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We consider polarization-sensitive optical effects in quantum wells grown from zinc blend semiconductor
materials on the basis of an envelope-function approximation. Particular attention is paid to the case
of normal incidence of linearly polarized light on a quantum well grown in the [001] crystallographic
direction. We demonstrate that for the [001]-oriented quantum wells characterized by structure inversion
asymmetry, in-plane optical anisotropy can be governed by a bulk-related microscopic mechanism. This
intrinsic mechanism is due to the Γ8 valence band interaction, which is linear in the hole momentum
operator and is allowed for bulk cubic crystals lacking a space inversion center. Analytical results are
obtained in the limiting case of a strong confinement regime. The resulting in-plane optical anisotropy
and related effects can be detected in the vicinity of exciton resonances.
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1. Introduction

The phenomenon of optical anisotropy (OA) in
crystals — the dependence of optical properties on
the polarization of light — has been well-known
for a long time. Over the past decades, this topic
was reopened due to intensive investigation of low-
dimensional semiconductor structures. The study
of optical effects in the low-dimensional structures
provides insight into the fundamental properties of
material systems and is also relevant for the cre-
ation of different optical devices. Since the dielec-
tric tensor εij , which describes the optical proper-
ties of crystal materials, is sensitive to electronic
wave functions on the macroscopic scale [1], the OA
effects of most crystals are due to the character of
their structure. For example, bulk semiconductor
materials belonging to the Td point group symme-
try do not show natural OA, at least without taking
into account spatial dispersion effects [2]. On the
other hand, for quantum wells (QWs) grown from
cubic semiconductors, the violation of the transla-
tion symmetry in the growth direction leads to a re-
duction of lattice symmetry and induces a polar-
ization dependence of optical properties†. Already

†1This statement is true for QWs with a width much
smaller than the wave length of the light. Note that in the
visible spectral region the scale of the wave length is of the
order of a few thousand Å, while the width of the studied
QWs is usually of the order of a few tens Å.

in the case of the [001]-oriented QW, belonging to
the D2d point group symmetry, the near-band-gap
optical transitions become different for light polar-
ized along (TM mode) or perpendicular (TE mode)
to the QW growth direction [3]. Furthermore, for
QWs grown on low-symmetry planes, i.e., for struc-
tures oriented along directions with higher Miller
indices, OA in the plane of QW also becomes typi-
cal. The reason of the in-plane OA is a further re-
duction of the QW symmetry from the D2d point
group in the [001]-oriented QW to, for example, the
C2v symmetry in QWs grown in the [110] crystallo-
graphic direction. Such an effect of natural in-plane
OA in QWs grown on low-symmetry planes has been
considered in a number of theoretical and exper-
imental works [4]. The microscopic reason is, ac-
cordingly, due to the anisotropic character of the
Γ8 valence band dispersion law in cubic symme-
try crystals [5]. Having in mind the QW structures
grown in the [001] crystallographic direction, the in-
plane OA here can be due to the structure inversion
symmetry. Indeed, if for conventional QWs belong-
ing to the D2d symmetry group, in-plane polariza-
tion degeneracy is maintained, the symmetry reduc-
tion can originate, for example, from the C2v sym-
metry of atomic structures at (001) interfaces [6].
In-plane OA in heterostructures without common
cations and anions was predicted in [7] and ob-
served in non-common atom (GaInAs)/InP QWs
in [8]. For such an intra-cell effect of the compo-
sition discontinuity, the classical theory of envelope
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function is not applicable, in contrast to the above
case of QWs oriented along nonconventional direc-
tions. Note also that non-common atom quantum
well systems exhibit in-plane OA, even if the po-
tential barriers are identical [4]. This is not the case
for common atom QWs grown in the [001] direction.
Here, the in-plane optical anisotropy requires some
structure asymmetry, e.g., due to the asymmetry of
the potential barriers.

Below, to complete the picture, we consider the
in-plane OA in the [001]-oriented asymmetrical
QWs that are characterized by nonequivalent z and
−z directions. A rectangular QW with potential
barriers of different heights can serve here as a sim-
ple example. As an intrinsic mechanism of in-plane
OA in this case, we propose the valence band in-
teraction of relativistic nature, which is linear in
the hole momentum operator and is allowed al-
ready for bulk zinc blend crystals lacking a space
inversion center [9]. For asymmetrical QWs oriented
in the [001] crystallographic direction, this spin–
orbit interaction leads to a mixing of the hh and
lh states at the Γ point and contributes to in-plane
OA at the normal incidence of light. The intrin-
sic mechanism of the in-plane OA proposed here
has not yet been discussed in the literature to our
knowledge.

