912298 −54.5297735272 14516.800

CISDTQQn – −54.5297827086 14517.049

∆EOBI −0.000057756 −0.000072963 0.414

Enr (this work) −53.9963489858 −54.5298556716 14517.463

Experimenta 14534.1
aRef. [25]

the experiment. However, EE(2Do − 4So), corre-
sponding to the estimated nonrelativistic total en-
ergies Enr of 4So and 2Do, reported an increase in
the discrepancy and reached about 97 cm−1 above
the experiment. To improve the agreement between
EE(2Do − 4So) and the experiment, the relativis-
tic effect for both the ground state 4So3/2 and the
excited 2Do

5/2 states, viz., 2Do
5/2 −

4So3/2 should be
included. On the other hand, a comparison between
Table IX and Table X of the correlation energy con-
vergence displays the diminishing of ∆E towards
0.008 and 0.0047 µhartree for 4So and 2Do terms,
respectively, for fully-correlated CI, which are much
below the corresponding frozen-core CISDTQQn.

Figure 2 displays the convergence of both the va-
lence and total energies of the ground 4So and ex-
cited 2Do terms of N(2s22p3) as a function of the
number of determinants. Clearly, both the 4So and
2Do terms exhibit the same characteristic behavior
of both 3P and 1D terms of N+ shown in Fig. 1.

5.3. Ionization potential of 4So

In Tables XI and XII, we combine the energy
results of the N+(2s22p2)3P term with the N
(2s22p3)4So term for frozen-core CI calculations
(Table XI), and those correspond to fully-correlated
CI calculations (Table XII). Furthermore, the ion-
ization potential (IP) contribution is reported for
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TABLE XII

Total energies (in hartree) of 3P term of N+(2s22p2) and 4So term of N(2s22p3), at different CI excitation levels,
and the corresponding contributions to ionization potential (in meV) compared with experiment.

Approximation 3P 4So IP(3P-4So)

HF(numerical) −53.88800498 −54.40093419 13957.521
HF −53.8880044114 −54.4009341541 13957.536
CISD −54.0482576243 −54.5804357077 14481.310
CISDT −54.0503485226 −54.5843330374 14530.466
CISDTQ −54.0512891862 −54.5856291684 14540.138
CISDTQQn −54.0512900535 −54.5856400619 14540.411
CISDTQQnSe −54.0512900953 −54.5856408586 14540.432
CISDTQQnSeSp – −54.5856408669 14540.432
∆EOBI −0.000168266 −0.000259622 2.486
Enr (this work) −54.0514583613 −54.5859004889 14542.917

14070a

Experimentb 14534.1
aRef. [23]; bRef. [25]

Fig. 2. Energy convergence of the ground 4So and
exited 2Do terms of N with respect to number of
determinants (logarithmic scale).

different excitation levels. Very good agreement be-
tween our calculated ionization potential, estimated
at frozen-core approximation (Table XI), and the
experiment has been reached, however, there is still
a discrepancy of 17 meV. An improvement in the
ionization potential upon shifting to fully-correlated
CI calculations, in which the discrepancy reduces to
only 9 meV with respect to the experiment, was also
achieved.

6. Conclusions

We use both frozen-core and fully-correlated ap-
proaches in the CI method to calculate the nonrel-
ativistic energy of 3P and 1D terms belonging to

N+(2s22p2), and 4So and 2Do terms belonging to
N(2s22p3). Excitation energies EE(1D − 3P ) and
EE(2Do − 4So) are reported, as well as ionization
potential IP(3P − 4So). Furthermore, we give ex-
plicit data on the convergence of correlation en-
ergy contributions of EE(1D−3P ), EE(2Do−4So),
and IP(3P − 4So) for each excitation level, whether
for frozen-core or fully-correlated energies. Also,
we compare the results obtained from frozen-core
and fully-correlated CI calculations with respect to
both previously published results and the experi-
ment. The frozen-core approximation is an effective
method to reduce the dimension of the CI eigen-
value problem to be solved and eventually gives re-
sults in good agreement with the experiment, how-
ever, to reach an excellent agreement with the ex-
periment one still needs to add both core–core and
core–valence as well as the relativistic effect. Even
with a relatively moderate basis set, fully correlated
CI treatment can provide very good agreement with
the experiment. We expect, however, that in order
to present a real assessment, one needs to add a rel-
ativistic effect.
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