2. Description of optical anisotropy
in [001]-oriented QW

We will start with a brief information on the phe-
nomenological and microscopic description of OA
in QWs. We mean the [001]-oriented QW, which is
grown from zinc blend lattice semiconductors be-
longing to the Td point group symmetry. Having
in mind the macroscopic consideration of optical
effects, the symmetry properties of the dielectric
tensor εij(ω, q) (with ω and q as light frequency
and wave vector, respectively,) play a crucial role
here. Ignoring the spatial dispersion effects (q → 0),
the symmetry consideration leads to the follow-
ing results. For symmetrical QWs belonging to the
D2d point group, the permittivity tensor εij has
a diagonal form with two independent components
εxx = εyy and εzz [10], where x ‖ [100] and y ‖ [010]
are the axes in the QW plane and z ‖ [001] is the
growth direction, as shown in Fig. 1a. Hence, sym-
metrical [001]-oriented QWs show no in-plane OA.
For asymmetrical QWs, the point symmetry group
is lowered. The respective C2v point group includes
the symmetry axis C2 parallel to the [001] growth
direction and the two reflection planes m1(110) and
m2(110), as shown in Fig. 1b. The corresponding
permittivity tensor is now characterized by three
independent components εx′x′ (x′ ‖ [110]), εy′y′
(y′ ‖ [110]), and εzz (z ‖ [001]) [10]. Consequently,
the optical properties in the plane of the asymmet-
rical [001]-oriented QW can be different for the light
polarizations e ‖ [110] and e ‖ [110] so that in-plane
optical anisotropy can manifest.

Fig. 1. (a) The coordinate system for QW grown
in the [001] direction and belonging to the D2d point
group symmetry; a is the thickness of the well. (b)
Symmetry elements of the C2v point group: mirror
planes m1(110) and m2(110) and C2-axis in QW
grown along z ‖ [001].

The microscopic description of the OA phe-
nomenon is closely related to the concept of the op-
tical matrix elements, which are fundamentally im-
portant for any optical process. Below we consider,
for simplicity, narrow QWs belonging to a strong
confinement regime. In other words, the well width
a is supposed to be smaller than the exciton Bohr
radius aB, a� aB. For example, in GaAs, the bulk
exciton Bohr radius aB = 11.6 nm. Besides, we as-
sume that the size-quantized energy subbands of the
strongly confined QW are described in the frame of
an envelope-function approximation. We will con-
centrate on the fundamental optical transitions be-
tween the size-quantized lowest electron subband
1e and the ground hh (lh)-like subband 1v. For lin-
early polarized light, the optical transitions 1e↔ 1v
of interest are governed (in dipole approximation)
by the matrix elements of the momentum operator
p̂ = − i~∇ [4]. These are as follows

MJz,sz
i =

〈
Ψ1e,sz |

(
p̂iei

)
|Ψ1v,Jz

〉
, (1)

where ei (i = x, y, z) is the component of the
polarization vector e and sz (Jz) are the projec-
tions of the electron (hole) total momentum. At the
zero in-plane wave vector k‖ = {kx, ky} = 0, the
electron wave function in the 1e subband is given
by Ψ1e,sz (z) = ϕ1e(z)S|sz〉 with ϕ1e(z) being the
wave function of the confined conduction electron,
S being the (s-type symmetry) orbital Bloch func-
tion, and |sz〉 (sz = ±1/2) — spin function. For
the pure hh states (v = hh), the electron wave
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functions in the ground hh doublet Ψ0
1hh,±3/2(z) =

ϕ1hh(z)| 32 ,±
3
2 〉e are determined by the size quanti-

zation function ϕ1hh(z) and the Bloch amplitudes
| 32 ,±

3
2 〉e. The latter are presented as linear com-

binations of the angular momentum L = 1 func-
tions X,Y, Z, and the spin functions | ↑〉(| ↓〉) =
| 12 〉(| −

1
2 〉) (see, e.g., [4])∣∣∣∣32 ,+3

2

〉
e

= − 1√
2

(
X + iY

)
| ↑〉, (2)∣∣∣∣32 ,−3

2

〉
e

= +
1√
2

(
X − iY

)
| ↓〉. (3)

The functions X,Y, Z transform under the opera-
tions of the Td group as x, y, z (x ‖ [100], y ‖ [010],
z ‖ [001]). Similarly, for the pure lh states (v =
lh), the wave function is given by Ψ0

nlh,±1/2(z) =

ϕnlh(z)| 32 ,±
1
2 〉e. Here, n is the subband number,

ϕnlh(z) is the wave function of the confined va-
lence electron, and the Bloch amplitudes | 32 ,±

1
2 〉e

are given by∣∣∣∣32 ,+1

2

〉
e

= − 1√
6

(
X+iY

)
| ↓〉+

√
2

3
Z | ↑〉, (4)

∣∣∣∣32 ,−1

2

〉
e

= +
1√
6

(
X− iY

)
| ↑〉+

√
2

3
Z | ↓〉. (5)

The Bloch amplitudes above are given in electron
representation, the hole representation is obtained
by the time inversion operation [9]. Note also that
in the frame of the Luttinger–Kohn Hamiltonian,
the pure hh and lh states in QWs refer to the Γ
(k‖ = 0) point.

The above microscopic description does not take
into account the spatial dispersion effects. For QWs,
this description is valid at the normal incidence of
a light beam to the QW plane. The reason is that
the translation invariancy in the growth direction
of QW is violated, so that at the normal incidence
the spatial dispersion effects are absent at all. As
a result, the in-plane wave vector of the excited
electron–hole pair K‖ = kv‖ + ke‖ can be equal
to zero (K‖ = 0) and direct interband optical tran-
sitions at the Γ point are possible. Note that the ab-
sence of any mixing between the states hh and lh, as
is supposed above, leads to isotropic optical proper-
ties in the QW plane. Indeed, it is easy to check that
for the pure hh doublet (1v ≡ 1hh), it follows from
(1)–(2) that the 1e ↔ 1hh interband transitions
at the Γ point have the same probability |Mξ|2 =
|Mζ |2 = |〈S|p̂x|X〉|2 for any two orthogonal polar-
izations ξ and ζ lying in the plane of the [001]-
oriented QW. Similarly, for the pure lh doublet,
the 1e ↔ 1lh interband transition is characterized
by the probability |Mξ|2 = |Mζ |2 = 1

3 |〈S|p̂x|X〉|
2.

Such a result, as follows from the phenomenological
description presented above, is typical for symmet-
rical QWs belonging to the D2d point group sym-
metry. Consequently, the expected in-plane OA in
the asymmetrical [001]-oriented QWs requires some
microscopic mechanism of the hh–lh mixing.

3. Heavy hole–light hole mixing

To introduce the mixing of the ground hh dou-
blet with the underlying lh subbands at the Γ point
in the [001]-oriented asymmetrical QW, we propose
an intrinsic microscopic mechanism due to the bulk
inversion asymmetry of the GaAs-like semiconduc-
tor crystals. Namely, we take into account that for
the bulk cubic crystals without an inversion center,
the spin-dependent part of the 4×4 effective Hamil-
tonian in the Γ8 valence band expanding in powers
of the wave vector k starts already with the first
order term [9, 11]

Hlin =
4√
3
K0

[
kx Jx(J2

y − J2
z ) + ky Jx(J2

z − J2
x)

+ kz Jz(J
2
x − J2

y )
]
.

(6)

Here ki = − i∂/∂ri is the carrier wave vector oper-
ator; ri = x, y, z indicate the principal axes [100],
[010] and [001], respectively; and Ji is the angular
momentum J = 3/2 matrices. The constant K0 is
relativistic in its origin and is due to the k − p
mixing with the remote states [11, 12]. For [001]-
oriented QWs, this k-linear interaction, according
to (6), leads to a mixing of the hh and lh states at
the Γ point, i.e., at k‖ = 0. This means that the
interaction Hlin can be responsible for the in-plane
optical anisotropy of the [001] QWs already at the
normal incidence of light. Obviously, such a conclu-
sion is valid for asymmetrical QWs only, since the
hh–lh mixing of interest arises from the third term
in parenthesis, which is linear in the hole momen-
tum kz. For structure–symmetrical QWs, this term
averaged over the size-quantized motion limits to
zero, 〈kz〉 = 0. Note that for QWs, the bulk inver-
sion asymmetry induces also another type of the k‖-
linear interaction, which is commonly accepted in
the literature. This interaction arises from the bulk
k-cubic spin–orbit interaction [12], acts as an effec-
tive magnetic field and is responsible for the optical
activity of QWs [13].

Having in mind the asymmetrical [001]-oriented
QW, taking in the Hamiltonian Hlin the in-plane
wave vector kx = ky = 0 and treating the remaining
term as a perturbation of pure hole states, for the
Γ point wave function of the ground size-quantized
subband 1hh one obtains

Ψ1hh,±3/2(z) ∼= ϕ1hh(z)

∣∣∣∣32 ,±3

2

〉
± Φh(z)

∣∣∣∣32 ,∓1

2

〉
,

(7)

where

Φh(z) = 2K0

∑
m

〈
mlh|k̂z|1hh

〉
E1hh − Emlh

ϕmlh(z) (8)

and E1hh (Emlh) is the hh (lh) size quantized
energy at k‖ = 0. By inserting (7) into (1) and
taking into account the above definitions of the
basis functions, (2)–(3) and (4)–(5), for the matrix
elements of the optical transitions between the
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highest hh-like valence subband and the lowest
electron subband at the light polarization along
x′ ‖ [110] and y′ ‖ [110], respectively, one obtains

M
3/2,1/2
110 = − iM

−3/2,−1/2
110 =

− pcv
2
〈1e|1hh〉 (1 + βh)(1 + i),

(9)
and

M
3/2,1/2

110
= +iM

−3/2,−1/2
110

=

+
pcv
2
〈1e|1hh〉 (1− βh)(1− i),

(10)
where pcv = 〈S|p̂x|X〉 is the interband momentum
matrix element (see Sect. 3), and the structure
inversion asymmetry parameter is

βh =
2K0√

3

∑
m

〈mlh| ∂∂z |1hh〉
E1hh − Emlh

〈1e|mlh〉
〈1e|1hh〉

. (11)

It follows from (9)–(10) that at βh 6= 0 the
probability of the considered optical transitions
depends on the radiation polarization direction in
the QW plane. Note also that similar results can
be obtained for optical transitions from the first
lh-like subband to the lowest electron subband with
the change of the inversion asymmetry parameter
βh by the parameter

βl = 2K0

∑
m

〈mhh| ∂∂z |1lh〉
E1lh − Emhh

〈1e|mhh〉
〈1e|1lh〉

. (12)

4. Discussion

In Sect. 3 above, it is shown that for asymmetri-
cal [001]-oriented QWs, the valence band interaction
Hlin (see (6)) leads to mixing between the hh and
lh states at zero in-plane hole momentum k‖ = 0.
As a result, the matrix elements of the interband
optical transitions become dependent on the light
polarization direction in the QW plane. In partic-
ular, for the 1e ↔ 1hh and 1e ↔ 1lh transitions,
the in-plane OA is set by the parameters βh and βl,
respectively, see (11)–(12). As expected, both pa-
rameters limit to zero in the case of symmetrical
QWs, βh = βl = 0. Indeed, for symmetrical QWs,
the directions z and −z are equivalent and therefore
the electron (hole) size quantization wave functions
ϕme(ϕmhh, ϕmlh) are even for odd m = 1, 3, 5, . . .
and odd for even m = 2, 4, . . . relative to the QW’s
center. As a result, the momentum matrix element
〈mlh| ∂∂z |1hh〉 in (11) is zero for odd m, while for
evenm the overlap 〈1e|mlh〉 of lh state and electron
envelope functions is zero. Similarly, the momentum
matrix element 〈mhh| ∂∂z |1lh〉 in (12) is zero for odd
m, while for even m the overlap 〈1e|mhh〉 is zero.
For asymmetrical QWs, the parity restriction is re-
moved and consequently the parameters βh and βl
differ from zero; βh 6= 0, βl 6= 0.

According to (11)–(12), the structure inversion
asymmetry parameters βh and βl can be estimated
as βh ∼ (K0a/(~2κ))ζ and βl ≈ −βh. Here a is
the well thickness, κ = (mlh−mhh)/(mlhmhh) with

Fig. 2. Schematic representation of the incidence
plane at the normal incidence of light linearly po-
larized in the plane of incidence (p polarization) or
perpendicular to it (s polarization) for QW grown
in the [001] direction.

mhh (mlh) the hh (lh) transverse effective mass, and
ζ = z1lh,1hh/a with the matrix element z1lh,1hh =
〈1lh|z|1hh〉. In terms of the Luttinger parameters
γ1 and γ2, the transverse hole masses are given by
mhh = m0/(γ1− 2γ2) and mlh = m0/(γ1 + 2γ2) [9],
so that the parameter κ = −4γ2/m0. The quan-
tity z1lh,1hh/a differs from zero for QW structures
showing inversion asymmetry caused by the differ-
ence in the left and right barrier materials. This
potential difference results in a shift of the hole
wave functions away from the point in the middle of
QW and leads to a nonzero matrix element z1lh,1hh.
For symmetrical QWs characterized by symmetri-
cal hole wave functions, the matrix element z1lh,1hh
and therefore the parameter ζ are limited evidently
to zero. A similar parameter was introduced in [14]
where the experimentally observed magnetospatial
dispersion was attributed to the inversion asymme-
try of the studied semiconductor QW structures.
For asymmetrical QWs, the nonzero parameters βh
and βl are close in magnitude and opposite in sign.
Also note that both parameters βh and βl show
an approximately linear dependence on the width a
of QW.

In the vicinity of the hh-like exciton resonance,
the parameter βh sets the degree of in-plane OA
given, according to (9)–(10), by

%h =
|M110|2 − |M110|2

|M110|2
∼= 4βh, (13)

where |Mi|2 = |M+3/2,+1/2
i |2+ |M−3/2,−1/2i |2. Simi-

lar consideration is valid for the lh-like exciton. Here
the degree of optical anisotropy %l is governed by the
parameter βl (%l ' 4βl), and a more remarkable pe-
culiarity is that the quantities %l and %h have oppo-
site signs. It turns out that the polarizations of the
peak values of the hh exciton and the lh exciton are
opposite of each other in the optical spectra. One
has to note that a similar peculiarity of in-plane
OA was observed in semiconductor QWs grown on
low-symmetry (11N) planes [5].

One of the manifestations of the OA phenomena
is the conversion of the light polarization state [15]
— an effect based on the transformation of a pure
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linearly or circularly polarized wave into elliptically
polarized light. As a tool for studying this effect the
phenomenon of light reflection can serve. Namely,
for the incident light linearly polarized, e.g., in the
plane of incidence (p polarization) or perpendicular
to it (s polarization) (see Fig. 2), the reflected light
will contain both components and thus becomes el-
liptically polarized. In Fig. 2 the incident plane,
which contains the C2[001] axis, is presented for
the quantum wells grown along z ‖ [001]. In terms
of the reflection coefficient tensor rij , and where
Eri = rijE

0
j (i, j = s, p) with E0 (Er) being the

light field of the incident (reflected) wave, the polar-
ization conversion effect means that the off-diagonal
components differ from zero, rsp = rps 6= 0. For the
hh-like exciton resonance, e.g., solving the problem
of light reflection in QW following [4], at the normal
incidence we obtain

rsp = 4βhrss sin(2ϕ). (14)

Here, ϕ is the angle between the incident plane and
the axis [110], see Fig. 2. The reflection coefficient
is given by

rss =
iΓ0

ω0 − ω − iΓ
(15)

with ω0 and Γ being the hh exciton resonant fre-
quency and the linewidth, respectively, and Γ0 is
the exciton oscillator strength. From (13)–(14) it
follows that the polarization conversion coefficient
R = rsp/rss is proportional to the degree of in-plane
optical anisotropy, R = %h sin(2ϕ). No polarization
conversion of the reflected light occurs, evidently,
if the incident light is polarized along the [110] and
[110] symmetry axes, that is at ϕ = 0, π/2.

Below, we present some evaluations of the ob-
tained results. First of all, note that the actual
value of the structure inversion asymmetry param-
eter βh (βl) is set by the constant K0. For vari-
ous zinc blend semiconductors, this constant dif-
fers significantly in magnitude from a few meV Å
in A3B5 compounds to several tens of meV Å
in copper hallides [11]. To estimate the effects of
optical anisotropy in [001]-oriented QWs, result-
ing from the mechanism proposed here, we will
choose a set of relevant parameters. Considering
a GaAs-based quantum well, we use the constant
K0 = −3.4 meV Å [11] and the Luttinger parame-
ter γ2 = 2 [16]. Taking the well width a = 10 nm
and the parameter ζ = 0.2, we get the value
βh (|βl|)∼ 10−3. Note that the above-chosen value
of the ζ parameter is rather realistic. For exam-
ple, the authors of a recent paper [14], which is
devoted to the magnetically induced polarization
conversion effect in semiconductor QWs, report the
growth of triangular GaAs/AlGaAs QW character-
ized by the parameter ζ = 0.2. The obtained nu-
merical estimate shows that in the region of the
hh-like exciton the polarization conversion coeffi-
cient R does not exceed a few tenths of a percent,
Rmax ≈ %h ∼ 4× 10−3, where %h (|%l|) is the degree
of in-plane OA. Hence, the bulk asymmetry related

effect of in-plane OA in the [001]-oriented QWs is
rather weak, at least for the GaAs-based QW struc-
tures. By comparison, interface-related OA of about
a few percent was observed experimentally in non-
common-atom (GaInAs)/InP semiconductor struc-
tures [7, 8], as well as in unconventionally [110]-
oriented GaAs-based QW systems [17]. Note that
the effect considered here may be one order of mag-
nitude greater for QWs based on the A2B6 and
A2B7 semiconductor compounds, which are char-
acterized by a constant K0 about several tens of
meV Å [11]. The in-plane optical anisotropy can
reach in this case several percent.

With regards to experimental observations, the
detection of in-plane OA of the [001]-oriented QWs
at the normal incidence is reported in literature for
different QW systems. Note that most observations
refer to nonconventional QWs. For example, in [18],
in-plane optical anisotropy of CdTe-based quantum
wells with asymmetric barriers made of (Cd,Mg)Te
or (Cd,Mn)Te ternary compounds was investigated.
The authors observed a significant linear polariza-
tion, from a few tenths of a percent to a few per-
cent, of the fundamental excitonic transitions along
the 〈110〉 directions. The experimental results were
discussed in terms of interface symmetry reduction.
The authors developed an envelope function theory
based on the methods proposed in [19] and [7]. In
the frame of this theory, the boundary conditions for
the envelopes are represented by δ-potentials at the
interfaces, and the interface-related mixing between
the heavy and light holes was calculated. Regarding
the correspondence between theory and experiment,
the authors concluded that a significant contribu-
tion of additional mechanisms may also be impor-
tant. The bulk inversion asymmetry and the surface
electric field were listed as supplemental sources of
optical anisotropy. Using the results presented here
for CdTe-based QWs with parameter ζ = 0.2, linear
constant K0 = 34 meV Å [11], and width a = 10 nm,
we find the degree of in-plane OA due to the bulk
inversion asymmetry of the order of %h ∼ 0.01.

In [20], in-plane OA was investigated in the
(100) GaAs/AlGaAs QWs by reflectance difference
spectroscopy. Two types of samples were examined
in this paper. Firstly, the QW structures where
asymmetry was specially introduced by inserting of
a monolayer of InAs or AlAs at the interfaces were
studied. For excitonic transitions between the first
subbands of the valence and conduction bands, the
reported polarization degree is ' 9%, which is com-
parable to the values typical for the QW systems
with no common atom. The second type of systems
investigated are conventional nominally symmetri-
cal QWs. For such systems, the polarization degree
of the order of 0.7% was measured, which is close
to the estimations presented above for GaAs-based
QW. The observed weak OA in [20] has been at-
tributed to the residual QW asymmetry related to
the anisotropic interface structures or the segrega-
tion effect, but the authors did not propose any
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relevant microscopic mechanism, as far as we un-
derstand. Note also that for asymmetrical noncon-
ventional (001) GaAs-based QWs, similar investi-
gations of the in-plane OA were performed in [21].
Regarding ordinary [001]-oriented QWs, experimen-
tal detection of in-plane OA at the normal inci-
dence was reported in [13]. The polarization con-
version effect due to the optical activity of a nom-
inally symmetrical ZnSe-based QW grown in the
[001] direction was investigated both experimentally
and theoretically [13]. The weak signal detected at
the normal incidence of light was attributed to the
stress-induced reduction of the structure symmetry
and the influence of in-plane deformation on the
short-range exchange interaction in the exciton as
well [13].

5. Conclusions

To summarize, we examine the in-plane OA of
semiconductor [001]-oriented QWs in the spectral
region of the hh (lh)-like exciton resonance on the
basis of an envelope function approximation. We
show that this optical effect can be observed in
asymmetrical QWs, which are grown from the zinc
blend semiconductors. The valence band interac-
tion, linear in the hole momentum operator, can
serve here as the intrinsic macroscopic mechanism
of in-plane OA. A degree of the respective OA in the
QW plane increases linearly with the well width. As
an example, an order-of-magnitude estimation of in-
plane OA in the quantum well of GaAs is given. For
a reasonable degree of the structure inversion asym-
metry of 20%, the degree of in-plane OA and the
polarization conversion coefficient are on the order
of 0.4% for a well width of about 10 nm. For asym-
metrical QWs oriented in the [001] direction, ex-
perimental measurements of the optical anisotropy
effects at the normal incidence can be helpful in
determining the degree of the structure inversion
asymmetry.
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